
Chapter 9

Local Parametrization and Puiseux
Expansion

Let us first give an example of what we want to do in this section.

Example 9.0.1. Consider the plane algebraic curve C ⊂ A2(C) defined by the equation

f(x, y) = y5 − 4y4 + 4y3 + 2x2y2 − xy2 + 2x2y + 2xy + x4 + x3 = 0

(see Figure 9.1).
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Figure 9.1: Real part of C

Note that the affine point (0, 2) is an isolated singularity of C.
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Around the origin, C is parametrized by two different pairs of analytic functions
(x1, y1) and (x2, y2) which have the following power series expansions:

(A1(t), B1(t)) = (t, −1
2
t2 + 1

8
t4 − 1

8
t5 + 1

16
t6 + 1

16
t7 + . . .),

(A2(t), B2(t)) = (−2t2, t + 1
4
t2 − 27

32
t3 − 7

8
t4 − 4057

2048
t5 + . . .).

In a neighborhood around the origin these power series actually converge to points
of the curve C. In fact, these two power series correspond to what we want to call the
two branches of C through the origin. In Figure 9.2 one may check how (Ai(t), Bi(t))
approaches the curve C in a neigborhood of the origin.
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Figure 9.2: Real part of C and some points generated by (A1(t), B1(t)) (Left), Real
part of C and some points generated by (A2(t), B2(t)) (Right)

We will be interested in determining such power series, i.e. in analyzing the topology
of a curve in the neighborhood of some point.

144



9.1 Power series, places, and branches

We denote by K[[x]] the domain of formal power series in the indeterminate x with
coefficients in the field K, i.e. the set of all sums of the form

∑∞
i=0 aix

i, where ai ∈ K.
The quotient field of K[[x]] is called the field of formal Laurent series and is denoted

by K((x)). As is well known, every non-zero formal Laurent series A(x) ∈ K((x)) can
be written in the form

A(x) = xk · (a0 + a1x + a2x
2 + · · ·), where a0 6= 0 and k ∈ Z.

The exponent k of the first non-vanishing term of A is called the order of A, denoted
by ord(A). We let the order of 0 be ∞.

The units in K[[x]] are exactly the power series of order 0, i.e. those having a non-
zero constant term. If ord(A) = 0, then A−1 can be computed by an obvious recursive
process, in which linear equations over K have to be solved. It is easy to check if a
power series is a multiple of another one: A | B if and only if ord(A) ≤ ord(B).

In the remainder of this chapter we will need power series with fractional exponents.
So we will consider Laurent series K((x1/n)) in x1/n, n ∈ N. In fact, the union of all
these fields of Laurent series with denominator n, for n ∈ N, is again a field.

Definition 9.1.1. The field K ≪ x ≫:=
⋃∞

n=1 K((x1/n)) is called the field of formal

Puiseux series. The order of a non-zero Puiseux series A is the smallest exponent of a
term with non-vanishing coefficient in A. The order of 0 is ∞.

The Puiseux series are power series with fractional exponents. Every Puiseux series
has a bound n for the denominators of exponents with non-vanishing coefficients.

The substitution of constants for the indeterminate x in a formal power series is
usually meaningless. This operation only makes sense for convergent power series in a
certain neighborhood of the origin. But we can always substitute 0 for the variable in
a power series A = a0 + a1x + a2x

2 + · · ·, getting the constant coefficient a0.

It is useful to define the substitution of a power series into another. Let A, B ∈
K[[x], A = a0 + a1x + a2x

2 + · · ·, B = b1x + b2x
2 + · · ·, i.e. ord(B) ≥ 1. Then the

substitution A(B) is defined as

A(B) = a0 + a1B + a2B
2 + a3B

3 + · · · =
= a0 + a1b1x + (a1b2 + a2b

2
1)x

2 + (a1b3 + 2a2b1b2 + a3b
3
1)x

3 + · · · .

In order to avoid the problem of substitution of constants we have to request that
ord(B) ≥ 1.

The following properties of the substitution operation can be easly proved.

