
Chapter 3

Algebraic sets and varieties

3.1 Affine Space and Algebraic Sets

Throughout this chapter let K be a field.

Def. 3.1.1. The n–dimensional affine space over K is defined as

A
n(K) := { (a1, . . . , an) | ai ∈ K }.

If K is clear from context, we simply write An. The elements of An are called points.
A1 is called the affine line, and A2 is called the affine plane. 2

Def. 3.1.2. Let f ∈ K[x1, . . . , xn]. A point P = (a1, . . . , an) ∈ An(K) is a root or zero

of f iff f(P ) = f(a1, . . . , an) = 0.
A subset V ⊆ An(K) is an affine algebraic set iff there is a set of polynomials

S ⊆ K[x1, . . . , xn] such that

V = V (S) = { P ∈ A
n(K) | f(P ) = 0 for all f ∈ S }. 2

We list a few facts about affine algebraic sets:

(1) If S ⊆ K[x1, . . . , xn] and I = ideal(S) = 〈S〉, then V (S) = V (I). So every affine
algebraic set is V (I) for some ideal I in K[x1, . . . , xn]. Since the polynomial
ring is Noetherian (see Hilbert’s Basis Theorem, below), every ideal has a finite
basis. So for every affine algebraic set V there is a finite set of polynomials
S = {f1, . . . , fm} such that V = V (S) = V (f1, . . . , fm). The corresponding
system of algebraic equations

f1 = 0, . . . , fm = 0

is called a system of defining equations for V .
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(2) If I, J are ideals with I ⊆ J , then V (I) ⊇ V (J).

(3) If {Iα}α∈A is an arbitrary family of ideals, then

V (
⋃

α∈A

Iα) =
⋂

α∈A

V (Iα).

Thus, the intersection of an arbitrary family of algebraic sets is an algebraic set.

(4) V (f · g) = V (f) ∪ V (g) for polynomials f, g. This relation can be generalized to
ideals I, J .

V (I) ∪ V (J) = V ({f · g|f ∈ I, g ∈ J}).
So if BI = {f1, . . . , fm} and BJ = {g1, . . . , gp} are finite bases for the ideals I

and J , respectively, then B = {fi · gj |1 ≤ i ≤ m, 1 ≤ j ≤ p} is a finite basis for
I · J , the product of the ideals I, J , and

V (I) ∪ V (J) = V (I · J) = V (B).

By the way, we also have V (I) ∪ V (J) = V (I ∩ J).
So every finite union of algebraic sets is an algebraic set.

(5) V (0) = An(K), and V (1) = ∅.
V (x1 − a1, . . . , xn − an) = {(a1, . . . , an)} for all ai ∈ K. So every finite set of
points is an algebraic set.

(6) Collecting (3), (4), and (5) we get that An(K) is a topological space if we take
the algebraic sets as the closed sets. This topology is called the Zariski topology.

Def. 3.1.3. The Zariski topology on An(K) is the topology in which the closed sets
are exactly the algebraic sets in An(K). 2

Example 3.1.1. Some examples of affine algebraic sets:

(1) Linear algebraic sets: they are the solutions of systems of linear equations and
are treated in linear algebra.

(2) Hypersurfaces: these are algebraic sets defined by a single equation
f(x1, . . . , xn) = 0, where f is non-constant.
If f is linear, we have a hyperplane (a plane in A3, a line in A2).
Hypersurfaces in A3 are just called surfaces.
By definition, every algebraic set is the intersection of finitely many hypersur-
faces.
Over the field R a hypersurface can be empty or consist of only finitely many
points:

x2 + y2 + 1 = 0 −→ no point in A2(R)
x2 + y2 = 0 −→ only one point (0, 0)in A2(R)

This cannot happen over an algebraically closed field such as C.
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Figure 3.1: from [Kun85]

(3) Plane algebraic curves: a plane algebraic curve C is a hypersurfaces in A2, i.e.
the set of solutions of f(x, y) = 0.

(4) Cones: if the defining system of equations consists only of homogeneous polyno-
mials, then the corresponding algebraic set V has the property that for P ∈ V ,
P 6= (0, 0), the whole line connecting P and the origin O = (0, 0) is contained in
V . Such an algebraic set is called a cone with vertex at the origin.

