
Chapter 7

Local properties of plane algebraic
curves

Throughout this chapter let K be an algebraically closed field of characteristic zero,
and as usual let A2(K) be embedded into P2(K) by identifying the point (a, b) ∈ A2(K)
with the point (a : b : 1) ∈ P2(K).

7.1 Singularities and tangents

Affine plane curves

An affine plane curve C over K is a hypersurface in A2(K). Thus, it is an affine
algebraic set defined by a non-constant polynomial f in K[x, y]. By Hilbert’s Nullstel-
lensatz the squarefree part of f defines the same curve C, so we might as well require
the defining polynomial to be squarefree.

Definition 7.1.1. An affine plane algebraic curve over K is defined as the set

C = {(a, b) ∈ A
2(K) | f(a, b) = 0}

for a non-constant squarefree polynomial f(x, y) ∈ K[x, y].
We call f the defining polynomial of C (of course, a polynomial g = c f , for some

nonzero c ∈ K, defines the same curve, so f is unique only up to multiplication by
nonzero constants).

We will write f as

f(x, y) = fd(x, y) + fd−1(x, y) + · · ·+ f0(x, y)

where fk(x, y) is a homogeneous polynomial (form) of degree k, and fd(x, y) is nonzero.
The polynomials fk are called the homogeneous components of f , and d is called the
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degree of C. Curves of degree one are called lines, of degree two conics, of degree three
cubics, etc.

If f =
∏n

i=1 fi, where fi are the irreducible factors of f , we say that the affine curve
defined by each polynomial fi is a component of C. Furthermore, the curve C is said to
be irreducible if its defining polynomial is irreducible.

Sometimes we need to consider curves with multiple components. This means that
the given definition has to be extended to arbitrary polynomials f =

∏n

i=1 f ei

i , where
fi are the irreducible factors of f , and ei ∈ N are their multiplicities. In this situation,
the curve defined by f is the curve defined by its squarefree part, but the component
generated by fi carries multiplicity ei. Whenever we will use this generalization we will
always explicitly say so.

Definition 7.1.2. Let C be an affine plane curve over K defined by f(x, y) ∈ K[x, y],
and let P = (a, b) ∈ C. The multiplicity of C at P (we denote it by multP (C)) is defined
as the order of the first non-vanishing term in the Taylor expansion of f at P , i.e.

f(x, y) =

∞∑

n=0

1

n!

n∑

k=0

(
n

k

)

(x − a)k(y − b)n−k ∂nf

∂xk∂yn−k
(a, b).

Clearly P 6∈ C if and only if multP (C) = 0. P is called a simple point on C iff
multP (C) = 1. If multP (C) = r > 1, then we say that P is a multiple or singular point

(or singularity) of multiplicity r on C or an r-fold point; if r = 2, then P is called a
double point, if r = 3 a triple point, etc. We say that a curve is non-singular if it has
no singular point.

The singularities of the curve C defined by f are the solutions of the affine algebraic
set V (f, ∂f

∂x
, ∂f

∂y
). Later we will see that this set is 0-dimensional, i.e. every curve has

only finitely many singularities.

Let P = (a, b) ∈ A2(K) be an r-fold point (r ≥ 1) on the curve C defined by the
polynomial f . Then the first nonvanishing term in the Taylor expansion of f at P is

Tr(x, y) =

r∑

i=0

(
r

i

)
∂rf

∂xi∂yr−i
(P )(x − a)i(y − b)r−i.

By a linear change of coordinates which moves P to the origin the polynomial Tr is
transformed into a homogeneous bivariate polynomial of degree r. Hence, since the
number of factors of a polynomial is invariant under linear changes of coordinates, we
get that all irreducible factors of Tr are linear and they are the tangents to the curve
at P .

Definition 7.1.3. Let C be an affine plane curve with defining polynomial f , and
P = (a, b) ∈ A

2(K) such that multP (C) = r ≥ 1. Then the tangents to C at P are the
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irreducible factors of the polynomial

r∑

i=0

(r
i )

∂rf

∂xi∂yr−i
(P )(x − a)i(y − b)r−i

and the multiplicity of a tangent is the multiplicity of the corresponding factor.

Remark: We leave the proof of these remarks as an exercise. Let C be an affine plane
curve defined by the polynomial f ∈ K[x, y]. Then the following hold:

(1) The notion of multiplicity is invariant under linear changes of coordinates.

(2) For every P ∈ A2(K), multP (C) = r if and only if all the derivatives of f up to
and including the (r− 1)-st vanish at P but at least one r-th derivative does not
vanish at P .

(3) The multiplicity of C at the origin of A2(K) is the minimum of the degrees of the
non-zero homogeneous components of f . I.e. the origin (0, 0) is an m–fold point
on C iff f is the sum of forms f = fm + fm+1 + . . . + fd, with deg(fi) = i for all
i. The tangents to C at the origin are the linear factors of fm, the form of lowest
degree, with the corresponding multiplicities.

(4) Let P = (a, b) be a point on C, and let T : (x, y) 7→ (x + a, y + b) be the
change of coordinates moving the origin to P . Let fT (x, y) = f(x + a, y + b).
Then multP (f) = mult(0,0)(f

T ). If L(x, y) is a tangent to fT at the origin, then
L(x − a, y − b) is a tangent to f at P with the same multiplicity.

Hence, taking into account this remark, the multiplicity of P can also be determined
by moving P to the origin by means of a linear change of coordinates and applying
Remark (3).

Example 7.1.1. Let the curve C be defined by the equa-
tion f(x, y) = 0, P = (a, b) a simple point on C. Consider
the line L through P (with slope µ/λ) defined by µx−λy =
µa − λb, or parametrically by x = a + λt, y = b + µt. We
get the points of intersection of C and L as the solutions of
f(a + λt, b + µt) = 0.

An expansion of this equation in a Taylor series around
P yields (f(a, b) = 0):

(fxλ + fyµ)t +
1

2!
(fxxλ

2 + 2fxfyλµ + fyyµ
2)t2 + . . . = 0.

We get “higher order” intersection at P if some of these terms vanish, i.e. if λ, µ are
such that fxλ + fyµ = 0, . . . . The line which yields this higher order intersection is
what we want to call the tangent to C at P .
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For analyzing a singular point P on a curve C we need to know its multiplicity but
also the multiplicities of the tangents. If all the r tangents at the r-fold point P are
different, then this singularity is of well-behaved type. For instance, when we trace the
curve through P we can simply follow the tangent and then approximate back onto
the curve. This is not possible any more when some of the tangents are the same.