Lemma 9.1.1. Let A, B, C ∈ K[[x]], ord(B), ord(C) ≥ 1.
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(a) (A(B))(C) = A(B(C)).

(b) If ord(B) = 1 then there exists a power series B′ of order 1, such that A =
(A(B))(B′).

(c) The mapping A −→ A(B) is an endomorphism on K[[x]].

(d) If ord(B) = 1 then the mapping A −→ A(B) is an automorphism of K[[x]] over

K which preserves the order of the elements.

A curve defined over the field K can be considered to have points over the big-
ger field K((t)) of Laurent series, i.e. in P2(K((t)) ). Such a point is called a local
parametrization of the curve. P2(K) is naturally embedded in P2(K((t)) ). P2(K) cor-
responds to those points (x : y : z) ∈ P2(K((t)) ), such that u · (x, y, z) ∈ K3 for some
u ∈ K((t))∗.

Definition 9.1.2. Let C ⊂ P2(K) be a curve defined by the homogeneous polynomial
F (x, y, z) ∈ K[x, y, z]. Let A(t), B(t), C(t) ∈ K((t)) such that

(i) F (A, B, C) = 0, and

(ii) there is no D(t) ∈ K((t))∗ such that D · (A, B, C) ∈ K3.

Then the point P(t) = (A : B : C) ∈ P2(K((t)) ) is called a local parametrization of C.

So, obviously, A, B, C are just one possible set of projective coordinates for the
local parametrization P(t) = (A : B : C). For every D ∈ K((t))∗, (DA : DB : DC)
is another set of projective coordinates for P(t). Condition (ii) says that P(t) is not
simply a point in P2(K).

Lemma 9.1.2. Every local parametrization of a projective curve C defined over K
has coordinates (A1 : A2 : A3) such that Ai ∈ K((t)) and the minimal order of the

non-zero components Ai is 0.

Proof: Let (Ã1 : Ã2 : Ã3) be a local parametrization of C. Let h = −min(ord(Ãi)).
We set Ai := th · Ãi. Then (A1 : A2 : A3) satisfies the conditions of the lemma.

Definition 9.1.3. Let P = (A : B : C) be a local parametrization of C with
min{ord(A), ord(B), ord(C)} = 0. Let a, b, c be the constant coefficients of A, B, C,
respectively. Then the point (a : b : c) ∈ P2(K) is called the center of the local
parametrization P.

Since local parametrizations are just points in the projective space over a bigger
field, we can also introduce the notion of affine local parametrization in the obvious
way. Namely, let C be an affine curve, and C∗ the corresponding projective curve. Let
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(A∗ : B∗ : C∗) be a local parametrization of C∗. Setting A := A∗/C∗ and B := B∗/C∗

we get

(i) f(A, B) = F (A, B, 1) = 0, and

(ii) not both A and B are in K.

Then the pair of Laurent series (A, B) is called an affine local parametrization of the
affine curve C.

Let (A∗(t) : B∗(t) : C∗(t)) be a (projective) local parametrization of the projec-
tive curve C∗ corresponding to the affine curve C, such that A∗, B∗, C∗ ∈ K[[t]] and
min{ord(A∗), ord(B∗), ord(C∗)) = 0. If the constant coefficient c of C∗ is non-zero,
then ord(C∗−1) = 0, so if we set A := A∗/C∗, B := B∗/C∗, then (A, B) is an affine
local parametrization of C with A, B ∈ K[[t]], i.e. with center at a finite affine point.
Conversely, every affine local parametrization with center at a finite affine point has
coordinates in K[[t]].

Substituting a non-zero power series of positive order into the coordinates of a local
parametrization yields a parametrization with the same center.

Definition 9.1.4. Two (affine or projective) local parametrizations P1(t),P2(t) of an
algebraic curve C are called equivalent iff there exists C ∈ K[[t]] with ord(C) = 1 such
that P1(t) = P2(C).

This equivalence of local parametrizations is actually an equivalence relation, be-
cause of Lemma 9.1.1.

Theorem 9.1.3. In a suitable affine coordinate system any given local parametrization

is equivalent to one of the type

( tn, a1t
n1 + a2t

n2 + a3t
n3 + · · · ),

where 0 < n, and 0 < n1 < n2 < n3 < · · ·.