(5) Product of affine algebraic sets:

V ⊆ An(K) defined by fi(x1, . . . , xn) = 0, i = 1, . . . , r
W ⊆ Am(K) defined by gj(x1, . . . , xm) = 0, i = 1, . . . , s
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The product V × W ⊆ An+m(K) is defined by

fi(x1, . . . , xn) = 0, 1 ≤ i ≤ r

gj(y1, . . . , ym) = 0, 1 ≤ j ≤ s

in K[x1, . . . , xn, y1, . . . , ym].

(6) Parametrizations are points in spaces over rational function fields: let C ⊂ A2(K)
be a curve defined as the set of solutions of f(x, y) = 0 over the field K. Let C be
parametrized by P (t) = (x(t), y(t)) (compare Example 1.3.). So f(x(t), y(t)) = 0,
which means that P (t) is a point on the curve C̃ defined by f(x, y) over the bigger
field A2(K(t)). In fact,

C̃ = {P (t) ∈ A
2(K(t)) | f(P (t)) = 0 } .

C̃ contains all the points of C and also all the parametrizations of C (or of com-
ponents thereof; compare Chap. 8).

Theorem 3.1.1. Let the field K be infinite.

(a) Let n ≥ 1. Then for every hypersurface V in An(K) there are infinitely many
points in An(K) \ V , i.e. outside of V .

(b) Let K be algebraically closed and n ≥ 2. Then every hypersurface in An(K)
contains infinitely many points.

Proof: (a) We proceed by induction on n. For n = 1 the statement obviously holds.
Now consider n > 1. The hypersurface V is defined by the non-constant polynomial
f(x1, . . . , xn). W.l.o.g. we may assume that xn actually occurs in f , i.e.

f =

m∑

i=0

gi(x1, . . . , xn−1)x
i
n, (∗)

with m > 0 and gm 6= 0.
By the induction hypothesis there is a point (a1, . . . , an−1) ∈ An−1 such that

gm(a1, . . . , an−1) 6= 0. So f(a1, . . . , an−1, xn) is a non-vanishing polynomial in K[xn],
having only finitely many roots. Thus, there are infinitely many an ∈ K such that
f(a1, . . . , an−1, an) 6= 0.
(b) Let V be defined by f as in (∗). By (a), there are infinitely many points P =
(a1, . . . , an−1) ∈ A

n−1 with gm(a1, . . . , an−1) 6= 0. Since K is algebraically closed, for
every such point P there is a value an ∈ K such that f(a1, . . . , an−1, an) = 0. 2

We have seen how we can associate a geometric variety to a polynomial ideal. On
the other hand, any set of points in space also determines a polynomial ideal, namely
the set of polynomials vanishing on these points.
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Def. 3.1.4. Let X be a subset of An(K). The set of all polynomials in K[x1, . . . , xn]
vanishing on all the points in X form an ideal. This ideal is the ideal of X, I(X).

I(X) := { f ∈ K[x1, . . . , xn] | f(P ) = 0 for all P ∈ X }. 2

Theorem 3.1.2. Let K be algebraically closed and n ≥ 1. Let H ⊂ An(K) be a
hypersurface defined by the polynomial

f = c · fα1

1 · . . . · fαs

s ,

where c ∈ K∗, and the fi are pairwise relatively prime irreducible polynomials. Then
I(H) = 〈f1 · . . . · fs〉.
Proof: Obviously f1 · . . . · fs ∈ I(H).

So it suffices to show that every g ∈ I(H) is divisible by all the factors fi, 1 ≤ i ≤ s.
Suppose for some i the factor fi does not divide g. W.l.o.g. we may assume that xn

actually occurs in fi, i.e.

fi =
m∑

i=0

gi(x1, . . . , xn−1)x
i
n,

with m > 0 and gm 6= 0. By Gauss’ Lemma, the polynomials fi and g are also relatively
prime in the Euclidean domain K(x1, . . . , xn−1)[xn]. So for some h1, h2 ∈ K[x1, . . . , xn]
and d ∈ K[x1, . . . , xn−1]

∗ we can write

d(x1, . . . , xn−1) = h1(x1, . . . , xn) · fi(x1, . . . , xn) + h2(x1, . . . , xn) · g(x1, . . . , xn).

By Theorem 3.1.1(a) there is a point (a1, . . . , an−1) ∈ An−1 such that

d(a1, . . . , an−1) · gm(a1, . . . , an−1) 6= 0.

Choose a value an ∈ K such that fi(a1, . . . , an−1, an) = 0. Then (a1, . . . , an) ∈ H , and
therefore g(a1, . . . , an) = 0. This, however, is a contradiction to d(a1, . . . , an−1) 6= 0. 2
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We list some relations between ideals and algebraic sets.