Definition 7.1.4. A singular point P of multiplicity r on an affine plane curve C is
called ordinary iff the r tangents to C at P are distinct, and non-ordinary otherwise.
An ordinary double point is a node.

Example 7.1.2. We consider the following curves in A2(C). Pictures of such curves
can be helpful, but we have to keep in mind that we can only plot the real components
of such curves, i.e. the components in A2(R). Interesting phenomena, such as singular
points etc., might not be visible in the real plane.

A : a(x, y) = y−x2 = 0 B : b(x, y) = y2−x3+x = 0 C : c(x, y) = y2−x3

D : d(x, y) = y2−x3−x2 = 0 E : e(x, y) = (x2+y2)2+3x2y−y3 F : f(x, y) = (x2+y2)3−4x2y2

The curves A,B are non-singular. The only singular point on C,D, E and F is the
origin (0, 0).

The linear forms in the equations for A and B define the tangents to these curves
at the origin.

The forms of lowest degree in C,D, E and F are y2, y2 −x2 = (y−x)(y +x), 3x2y−
y3 = y(

√
3x − y)(

√
3x + y) and −4x2y2. The factors of these forms of lowest degree

determine the tangents to these curves at the origin.
Intersecting F by the line x = y we get the point P = ( 1√

2
, 1√

2
).

∂f

∂x
(P ) = (6x5 + 12x3y2 + 6xy4 − 8xy2)(P ) =

√
2,

∂f

∂y
(P ) =

√
2.
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So the tangent to F at P is defined by

√
2(x − 1√

2
) +

√
2(y − 1√

2
) = 0 ∼ x + y −

√
2 = 0.

D has a node at the origin. E has an ordinary 3–fold point at the origin. C and F both
have a non–ordinary singular point at the origin.

Lemma 7.1.1. Let C be an affine plane curve defined by the squarefree polynomial
f =

∏n

i=1 fi where all the components fi are irreducible. Let P be a point in A2(K).
Then the following holds:

(1) multP (C) =
∑n

i=1 multP (Ci), where Ci is the component of C defined by fi.

(2) If L is a tangent to Ci at P with multiplicity si, then L is a tangent to C at P
with multiplicity

∑n

i=1 si.

Proof.
(1) By the remark above we may assume that P is the origin. Let

fi(x, y) =

ni∑

j=si

gi,j(x, y) for i = 1, . . . , n,

where ni is the degree of Ci, si =multP (Ci), and gi,j is the homogeneous component
of fi of degree j. Then the lowest degree homogeneous component of f is

∏n

i=1 gi,si
.

Hence, (1) follows from Remark (3).
(2) follows directly from Remark (4) and from the expression of the lowest degree
homogeneous component of f deduced in the proof of statement (1).

Example 7.1.3. Determine the singular points and the tangents at these singular
points to the following curves:

(a) f1 = y3 − y2 + x3 − x2 + 3y2x + 3x2y + 2xy,

(b) f2 = x4 + y4 − x2y2,

(c) f3 = x3 + y3 − 3x2 − 3y2 + 3xy + 1,

(d) f4 = y2 + (x2 − 5)(4x4 − 20x2 + 25).

Plot the real components (i.e. in A2(R)) of these curves.

Theorem 7.1.2. An affine plane curve has only finitely many singular points.

Proof: Let C be an affine plane curve with defining polynomial f , let f = f1 · · ·fr

be the irreducible factorization of f , and let Ci be the component generated by fi

(note that f is squarefree, so the fi’s are pairwise relatively prime). Then, applying
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Lemma 7.1.1. one deduces that the singular points of C are the singular points of each
component Ci and the intersection points of all pairs of components (i.e. the points in
the affine algebraic sets V (fi, fj), i 6= j). Hence the set W of singular points of C is:

W = V

(

f,
∂f

∂x
,
∂f

∂y

)

=

r⋃

i=1

V

(

fi,
∂fi

∂x
,
∂fi

∂y

)

∪
⋃

i6=j

V (fi, fj).

Now, observe that gcd(fi, fj) = 1 for i 6= j. Thus, applying Theorem 3.3.5., we get that,
for i 6= j, V (fi, fj) is finite. Similarly, since fi is irreducible and deg(∂fi

∂x
), deg(∂fi

∂y
) <

deg(f), one deduces that gcd(fi,
∂fi

∂x
, ∂fi

∂y
) = 1. Therefore, again by Theorem 3.3.5, we

conclude that W is finite.

Projective plane curves

A projective plane curve is a hypersurface in the projective plane.

Definition 7.1.5. A projective plane algebraic curve over K is defined as the set

C = {(a : b : c) ∈ P
2(K) | F (a, b, c) = 0}

for a non-constant squarefree homogeneous polynomial F (x, y, z) ∈ K[x, y, z].
We call F the defining polynomial of C (of course, a polynomial G = c F , for some

nonzero c ∈ K defines the same curve, so F is unique only up to multiplication by
nonzero constants).

Similarly as in Definition 7.1.1. the concepts of degree, components and irreducibil-
ity are introduced.

Also, as in the case of affine curves, we will sometimes need to refer to multiple
components of a projective plane curve. Again, one introduces this notion by extending
the concept of curve to arbitrary forms. We will also always explicitly indicate when
we make use of this generalization.

As we saw in Chapter 5, there is a close relationship between affine and projective
algebraic sets. Thus, associated to every affine curve there is a projective curve (its
projective closure).

Definition 7.1.6. The projective plane curve C∗ corresponding to an affine plane curve
C over K is the projective closure of C in P2(K).

If the affine curve C is defined by the polynomial f(x, y), then from Section 5.2 we
immediately get that the corresponding projective curve C∗ is defined by the homoge-
nization F (x, y, z) of f(x, y). Therefore, if f(x, y) = fd(x, y)+fd−1(x, y)+ · · ·+f0(x, y)
is the decomposition of f into forms, then F (x, y, z) = fd(x, y) + fd−1(x, y)z + · · · +
f0(x, y)zd, and

C∗ = {(a : b : c) ∈ P
2(K) | F (a, b, c) = 0}.
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Every point (a, b) on C corresponds to a point on (a : b : 1) on C∗, and every additional
point on C∗ is a point at infinity. In other words, the first two coordinates of the
additional points are the nontrivial solutions of fd(x, y). Thus, the curve C∗ has only
finitely many points at infinity. Of course, a projective curve, not associated to an
affine curve, could have z = 0 as a component and therefore have infinitely many
points at infinity.