Proof: We choose the origin of the affine coordinate system to be the center of the
parametrization. This means the parametrization will have the form (B, C), with

B(t) = tn(b0 + b1t + b2t
2 + · · ·), n > 0,

C(t) = tm(c0 + c1t + c2t
2 + · · ·), m > 0.

At least one of b0, c0 is not 0; w.l.o.g. (perhaps after interchanging the axes) we may
assume b0 6= 0. So now we have to find a power series D(t) of order 1 such that
B(D) = tn. This can be done by making an indetermined ansatz for D(t), and solving
the linear equations derived from B(D) = tn. The condition b0 6= 0 guarantees that
these linear equations are solvable.
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Definition 9.1.5. If a local parametrization P, or one equivalent to it, has coordinates
in K((tn)), for some natural number n > 1, i.e. P(t) = P ′(tn) for some parametrization
P ′, then P is said to be reducible. Otherwise, P is said to be irreducible.

The following criterion for irreducibility is proved in [Wal50].

Theorem 9.1.4. The local parametrization

( tn, a1t
n1 + a2t

n2 + a3t
n3 + · · · ),

where 0 < n, 0 < n1 < n2 < n3 < · · · and ai 6= 0, is reducible if and only if the integers

n, n1, n2, n3, . . . have a common factor greater than 1.

Definition 9.1.6. An equivalence class of irreducible local parametrizations of the
algebraic curve C is called a place of C. The common center of the local parametrizations
is the center of the place.

This notion of a place on a curve C can be motivated by looking at the case K = C.
Let us assume that C is defined by f ∈ C[x, y] and the origin O of the affine coordinate
system is a point on C. We want to study the parametrizations of C around O. If O
is a regular point, we may assume w.l.o.g. that ∂f

∂y
(0, 0) 6= 0. Then, by the Implicit

Function Theorem 1, there exists a function y(x), analytic in some neighborhood of
x = 0, such that

• y(0) = 0,

• f(x, y(x)) = 0, and

• for all (x0, y0) in some neighborhood of (0, 0) we have y0 = y(x0).

This means that the pair of analytic functions (x, y(x)) parametrizes C around the
origin. The analytic function y(x) defined by f(x, y(x)) = 0 can be expanded into a
Taylor series

∑∞
i=0 cit

i for some ci ∈ C, convergent in a certain neighborhood of the
origin. If we set X(t) = t, Y (t) =

∑∞
i=0 cit

i, then f(X(t), Y (t)) = 0 and X and Y are
convergent around t = 0. Hence, (X(t), Y (t)) is a parametrization of C with center at
the origin.

If the origin is a singular point of C then, by Newton’s Theorem there exist finitely
many pairs of functions (x(t), y(t)), analytic in some neighborhood of t = 0, such that

• x(0) = 0, y(0) = 0,

• f(x(t), y(t)) = 0, and

• for every point (x0, y0) 6= (0, 0) on C in a suitable neighborhood of (0, 0) there is
exactly one of the pairs of functions (x(t), y(t)) for which there exists a unique
t0 such that x(t0) = x0 and y(t0) = y0.

1e.g. Grauert, Lieb, Differential- und Integralrechnung II, Satz 6.1
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Again the pairs of analytic functions can be expanded into power series (X(t), Y (t)),
resulting in parametrizations of C. These parametrizations are irreducible because of
the claim of uniqueness of t0.

It is important to note that the pairs of analytic functions parametrizing C are
not unique. However, any such collection of parametrizations gives the same set of
points in a suitable neighborhood. Let (x′(t), y′(t)) be a pair of analytic functions
different from (x(t), y(t)) but giving the same set of points in a suitable neighborhood
of t = 0. Then there exists a non-constant analytic function v(t) with v(0) = 0, such
that (x(t), y(t)) = (x′(v(t)), y′(v(t))). So the two parametrizations are equivalent.