Lemma 3.1.3. Let X, Y ⊆ An(K), S ⊆ K[x1, . . . , xn].

(a) If X ⊆ Y then I(X) ⊇ I(Y ).

(b) I(∅) = K[x1, . . . , xn].
If K is infinite, then I(An) = 〈0〉.
I({(a1, . . . , an)}) = 〈x1 − a1, . . . , xn − an〉 for all ai ∈ K.

(c) I(V (S)) ⊇ S.
V (I(X)) ⊇ X.

(d) V (I(V (S))) = V (S).
I(V (I(X))) = I(X).

(e) I(X) is a radical ideal.

The proof is left to the reader as an exercise.
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3.2 Noetherian rings and Hilbert’s Basis Theorem

We have already used the fact that every ideal in the polynomial ring K[x1, . . . , xn] is
finitely generated. In this section we give a proof of this fact.

Def. 3.2.1. A commutative ring with identity R is called a Noetherian ring iff the
basis condition holds in R, i.e. every ideal in R is finitely generated. 2

Lemma 3.2.1. A commutative ring with identity R is Noetherian if and only if there
are no infinite properly ascending chains of ideals in R. I.e., if

I1 ⊆ I2 ⊆ . . . ⊆ R,

then there is an index k such that

Ik = Ik+1 = . . . . 2

Proof: Suppose that R is Noetherian. Let

I0 ⊆ I1 ⊆ I2 ⊆ · · ·
be an ascending chain of ideals in R. Consider

I :=
∞⋃

i=0

Ii .

I is an ideal in R, so it has a finite basis. This basis must be contained in some Ik; so

Ik = Ik+1 = · · · .

On the other hand, suppose that an ideal I in R does not have a finite basis.
Choose a non-zero element r0 ∈ I; then I0 := 〈r0〉 6= I.
Choose r1 ∈ I \ I0; then I1 := 〈r0, r1〉 6= I.
This process can be continued indefinitely, yielding an infinite properly ascending chain
of ideals in R. 2

Theorem 3.2.2. (Hilbert’s Basis Theorem) If R is a Noetherian ring then also the
ring of polynomials R[x] is Noetherian.

Proof: Let I be an ideal in R[x]. We have to show that I has a finite basis.
For f(x) = a0 + a1x + . . . + adx

d ∈ R[x]∗, ad 6= 0, we call ad the leading coefficient

of f , lc(f), and adx
d the leading term of f , lt(f). The leading coefficient of 0 is 0.

Let J be the set of all leading coefficients of polynomials in I. J is an ideal in R,
and therefore has a finite basis. Let f1, . . . , fk ∈ I be such that their leading coefficients
generate J , i.e.

J = 〈lc(f1), . . . , lc(fk)〉.
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Let N be the highest degree of the fi’s,

N = max
1≤i≤k

deg(fi).

For every m, 0 ≤ m < N , let Jm be the ideal in R consisting of the leading coefficients
of all polynomials f ∈ I with deg(f) ≤ m. Let {fmj |1 ≤ j ≤ km} be a finite set
of polynomials in I with deg(fmj) ≤ m, such that Jm is generated by the leading
coefficients of the fmj , i.e.

Jm = 〈lc(fm1), . . . , lc(fmkm
)〉.

Now let
I ′ := 〈{f1, . . . , fk} ∪

⋃

0≤m<N

{fmj |1 ≤ j ≤ km}〉.

We show that I ′ = I, so I has a finite basis.
Obviously I ′ ⊆ I. Suppose that I ′ is a proper subset of I. Let g be an element of

least degree in I \ I ′.

Case deg(g) ≥ N : There are polynomials qi such that

lt(
∑

qifi) = lt(g).

So also g − ∑
qifi ∈ I \ I ′ and deg(g − ∑

qifi) < deg(g), in contradiction to the
minimality of deg(g).

Case deg(g) < N : Let m = deg(g). There are polynomials qj such that

lt(
∑

qjfmj) = lt(g).

So also g − ∑
qjfmj ∈ I \ I ′ and deg(g − ∑

qjfmj) < deg(g), in contradiction to the
minimality of deg(g).

In any case we see that such a g cannot exist, i.e. I = I ′ and I is finitely generated. 2

Corollary. For any n, K[x1, . . . , xn] is a Noetherian ring.

Proof: K has only two ideals, namely 〈0〉, 〈1〉. Both are obviously finitely generated.
The statement follows from the Theorem by induction on n. 2

Let us derive some further properties of Noetherian rings.