On the other hand, associated to every projective curve there are infinitely many
affine curves. We may take any line in P2(K) as the line at infinity, by a linear change
of coordinates move it to z = 0, and then dehomogenize. But in practice we mostly
use dehomogenizations provided by taking the axes as lines at infinity. More precisely,
if C is the projective curve defined by the form F (x, y, z), we denote by C∗,z the affine
plane curve defined by F (x, y, 1). Similarly, we consider C∗,y, and C∗,x.

So, any point P on a projective curve C corresponds to a point on a suitable affine
version of C. The notions of multiplicity of a point and tangents at a point are local
properties. So for determining the multiplicity of P at C and the tangents to C at
P we choose a suitable affine plane (by dehomogenizing w.r.t to one of the projective
variables) containing P , determine the multiplicity and tangents there, and afterwards
homogenize the tangents to move them back to the projective plane. This process does
not depend on the particular dehomogenizing variable (compare, for instance, [Ful69]
Chap. 5).

Theorem 7.1.3. P ∈ P
2(K) is a singularity of the projective plane curve C defined

by the homogeneous polynomial F (x, y, z) if and only if ∂F
∂x

(P ) = ∂F
∂y

(P ) = ∂F
∂z

(P ) = 0.

Proof. Let d = deg(F ). We may assume w.l.o.g. that P is not on the line at infinity
z = 0, i.e. P = (a : b : 1). Let C∗,z be the affine curve defined by f(x, y) = F (x, y, 1)
and let P∗ = (a, b) be the image of P in this affine version of the plane.

P is a singular point of C if and only if P∗ is a singular point of C∗,z , i.e. if and only
if

f(P∗) =
∂f

∂x
(P∗) =

∂f

∂y
(P∗) = 0.

But
∂f

∂x
(P∗) =

∂F

∂x
(P ),

∂f

∂y
(P∗) =

∂F

∂y
(P ).

Furthermore, by Euler’s Formula for homogeneous polynomials 1 we have

x · ∂F

∂x
(P ) + y · ∂F

∂y
(P ) + z · ∂F

∂z
(P ) = d · F (P ).

The theorem now follows at once.

1Euler’s formula for homogeneous polynomials F (x1, x2, x3):
∑

3

i=1
xi · ∂F

∂xi

= n · F , where n =
deg(F )
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By an inductive argument this theorem can be extended to higher multiplicities.
We leave the proof as an exercise.

Theorem 7.1.4. P ∈ P2(K) is a point of multiplicity at least r on the projective
plane curve C defined by the homogeneous polynomial F (x, y, z) of degree d (where
r ≤ d) if and only if all the (r − 1)-th partial derivatives of F vanish at P .

We finish this section with an example where all these notions are illustrated.

Example 7.1.4. Let C be the projective plane curve over C defined by the homoge-
neous polynomial:

F (x, y, z) = −4 y4 z3 x2 + 2 y7 x2 + y9 + 3 y7 z2 − 9 y6 x2 z − 2 x8 z + 2 x8 y + 3 x4 y5

−y6 z3 + 4 x6 y3 − 7 x6 y2 z + 5 x6 y z2 + 10 x2 y5 z2 − 11 x4 y4 z
+9 x4 y3 z2 − 4 x4 y2 z3 + y3 z4 x2 − 3 y8 z

The degree of the curve is 9. In Figure 7.1. the real part of C⋆,z is plotted.

–1

0

1

2

3

y

–3 –2 –1 1 2 3x

Figure 7.1: Real part of C⋆,z

First, we compute the finitely many points at infinity of the curve. We observe that

F (x, y, 0) = y(2x4 + y4)(y2 + x2)2

does not vanish identically, so the line z = 0 is not a component of C. In fact, the
points at infinity are (1 : 0 : 0), (1 : α : 0) where α4 + 2 = 0, and the cyclic points
(1 : ±i : 0). Hence, the line at infinity intersects C at 7 points (compare to Bézout’s
Theorem, in this chapter).
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Now, we proceed to determine and analyze the singularities. We apply Theorem
7.1.3. Solving the system

{∂F

∂x
= 0,

∂F

∂y
= 0,

∂F

∂z
= 0}

we find that the singular points of C are

(1 : ±i : 0), (0 : 0 : 1), (± 1

3
√

3
:
1

3
: 1), (±1

2
,
1

2
: 1), (0 : 1 : 1), and (±1 : α : 1)

where α3 + α − 1 = 0. So C has 11 singular points.
Now we compute the multiplicities and the tangents to C at each singular point. For

this purpose, we determine the first non-vanishing term in the corresponding Taylor
expansion. The result of this computation is shown in Table 7.1. In this table we
denote the singularities of C as follows:

P±
1 := (1 : ±i : 0), P2 := (0 : 0 : 1), P±

3 := (± 1

3
√

3
:

1

3
: 1),

P±
4 := (±1

2
,
1

2
: 1), P5 := (0 : 1 : 1), P±

α := (±1 : α : 1)

All these singular points are ordinary, except the affine origin (0 : 0 : 1). Factoring
F over C we get

F (x, y, z) = (x2 + y2 − yz)(y3 + yz2 − zx2)(y4 − 2y3z + y2z2 − 3yzx2 + 2x4).