All parametrizations in an equivalence class determine the same set of points as t
varies in a certain neighborhood of 0. So all these parametrizations determine a branch

of C, a branch being a set of all points (x(t), y(t)) obtained by allowing t to vary within
some neighborhood of 0 within which x(t) and y(t) are analytic. A place on C is an
algebraic counterpart of a branch of C.

It is not hard to see that the center of a parametrization of C is a point on C, and a
proof is left for the exercises. The converse, namely that every point on C is the center
of a least one place of C, follows from the fundamental theorem of Puiseux about the
algebraic closure of the field of Puiseux series.

149



9.2 Puiseux’s Theorem and the Newton Polygon

Method

Let us view f ∈ K[x, y] as a polynomial in y with coefficients in K ≪ x ≫. Computing
a power series expansion for y can be seen as solving a polynomial equation in one
variable over the field of Puiseux series. Puiseux’s Theorem states that a root can
always be found.

Theorem 9.2.1 (Puiseux’s Theorem) The field K ≪ x ≫ is algebraically closed.

A proof of Puiseux’s Theorem can be given constructively by the Newton Polygon
Method. We describe the Newton Polygon Method here, and point out how it solves the
construction of solutions of univariate polynomial equations over K ≪ x ≫. Details
of the proof can be found in [Wal50].

We are given a polynomial f ∈ K ≪ x ≫ [y] of degree n > 0, i.e.

f(x, y) = A0(x) + A1(x)y + · · ·+ An(x)yn, with An 6= 0.

If A0 = 0, then obviously y = 0 is a solution. So now let us assume that A0 6= 0. Let
αi := ord(Ai) and ai the coefficient of xαi in Ai, i.e.

Ai(x) = aix
αi + terms of higher order.

We will recursively construct a solution Y (x), a Puiseux series in x, of the equation
f(x, y) = 0. Y (x) must have the form

Y (x) = c1x
γ1 + c2x

γ2 + c3x
γ3 + · · ·

︸ ︷︷ ︸

Y1(x)

,

with cj 6= 0, γj ∈ Q, γj < γj+1 for all j. There might be finitely or infinitely many such
j, but there is at least one.

In order to get necessary conditions for c1 and γ1, we substitute Y (x) = c1x
γ1+Y1(x)

for y in f(x, y), getting

f(x, Y (x)) = A0(x) + A1(x) · (c1x
γ1 + Y1(x)) + · · · + An(x) · (c1x

γ1 + Y1(x))n = 0.

The terms of lowest order must cancel. Therefore there must exist at least two indices
j, k with j 6= k and 0 ≤ j, k ≤ n such that

cj
1Aj(x)xjγ1 = cj

1ajx
αj+jγ1 + · · · and ck

1Ak(x)xkγ1 = ck
1akx

αk+kγ1 + · · ·

have the same order and this order is minimal. So if we think of the pairs (i, αi), for
0 ≤ i ≤ n, as points in the affine plane over Q (if Ai(x) = 0 then αi = ∞ and this
point is not contained in the affine plane) then this condition means that all the points
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(i, αi) are on or above the line connecting (j, αj) and (k, αk). If we set β1 := αj + jγ1,
then the points (u, v) on this line L satisfy v = −β1 − uγ1, i.e. γ1 is the negative slope
of L.

A convenient way of determining the possible values for γ1 is to consider the so-
called Newton polygon of f . This is the smallest convex polygon in the affine plane
over Q, which contains all the points Pi = (i, αi). Those faces of the Newton polygon,
s.t. all the Pi’s lie on or above the corresponding line, have possible values for γ1 as
their negative slopes.

In this way we can determine the possible values for γ1. There can be at most n
possible values for γ1. Having determined a value for γ1, we now take all the points
(i, αi) on the line L. They correspond to the terms of lowest order in f(x, Y (x)). So
we have to determine a c1 such that

∑

αi+iγ1=β1

aic
i
1 = 0.

Since K is algebraically closed, this equation will always have non-zero solutions in K.
The possible values for c1 are the non-zero roots of this equation.