Therefore, C decomposes into a union of a conic, a cubic, and a quartic. Furthermore,
(0 : 0 : 1) is a double point on the quartic, a double point on the cubic, and a simple
point on the conic. Thus, applying Lemma 7.1.1, the multiplicity of C at (0 : 0 : 1) is
5. (0 : 1 : 1) is a double point on the quartic and a simple point on the conic. Hence,
the multiplicity of C at (0 : 1 : 1) is 3. (±1

2
: 1

2
: 1) are simple points on the conic and

the cubic. (± 1
3
√

2
: 1

3
: 1) are simple points on the quartic and the cubic. Similarly, the

points (±1 : α : 1) are also simple points on the quartic and the cubic (two of them
are real, and four of them complex). Finally, the cyclic points are simple points on the
cubic and the conic. Hence, all these singular points are double points on C.
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point tangents multiplicity

P+
1 (2y − z − 2ix)(2y + z − 2ix) 2

P−
1 (2y + z + 2ix)(2y − z + 2ix) 2

P2 y3x2 5

P+
3 (8x +

√
2z − 7

√
2y)(28x− 5

√
2z +

√
2y) 2

P−
3 (8x −

√
2z + 7

√
2y)(28x + 5

√
2z −

√
2y) 2

P+
4 (2x − z)(2x − 4y + z) 2

P−
4 (2x + z)(2x + 4y − z) 2

P5 (y − z)(3x2 + 2yz − y2 − z2) 3

P+
α ((1 + 1

2
α + 1

2
α2)z + x + (−5

2
− 1

2
α − 2α2)y) 2

((− 35
146

− 23
73

α + 1
73

α2)z + x + (− 65
146

− 1
73

α − 111
146

α2)y)

P−
α ((−1 − 1

2
α − 1

2
α2)z + x + (5

2
+ 1

2
α + 2α2)y) 2

(( 35
146

+ 23
73

α − 1
73

α2)z + x + ( 65
146

+ 1
73

α + 111
146

α2)y)

Table 7.1.
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7.2 Intersection of Curves

In this section we analyze the intersection of two plane curves. Since curves are alge-
braic sets, and since the intersection of two algebraic sets is again an algebraic set, we
see that the intersection of two plane curves is an algebraic set in the plane consisting
of 0-dimensional and 1-dimensional components. The ground field K is algebraically
closed, so the intersection of two curves is non-empty. In fact, the intersection of two
curves contains a 1-dimensional component, i.e. a curve, if and only if the gcd of the
corresponding defining polynomials is not constant, or equivalently if both curves have
a common component. Hence, in this case the intersection is given by the gcd.

Therefore, the problem of analyzing the intersection of curves is reduced to the case
of two curves without common components. There are two questions which we need
to answer. First, we want to compute the finitely many intersection points of the two
curves. This means solving a zero dimensional system of two bivariate polynomials.
Second, we also want to analyze the number of intersection points of the curves when
the two curves do not have common components. This counting of intersections points
with proper multiplicities is achieved by Bézout’s Theorem (in this section). For this
purpose, one introduces the notion of multiplicity of intersection.

We start with the problem of computing the intersection points. Let C and D be
two projective plane curves defined by F (x, y, z) and G(x, y, z), respectively, such that
gcd(F, G) = 1. We want to compute the finitely many points in V (F, G). Since we
are working in the plane, the solutions of this system of algebraic equations can be
determined by resultants.

First, we observe that if both polynomials F and G are bivariate forms in the same
variables, say F, G ∈ K[x, y] (similarly if F, G ∈ K[x, z] or F, G ∈ K[y, z]), then each
curve is a finite union of lines passing through (0 : 0 : 1). Hence, since the curves do
not have common components, one has that C and D intersect only in (0 : 0 : 1).

So now let us assume that at least one of the defining polynomials is not a bivariate
form in x and y, say F 6∈ K[x, y]. Then, we consider the resultant R(x, y) of F and
G with respect to z. Since C and D do not have common components, R(x, y) is not
identically zero. Furthermore, since degz(F ) ≥ 1 and G is not constant, the resultant
R is a non-constant bivariate homogeneous polynomial. Hence it factors as

R(x, y) =
r∏

i=1

(bix − aiy)ni

for some ai, bi ∈ K, and ri ∈ N. For every (a, b) ∈ K2 such that R(a, b) = 0 there exists
c ∈ K such that F (a, b, c) = G(a, b, c) = 0, and conversely. Therefore, the solutions
of R provide the intersection points. Since (0 : 0 : 0) is not a point in P2(K), but
it might be the formal result of extending the solution (0, 0) of R, we check whether
(0 : 0 : 1) is an intersection point. The remaining intersection points are given by
(ai : bi : ci,j), where ai, bi are not simultaneously zero, and ci,j are the roots in K of
gcd(F (ai, bi, z), G(ai, bi, z)).
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Example 7.2.1. Let C and D be the projective plane curves defined by F (x, y, z) =
x2 + y2 − yz and G(x, y, z) = y3 + x2y − x2z, respectively. Observe that these curves
are the conic and cubic in Example 7.1.4. Since gcd(F, G) = 1, C and D do not have
common components. Obviously (0 : 0 : 1) is an intersection point. For determining
the other intersection points, we compute

R(x, y) = resz(F, G) = x4 − y4 = (x − y)(x + y)(x2 + y2).

For extending the solutions of R to the third coordinate we compute
gcd(F (1, 1, z), G(1, 1, z)) = z − 2, gcd(F (1,−1, z), G(1,−1, z)) = z + 2,
gcd(F (1,±i, z), G(1,±i, z)) = z. So the intersection points of C and D are

(0 : 0 : 1), (
1

2
:

1

2
: 1), (

1

2
: −1

2
: 1), (1 : i : 0), (1 : −i : 0)

We now proceed to the problem of analyzing the number of intersections of two
projective curves without common components. For this purpose, we first study upper
bounds, and then we see how these upper bounds can always be reached by a suitable
definition of the notion of intersection multiplicity.

Theorem 7.2.1. Let C and D be two projective plane curves without common com-
ponents and degrees n and m, respectively. Then the number of intersection points of
C and D is at most n · m.

Proof: First observe that the number of intersection points is invariant under linear
changes of coordinates. Let k be the number of intersection points of C and D. W.l.o.g
we assume that (perhaps after a suitable linear change of coordinates) P = (0 : 0 : 1)
is not a point on C or D and also not on a line connecting any pair of intersection
points of C and D. Let F (x, y, z) and G(x, y, z) be the defining polynomials of C and
D, respectively. Since (0 : 0 : 1) is not on the curves, we have

F (x, y, z) = A0z
n + A1z

n−1 + · · ·+ An,
G(x, y, z) = B0z

m + B1z
m−1 + · · ·+ Bm,

where A0, B0 are non-zero constants and Ai, Bj are homogeneous polynomials of degree
i, j, respectively. Let R(x, y) be the resultant of F and G with respect to z. Since the
curves do not have common components, R is a non-zero homogeneous polynomial in
K[x, y] of degree n ·m (compare [Wal50], Theorem I.10.9 on p.30). Furthermore, as we
have already seen, each linear factor of R generates a set of intersection points. Thus,
if we can prove that each linear factor generates exactly one intersection point, we have
shown that k ≤deg(R) = n · m. Let us assume that l(x, y) = bx − ay is a linear factor
of R. l(x, y) generates the solution (a, b) of R, which by Theorem 4.3.3 in [Win96] can
be extended to a common solution of F and G. So now let us assume that the partial
solution (a, b) can be extended to at least two different intersection points P1 and P2
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of C and D. But this implies that the line bx−ay passes through P1, P2 and (0 : 0 : 1),
which we have excluded.

Given two projective curves of degrees n and m, respectively, and without common
components, one gets exactly n · m intersection points if the intersection points are
counted properly. This leads to the definition of multiplicity of intersection. First
we present the notion for curves such that the point (0 : 0 : 1) is not on any of the
two curves, nor on any line connecting two of their intersection points. Afterwards,
we observe that the concept can be extended to the general case by means of linear
changes of coordinates.

Definition 7.2.1. Let C and D be projective plane curves, without common com-
ponents, such that (0 : 0 : 1) is not on C or D and such that it is not on any line
connecting two intersection points of C and D. Let P = (a : b : c) ∈ C ∩ D, and let
F (x, y, z) and G(x, y, z) be the defining polynomials of C and D, respectively. Then,
the multiplicity of intersection of C and D at P (we denote it by multP (C,D)) is defined
as the multiplicity of the factor bx− ay in the resultant of F and G with respect to z.

If P 6∈ C ∩ D then we define the multiplicity of intersection at P as 0.

We observe that the condition on (0 : 0 : 1), required in Definition 7.2.1, can
be avoided by means of linear changes of coordinates. Moreover, the extension of
the definition to the general case does not depend on the particular linear change of
coordinates, as remarked in [Wal50], Sect. IV.5. Indeed, since C and D do not have
common components the number of intersection points is finite. Therefore, there always
exist linear changes of coordinates satisfying the required conditions in the definition.
Furthermore, as we have remarked in the last part of the proof of Theorem 7.2.1., if
T is any linear change of coordinates satisfying the conditions of the definition, each
factor of the corresponding resultant is generated by exactly one intersection point.
Therefore, the multiplicity of the factors in the resultant is preserved by this type of
linear changes of coordinates.

Theorem 7.2.2. (Bézout’s Theorem) Let C and D be two projective plane curves
without common components and degrees n and m, respectively. Then

n · m =
∑

P∈C∩D
multP (C,D).

Proof: Let us assume w.l.o.g. that C and D are such that (0 : 0 : 1) is not on C or D
nor on any line connecting two of their intersection points. Let F (x, y, z) and G(x, y, z)
be the defining polynomials of C and D, respectively. Then the resultant R(x, y) of
F and G with respect to z is a non-constant homogeneous polynomial of degree n · m
(compare the proof of Theorem 7.2.1). Furthermore, if {(ai : bi : ci)}i=1,...,r are the
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intersection points of C and D (note that (0 : 0 : 1) is not one of them) then we get

R(x, y) =

r∏

i=1

(bix − aiy)ni,

where ni is, by definition, the multiplicity of intersection of C and D at (ai : bi : ci).
Therefore, the formula holds.

Example 7.2.2. We consider the two cubics C and D of Figure 7.2 defined by the
polynomials

F (x, y, z) =
516

85
z3− 352

85
yz2− 7

17
y2z+

41

85
y3+

172

85
xz2− 88

85
xyz+

1

85
y2x−3x2z+x2y−x3,

G(x, y, z) = −132z3+128yz2−29y2z−y3+28xz2−76xyz+31y2x+75x2z−41x2y+17x3,

respectively.
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Figure 7.2: Real part of C⋆,z (Left), Real part of D⋆,z (Right)

Let us determine the intersection points of these two cubics and their corresponding
multiplicities of intersection. For this purpose, we first compute the resultant

R(x, y) = resz(F, G) = −5474304

25
x4 y (3x + y) (x + 2y) (x + y) (x− y).

For each factor (ax − by) of the resultant R(x, y) we obtain the polynomial D(z) =
gcd(F (a, b, z), G(a, b, z)) in order to find the intersection points generated by this factor.

Table 7.2 shows the results of this computation (compare to Figure 7.3.):

100



factor D(z) intersection point multipl. of intersection

x4 (2z − 1)2 P1 = (0 : 2 : 1) 4
y z + 1/3 P2 = (−3 : 0 : 1) 1

3x + y z − 1 P3 = (1 : −3 : 1) 1
x + 2y z + 1 P4 = (−2 : 1 : 1) 1
x + y z + 1 P5 = (−1 : 1 : 1) 1
x − y z − 1 P6 = (1 : 1 : 1) 1

Table 7.2.

–4

–2

0

2

4

y

–4 –2 2 4x

Figure 7.3: Joint picture of the real parts of C⋆,z and D⋆,z

Furthermore, since (0 : 0 : 1) is not on the cubics nor on any line connecting their
intersection points, the multiplicity of intersection is 4 for P1, and 1 for the other
points. It is also interesting to observe that P1 is a double point on each cubic (compare
Theorem 7.2.3. (5)).

Some authors introduce the notion of multiplicity of intersection axiomatically (see,
for instance, [Ful69], Sect. 3.3). The following theorem shows that these axioms are
satified for our definition.

Theorem 7.2.3. Let C and D be two projective plane curves, without common com-
ponents, defined by the polynomials F and G, respectively, and let P ∈ P2(K). Then
the following holds:

(1) multP (C,D) ∈ N.

(2) multP (C,D) = 0 if and only if P 6∈ C ∩ D. Furthermore, multP (C,D) depends
only on those components of C and D containing P .
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(3) If T is a linear change of coordinates, and C′, D′, P ′ are the imagines of C, D,
and P under T , respectively, then multP (C,D) = multP ′(C′,D′).

(4) multP (C,D) = multP (D, C).

(5) multP (C,D) ≥ multP (C) · multP (D). Furthermore, equality holds if and only C
and D intersect transversally at P (i.e. if the curves have no common tangents
at P ).