So after γ1 and c1 have been determined, the same process is performed on Y1(x),
which must be a root of the equation

f1(x, y1) = f(x, c1x
γ1 + y1) = 0. (f ∈ K ≪ x ≫ [y1])

Again the Newton polygon may be used to derive necessary conditions on c2 and γ2.
However, this time only those lines are considered whose corresponding negative slope
γ2 is greater than γ1.

This recursive process in the Newton Polygon Method can be iterated until the
desired number of terms is computed, or no further splitting of solutions is possible.

A detailled proof of the fact, that the Newton Polygon Method can be performed on
any polynomial f and that it actually yields Puiseux series (with bounded denominators
of exponents) is given in [Wal50].

Now we are ready to see that every point P on an affine curve C has a correponding
place with center at P . For a proof of the following theorem we refer to [Wal50].
Theorem 4.1 in Chap.4.

Theorem 9.2.2. Let f(x, y) be a polynomial in K[x, y], and let C be the curve defined

by f . To each root Y (x) ∈ K ≪ x ≫ of f(x, y) = 0 with ord(Y ) > 0 there corresponds

a unique place of C with center at the origin. Conversely, to each place (X(t), Y (t)) of

C with center at the origin there correspond ord(X) roots of f(x, y) = 0, each of order

greater than zero.

If Y (x) is a Puiseux series solving f(x, y) = 0, ord(Y ) > 0, and n is the least integer

for which Y (x) ∈ K((x
1

n )), then we put x
1

n = t, and (tn, Y ) is a local parametrization
with center at the origin.
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The solutions of f(x, y) of order 0 correspond to places with center on the y-axis
(but different from the origin), and the solutions of negative order correpond to places
at infinity.

Example 9.2.1. We consider the curve of Example 9.0.1. So the defining polynomial
for C is

f(x, y) = (x3 + x4)
︸ ︷︷ ︸

A0

+ (2x + 2x2)
︸ ︷︷ ︸

A1

·y + (−x + 2x2)
︸ ︷︷ ︸

A2

·y2 + 4
︸︷︷︸

A3

·y3 + (−4)
︸ ︷︷ ︸

A4

·y4 + 1
︸︷︷︸

A5

·y5 .

Figure 9.3 shows the Newton polygon of f . There are three segments on the lower
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Figure 9.3: Newton polygon of f

left boundary of the Newton polygon of f . These three segments give three possible
choices for the first exponent γ1 in the Puiseux series expansion of a solution, namely

γ1 ∈ {2, 1

2
, 0}.

In all three cases the corresponding equation has non-zero roots. In the case of γ1 = 2,
there are two points on the segment of the Newton polygon, and the corresponding
equation

1 + 2c1 = 0

has the solution c1 = −1
2
. For γ1 = 1

2
the equation is 4c3

1 + 2c1 = 0, the non-zero
solutions are ± 1√

−2
. Finally, for γ1 = 0 the equation is c5

1 − 4c4
1 +4c3

1 = c3
1(c1 − 2)2 = 0,

the non-zero solution is 2.
So we get 4 possible smallest terms of Puiseux series solving f(x, y) = 0. Since the

field of Puiseux series is algebraically closed, and f is a squarefree polynomial of degree
5, there must be 2 solutions starting with the same term. This is the case for the series
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starting with the term 2x0. Continuing the process with this series, we would see that
in the next step it splits into the two different solutions

2 +
1 +

√
−95

8
x + · · · and 2 +

1 −
√
−95

8
x + · · · .

We continue to expand the series starting with −1
2
x2. For determining the next

highest exponent γ2 and non-zero coefficient c2, we make the ansatz Y (x) = −1
2
x2 +

Y1(x). Now Y1(x) must solve the modified equation

f1(x, y1) = f(x,−1
2
x2 + y1)

= y5
1 − (5

2
x2 − 4)y4

1 + (5
2
x4 + 8x2 + 4)y3

1 − (5
4
x6 + 6x4 + 4x2 + x)y2

1

+( 5
16

x8 + 2x6 + x4 + x3 + 2x2 + 2x)y1 − 1
32

x10 − 1
4
x8 − 1

4
x5.

The Newton polygon of f1 has only one segment with negative slope greater than
γ1 = 2. So we get γ2 = 4 and c2 = 1

8
.