(6) Let C1, . . . , Cr and D1, . . . ,Ds be the irreducible components of C and D respec-
tively. Then

multP (C,D) =
r∑

i=1

s∑

j=1

multP (Ci,Dj).

(7) multP (C,D) = multP (C,DH), where DH is the curve defined by G + HF for an
arbitrary form H ∈ K[x, y, z] (i.e. the intersection multiplicity does not depend
on the particular representative G in the coordinate ring of C).

Proof: We have already remarked above that the intersection multiplicity is indepen-
dent of a particular linear change of coordinates. Statements (1),(2),and (4) can be
easily deduced from the definition of multiplicity of intersection, and we leave them to
the reader.
A proof of (5) can be found for instance in [Wal50], Chap. IV.5, Theorem 5.10.
(6) Let us assume without loss of generality that C and D satisfy the requirements of
Definition 7.2.1. That is, (0 : 0 : 1) is not on the curves nor on any line connecting
their intersection points. Let Fi, i = 1, . . . , r, and Gj , j = 1 . . . , s, be the defining poly-
nomials of Ci and Dj , respectively. Then we use the following fact: if A, B, C ∈ D[x],
where D is an integral domain, then resx(A, B · C) = resx(A, B) · resx(A, C) (see, for
instance, [BCL83] Theorem 3 p. 178). Hence, (6) follows immediately from

resz(
r∏

i=1

Fi,
s∏

j=1

Gj) =
r∏

i=1

resz(Fi,
s∏

j=1

Gj) =
r∏

i=1

s∏

j=1

resz(Fi, Gj).

(7) Let H ∈ K[x, y, z] be a form. Obviously P ∈ C ∩ D if and only if P ∈ C ∩
DH . We assume without loss of generality that C and D satisfy the conditions of the
Definition 7.2.1, and also C and DH satisfy these conditions. Then, multP (C,D) and
multP (C,DH) are given by the multiplicities of the corresponding factors in resz(F, G)
and resz(F, G + H F ), respectively. Now, we use the following property of resultants:
if A, B, C ∈ D[x], where D is an integral domain, and a is the leading coefficient of
A, then resx(A, B) = adegx(B)−degx(A C+B) resx(A, A C + B) (see, for instance, [BCL83]
Theorem 4, p. 178). (7) follows directly from this fact, since the leading coefficient of
F in z is a non-zero constant (note that (0 : 0 : 1) is not on C).
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From Theorem 7.2.3 one can extract an alternative algorithm for computing the
intersection multiplicity:

Because of (3) we may assume that P = (0, 0).
Since the intersection multiplicity is a local property, we may work in the affine

plane. Consider the curves defined by f(x, y) and g(x, y). We check whether P lies
on a common component of f and g, i.e. whether gcd(f, g)(P ) = 0. If this is the
case we set multP (f ∩ g) = ∞, because of (1). Otherwise we continue to determine
multP (f ∩ g) ∈ N0.

We proceed inductively. The base case multP (f ∩ g) = 0 is covered by (2). Our
induction hypothesis is

multP (a ∩ b) can be determined for multP (a ∩ b) < n.

So now let multP (f ∩ g) = n > 0.
Let f(x, 0), g(x, 0) ∈ K[x] be of degrees r, s, respectively. Because of (4) we can

assume that r ≤ s.
Case 1, r = −1: I.e. f(x, 0) = 0. In this case f = y · h for some h ∈ K[x, y], and
because of (6)

multP (f ∩ g) = multP (y ∩ g) + multP (h ∩ g).

Let m be such that g(x, 0) = xm(a0 + a1x + . . .), a0 6= 0. Note that g(x, 0) = 0 is
impossible, since otherwise f and g would have the common component y, which we
have excluded.

multP (y ∩ g) =(7) multP (y ∩ g(x, 0)) =(2) multP (y ∩ xm) =(6) m · multP (y ∩ x) =(5) m.

Since P ∈ g, we have m > 0, so multP (h ∩ g) < n. By the induction hypothesis, this
implies that multP (h ∩ g) can be determined.
Case 2, r > −1: We assume that f(x, 0), g(x, 0) are monic. Otherwise we multiply f
and g by suitable constants to make them monic. Let

h = g − xs−r · f.

Because of (7) we have

multP (f ∩ g) = multP (f ∩ h) and deg(h(x, 0)) = t < s.

Continuing this process (we might have to interchange f and h, if t < r) eventually,
after finitely many steps, we reach a pair of curves a, b which can be handled by Case
1.

From these considerations we can immediately extract the following algorithm for
computing intersection multiplicities.
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Algorithm INT MULT
in: f, g ∈ K[x, y], P = (a, b) ∈ A2(K);
out: M = multP (f ∩ g);

(1) if P 6= (0, 0)
then {P := (0, 0); f := f(x + a, y + b); g := g(x + a, y + b) };

(2) if gcd(f, g)(P ) = 0 then {M := ∞; return };

(3) f0 := f(x, 0); r := deg(f0);
g0 := g(x, 0); s := deg(g0);
if r > s then interchange (f, f0, r) and (g, g0, s);
while r > −1 do

{ g := 1
lc(g0)

· g − xs−r · 1
lc(f0)

· f ;

g0 := g(x, 0); s := deg(g0);

if r > s then interchange (f, f0, r) and (g, g0, s) } ;

(4) [r = −1]
h := f/y; m := exponent of lowest term in g0;
M := m + INT MULT(h, g, P )

Example 7.2.3. We determine the intersection multiplicity at the origin O = (0, 0)
of the affine curves E ,F defined by

E : e(x, y) = (x2 + y2)2 + 3x2y − y3, F : f(x, y) = (x2 + y2)3 − 4x2y2

(compare Example 7.1.2). For ease of notation we don’t distinguish between the curves
and their defining polynomials.

We replace f by the following curve g:

f(x, y) − (x2 + y2)e(x, y) = y · ((x2 + y2)(y2 − 3x2) − 4x2y) = y · g(x, y).

Now we have
multO(e ∩ f) = multO(e ∩ y) + multO(e ∩ g).

We replace g by h:

g + 3e = y · (5x2 − 3y2 + 4y3 + 4x2y) = y · h(x, y).

So
multO(e ∩ f) = 2 · multO(e ∩ y) + multO(e ∩ h).
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multO(e ∩ y) =(4),(7) multO(x4 ∩ y) =(6),(5) 4,
multO(e ∩ h) =(5) multO(e) · multO(h) = 6.
Thus, multO(E ,F) = multO(e ∩ f) = 14.

Theorem 7.2.4. The line l is tangent to the curve f at the point P if and only if
multP (f ∩ l) > multP (f).

Proof: By the property (5), l is tangent to f at P if and only if multP (f ∩ l) >
multP (f) · multP (l) = multP (f).

Theorem 7.2.5. If the line l is not a component of the curve f , then

∑

P∈A2

multP (f ∩ l) ≤ deg(f).

Proof: Only points in f ∩ l can contribute to the sum. Let l be parametrized as
{x = a + tb, y = c + td}. Let

g(t) = f(a + tb, c + td) = α ·
r∏

i=1

(t − λi)
ei,

for α, ei ∈ K. g 6= 0, since l is not a component of f .
P ∈ f ∩ l if and only if P = Pi = (a + λib, c + λid) for some 1 ≤ i ≤ r.
If all the partial derivatives of f of order n vanish at Pi, then by the chain rule also

∂ng

∂tn
(λi) =

n∑

i=0

(
n

i

)
∂nf

∂xi∂yn−1
(a + λib, c + λid) · bi · dn−i = 0.

So multPi
(f) ≤ ei.

Summarizing we get

∑

P∈A2

multP (f∩l) =
r∑

i=1

multPi
(f∩l) =(5)

r∑

i=1

multPi
(f)·multPi

(l)
︸ ︷︷ ︸

=1

≤
r∑

i=1

ei ≤ deg(f).
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7.3 Linear Systems of Curves

Throughout this section we take into account the multiplities of components in alge-
braic curves, i.e. the equations x2y = 0 and xy2 = 0 determine two different curves.
As always, we assume that the underlying field K is algebraically closed.

So, for this section, a projective curve C of degree n is defined by a (not necessarily
squarefree) polynomial equation of the form

∑

i+j+k=n

aijkx
iyjzk = 0.

The number of coefficients aijk in this homogeneous equation is (n + 1)(n + 2)/2 2.
The curve C is defined uniquely by these coefficients, and conversely the coefficients are
determined uniquely by the curve C, up to a constant factor. Therefore, the coefficients
can be regarded as projective coordinates of the curve C, and the set Sn of projective
curves of degree n can be regarded as points in a projective space PN , where

N = (# of coeff.) − 1 = n(n + 3)/2.

Definition 7.3.1. The curves, which constitute an r–dimensional subspace Pr of
Sn = PN , form a linear system of curves of dimension r. Such a system S is determined
by r +1 independent curves F0, F1, . . . , Fr in the system. The defining equation of any
curve in S can be written in the form

r∑

i=0

λiFi(x, y, z) = 0.

Since Pr is also determined by N − r hyperplanes containing Pr, the linear system
S can also be written as the intersection of these N − r hyperplanes. The equation of
such a hyperplane in PN is called a linear condition on the curves in Sn, and a curve
satisfies the linear condition iff it is a point in the hyperplane.

Since N hyperplanes always have at least one point in common, we can always find
a curve satisfying N or fewer linear conditions. In general, in an r–dimensional linear
system of curves we can always find a curve satisfying r or fewer (additional) linear
conditions.

Example 7.3.1. We consider the system S2 of quadratic curves (conics) over C. In
S2 we choose two curves, a circle F0 and a parabola F1:

F0(x, y, z) = x2 + y2 − z2 , F1(x, y, z) = yz − x2 .

2f(x, y) = a0(x)yn + a1(x)yn−1 + · · · + an(x); so the number of terms is 1 + 2 + · · · + (n + 1) =
(n + 1)(n + 2)/2
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F0 and F1 determine a 1–dimensional linear subsystem of S2. The defining equation of
a general curve in this subsystem is of the form

λ0F0 + λ1F1 = 0,

or
(λ0 − λ1)x

2 + λ0y
2 − λ0z

2 + λ1yz = 0.

We get a linear condition by requiring that the point (1 : 2 : 1) should be a point on
any curve. This forces λ1 = −4λ0. The following curve (λ0 = 1, λ1 = −4) satisfies the
condition:

5x2 + y2 − z2 − 4yz = 0.

It is very common for linear conditions to arise from requirements such as “all
curves in the subsystem should contain the point P as a point of multiplicity at least
r, r ≥ 1.” This means that all the partial derivatives of order < r of the defining
equation have to vanish at P . There are exactly r(r + 1)/2 such derivations, and they
are homegeneous linear polynomials in the coefficients aijk. Thus, such a requirement
induces r(r + 1)/2 linear conditions on the curves of the subsystem.

Definition 7.3.2. A point P of multiplicity ≥ r on all the curves in a linear system is
called a base point of multiplicity r of the system. In particular, the linear subsystem of
Sn which has the different points P1, . . . , Pm as base points of multiplicity 1, is denoted
by Sn(P1, . . . , Pm).

Definition 7.3.3. A divisor is a formal expression of the type

m∑

i=1

riPi,

where ri ∈ Z, and the Pi are different points in P2(K). If all integers ri are non-negative
we say that the divisor is effective or positive.

We define the linear system of curves of degree d generated by the effective divisor
D = r1P1 + · · ·+ rmPm as the set of all curves C of degree d such that multPi

(C) ≥ ri,
for i = 1, . . . , m, and we denote it by H(d, D).