Repeating this process sufficiently often, we finally get the following series expan-
sions for the solutions of f(x, y) = 0:

Y1(x) = −1
2
x2 + 1

8
x4 − 1

8
x5 + 1

16
x6 + 1

16
x7 + · · · ,

Y2(x) =
√
−2
2

x
1

2 − 1
8
x + 27

√
−2

128
x

3

2 − 7
32

x2 − 4057
√
−2

16384
x

5

2 + · · · ,

Y3(x) = −
√
−2
2

x
1

2 − 1
8
x − 27

√
−2

128
x

3

2 − 7
32

x2 + 4057
√
−2

16384
x

5

2 + · · · ,

Y4(x) = 2 + 1+
√
−95

8
x + 1425−47

√
−95

3040
x2 + · · · ,

Y5(x) = 2 + 1−
√
−95

8
x + 1425+47

√
−95

3040
x2 + · · · .

Y1, Y2, Y3 have order greater than 0, so they correspond to places of C centered at the
origin. Y1 corresponds to the parametrization

(A1(t), B1(t)) = (t, −1

2
t2 +

1

8
t4 − 1

8
t5 +

1

16
t6 +

1

16
t7 + · · ·),

and Y2, Y3 (x = −2t2, t = ±
√
−2
2

x
1

2 ) both correspond to the parametrization

(A2(t), B2(t)) = (−2t2, t +
1

4
t2 − 27

32
t3 − 7

8
t4 − 4057

2048
t5 + · · ·).

Y4, Y5 have order 0, and they correspond to parametrizations centered at (0, 2). The
branches corresponding to these parametrizations cannot be seen in Fig. 9.3, since
they are complex, except for the point (0, 2).

Example 9.2.2. Let us consider the curve C in A
2(C) defined by

f(x, y) = y2 − x3 + 2x2 − x.
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Figure 9.4: Real part of C

A plot of C around the origin is given in Figure 9.4. Let us determine the local
parametrizations of C centered at the origin. C has only one branch at (0, 0), so there
should be exactly one place at the origin.

We have
A0(x) = −x + 2x2 − x3, α0 = 1, a0 = −1,
A1(x) = 0, α1 = ∞,
A2(x) = 1, α2 = 0, a2 = 1.

The Newton polygon of f is given in Figure 9.5 (left).

0

0.5

1

1.5

2

2.5

3

y

0.5 1 1.5 2 2.5 3
x

0

0.5

1

1.5

2

2.5

3

y

0.5 1 1.5 2 2.5 3
x

Figure 9.5: Newton polygon of f (Left), Newton polygon of f1 (Right)

So γ1 = 1
2
, and c1 is the solution of the equation −1 + c2

1 = 0, i.e. c1 = ±1. We get

154



two different Puiseux series solutions of f(x, y) = 0, starting with

Y1(x) = x
1

2 + · · · , and Y2(x) = −x
1

2 + · · · .

We continue to expand Y1. For determining the next term in Y1, we get the equation

f1(x, y1) = f(x, x
1

2 + y1) = y2
1 + 2x

1

2 y1 + 2x2 − x3.

The Newton polygon of f1 is given in Figure 9.5 (right). There is only one segment with
negative slope greater than 1

2
, namely γ2 = 3

2
. The corresponding equation 2 +2c2 = 0

yields c2 = −1. So now we have

Y1(x) = x
1

2 − x
3

2 + · · · .

For determining the next term, we consider the equation

f2(x, y2) = f(x, x
1

2 − x
3

2 + y2) = y2(y2 + 2x
1

2 − 2x
3

2 ).

Since y2 divides f2(x, y2), y2 = 0 is a solution. Thus,

Y1(x) = x
1

2 − x
3

2 .

In the same way we could expand Y2 further, and we would get

Y2(x) = −x
1

2 + x
3

2 .

So, by setting x
1

2 = ±t in Y1, Y2, respectively, we get the local parametrization

P = (t2, t − t3).

The series in this local parametrization converge for every t, and in fact P is a global
parametrization of C.
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