Example 7.3.2. We compute the linear system of quintics generated by the effective
divisor D = 3P1 +2 P2 +P3, where P1 = (0 : 0 : 1), P2 = (0 : 1 : 1), and P3 = (1 : 1 : 1).
For this purpose, we consider the generic form of degree 5:

H(x, y, z) = a0 z5 + a1 yz4 + a2 y2z3 + a3 y3z2 + a4 y4z + a5 y5 + a6 xz4 + a7 xyz3

+a8 xy2z2 + a9 xy3z + a10 xy4 + a11 x2z3 + a12 x2yz2 + a13 x2y2z
+a14 x2y3 + a15 x3z2 + a16 x3yz + a17 x3y2 + a18 x4z + a19 x4y + a20 x5

The linear conditions that we have to impose are:

∂2H

∂x2−i−j∂yi∂zj
(P1) = 0, i + j ≤ 2,

∂H

∂x
(P2) =

∂H

∂y
(P2) =

∂H

∂z
(P2) = 0, H(P3) = 0
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Solving them one gets that the linear system is defined by:

H(x, y, z) = a3 y3z2 − 2 a3 y4z + a3 y5 + (−a9 − a10 ) xy2z2 + a9 xy3z + a10 xy4+
(−a13 − a14 − a15 − a16 − a17 − a18 − a19 − a20 ) x2yz2 + a13 x2y2z+
a14 x2y3 + a15 x3z2 + a16 x3yz + a17 x3y2 + a18 x4z + a19 x4y + a20 x5
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Figure 7.4: real part of C1⋆,z
(left), real part of C2⋆,z

(right)

Hence, the dimension of the system is 10. Finally, we take two particular curves in
the system, C1 and C2, defined by the polynomials:

H1(x, y, z) = 3 y3 z2 − 6 y4 z + 3 y5 − x y3 z + x y4 − 5 x2 y z2 + 2 x2 y2 z + x3 y2

+x4 z + y x4,
H2(x, y, z) = y3 z2 − 2 y4 z + y5 − 8

3
z2 x y2 + 3 x y3 z − 1

3
x y4 − 8 x2 y z2 + 2 x2 y2 z

+y3 x2 + 2 y x3 z + x3 y2 − x4 z + 2 y x4 + x5,

respectively. In the figure the real part of the affine curves C1⋆,z
and C2⋆,z

are plotted,
respectively.

Theorem 7.3.1. If two curves F1, F2 ∈ Sn have n2 points in common, and exactly
mn of these lie on an irreducible curve of degree m, then the other n(n −m) common
points lie on a curve of degree n − m.

Proof: Let G be an irreducible curve of degree m containing exactly mn of the n2

common points of F1 and F2. We choose an additional point P on G and determine a
curve F in the system

λ1F1 + λ2F2 = 0

containing P . So F = λ1F1 +λ2F2, for some λ1, λ2 ∈ K. G and F have at least mn+1
points in common, so by Theorem 7.2.2 (Bézout’s Theorem) they must have a common
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component, which must be G, since G is irreducible. F = G ·H contains the n2 points,
so the curve H ∈ Sn−m contains the n(n − m) points not on G.

As a special case we get Pascal’s Theorem.

Theorem 7.3.2. (Pascal’s Theorem) Let C be an irreducible conic (curve of degree
2). The opposite sides of a hexagon inscribed in C meet in 3 collinear points.

Proof: Let P1, . . . , P6 be different points on C. Let Li be the line through Pi and Pi+1

for 1 ≤ i ≤ 6 (for this we set P7 = P1). The 2 cubic curves L1L3L5 and L2L4L6 meet
in the 6 vertices of the hexagon and in the 3 intersection points of opposite sides. The
6 vertices lie on an irreducible conic, so by Theorem 7.3.1 the remaining 3 points must
lie on a line.

Example 7.3.3. Consider the following particular example of Pascal’s Theorem:

Now we want to apply these results for deriving bounds for the number of singu-
larities on plane algebraic curves.

Theorem 7.3.3. Let F, G be curves of degree m, n, respectively, having no common
components and having the multiplicities r1, . . . , rk and s1, . . . , sk in their common
points P1, . . . , Pk, respectively. Then

k∑

i=1

risi ≤ mn.

Proof: The statement follows from Theorem 7.2.2 (Bézout’s Theorem) and proposition
(5) in Theorem 7.2.3.
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Theorem 7.3.4. Let the curve F of degree n have no multiple components and let
P1, . . . , Pm be the singularities of F with multiplicities r1, . . . , rm, respectively. Then

n(n − 1) ≥
m∑

i=1

ri(ri − 1).

Proof: Choose the coordinate system such that the point (0 : 0 : 1) is not contained
in F (i.e. the term zn occurs with non-zero coefficient in F ). Then

Fz(x, y, z) :=
∂F

∂z
6= 0.

Moreover, F does not have a factor independent of z. Since F is squarefree, F cannot
have a factor in common with Fz.

The curve Fz has every point Pi as a point of multiplicity at least ri−1, since every
j–th derivative of Fz is a (j + 1)-st derivative of F . Thus, by application of Theorem
7.3.3 we get the result.

This bound can be sharpened even more for irreducible curves.

Theorem 7.3.5. Let the irreducible curve F of degree n have the singularities
P1, . . . , Pm of multiplicities r1, . . . , rm, respectively. Then

(n − 1)(n − 2) ≥
m∑

i=1

ri(ri − 1).

Proof: From Theorem 7.3.4 we get
∑

ri(ri − 1)

2
≤ n(n − 1)

2
≤ (n − 1)(n + 2)

2
.

(Note: one can always determine a curve of degree n − 1 satisfying (n − 1)(n + 2)/2
linear conditions. By r(r − 1)/2 linear conditions we can force a point P to be an
(r − 1)–fold point on a curve.)

So, there is a curve G of degree n − 1 having Pi as (ri − 1)–fold point, 1 ≤ i ≤ m,
and additionally passing through

(n − 1)(n + 2)

2
−

∑
ri(ri − 1)

2

simple points of F . Since F is irreducible and deg(G) < deg(F ), the curves F and G
can have no common component. Therefore, by Theorem 7.3.3,

n(n − 1) ≥
∑

ri(ri − 1) +
(n − 1)(n + 2)

2
−

∑
ri(ri − 1)

2
,
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and consequently

(n − 1)(n − 2) ≥
∑

ri(ri − 1).

Indeed, the bound in Theorem 7.3.5 is sharp, i.e. it is actually achieved by a certain
class of irreducible curves. These are the curves of genus 0.

Definition 7.3.4. Let F be an irreducible curve of degree n, having only ordinary
singularities of multiplicities r1, . . . , rm. The genus of F , genus(F ), is defined as

genus(F ) =
1

2
[(n − 1)(n − 2) −

m∑

i=1

ri(ri − 1)].

Example 7.3.4. Every irreducible conic has genus 0. An irreducible cubic has genus
0 if and only if it has a double point.

For curves with non-ordinary singularities the formula

1

2
[(n − 1)(n − 2) −

m∑

i=1

ri(ri − 1)]

is just an upper bound for the genus. Compare the tacnode curve of Example 1.3,
which is a curve of genus 0. We will see this in the chapter on parametrization.
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