Theorem 3.2.3. Let S be a non-empty set of ideals in the Noetherian ring R. Then S
contains a maximal element, i.e. there is an I ∈ S such that for all other ideals J ∈ S
we have I 6⊂ J .

Proof: Let S0 := S. Choose an ideal I0 ∈ S0. Now let

S1 := { I ∈ S | I0 ⊂ I and I0 6= I }.
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If S1 6= ∅, then choose an ideal I1 ∈ S1 and let

S2 := { I ∈ S | I1 ⊂ I and I1 6= I }.

This process is continued as long as Sm 6= ∅. The proof is complete if we can show that
for some m the set Sm is empty.
Suppose Sm 6= ∅ for all m. Let

I :=
∞⋃

m=0

Im ,

an ideal in R. Let {f1, . . . , fr} be a finite basis of I. For a sufficiently big m we have
fi ∈ Im for all 1 ≤ i ≤ r. So I = Im and therefore Im+1 = Im, a contradiction. 2

Also the converse is true; see [ZaS58] I, p.199.

In a Noetherian ring we can use a certain form of induction based on ascending
chains, the so-called Principle of Divisor Induction.

Def. 3.2.2. Let I, J be ideals in R, a commutative ring with 1. J is a divisor of I iff
I ⊆ J .
For ideals I1, I2 in R, I1 + I2 is called the greatest common divisor of I1 and I2. 2

Theorem 3.2.4. (The Principle of Divisor Induction) Let R be a Noetherian ring. If
a property E can be proved for any ideal I under the hypothesis that it is satisfied for
all proper divisors of I, then all ideals have the property E.

Proof: Suppose that some ideal does not have property E. Then by Theorem 3.2.3
there is a maximal ideal I which does not have property E. Because of the maximality,
all proper divisors of I must have property E. Therefore, I also has property E; which
is a contradiction. 2
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3.3 Irreducible Components of Algebraic Sets

Def. 3.3.1. An algebraic set V ⊆ An is reducible iff there are algebraic sets V1, V2

different from V such that V = V1 ∪ V2. Otherwise V is irreducible. An irreducible
algebraic set is also called a variety. 2

An ideal I is prime iff with the product a · b it must contain one of the factors a or
b. Irreducible algebraic sets correspond to prime ideals.

Theorem 3.3.1. An algebraic set V is irreducible if and only if I(V ) is a prime ideal.

Proof: “=⇒”: Suppose I(V ) is not prime. Then there are polynomials f1, f2 such that
f1 · f2 ∈ I(V ) but f1, f2 6∈ I(V ). So V = (V ∩V (f1))∪ (V ∩V (f2)), and V ∩V (fi) 6= V

for i = 1, 2. Thus, V is reducible.
“⇐=”: Suppose V = V1 ∪ V2, where Vi 6= V for i = 1, 2. By Lemma 3.1.3(d), also
I(Vi) 6= I(V ) for i = 1, 2. Let fi ∈ I(Vi) \ I(V ) for i = 1, 2. Then f1 · f2 ∈ I(V ), and
therefore I(V ) is not prime. 2

An algorithm for decomposing an algebraic set V into a finite union of irreducible
algebraic sets could proceed as follows: first we decompose V into sets V1, V2. Next we
decompose V1 and V2, and so on. We will reach a finite decomposition if this algorithm
terminates. This is a consequence of the following theorem.

Theorem 3.3.2. Every non-empty family V = {Vα}α∈A of algebraic sets in An contains
a minimal element (w.r.t. to set inclusion “⊂”).

Proof: Let I(Vα0
) be a maximal element in {I(Vα)}α∈A (this exists because of Theorem

3.2.3). Then Vα0
is minimal in V. 2

Theorem 3.3.3. Let V be an algebraic set in An. Then there is a unique decom-
position, up to permutation of the components, of V into irreducible algebraic sets
V1, . . . , Vm such that

V = V1 ∪ . . . ∪ Vm and Vi 6⊆ Vj for i 6= j.

Proof: (a) Existence of decomposition: Let

V := { V ⊆ An | V is algebraic and V is not the union
of finitely many irreducible algebraic sets }.

We want to show that V = ∅.
If this is not the case, then V contains a minimal element, say V . Since V ∈ V, V

can be decomposed into V = V1 ∪ V2, Vi 6= V for i = 1, 2. Because of the minimality
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of V , Vi cannot be in V, so Vi = Vi1 ∪ . . . ∪ Vimi
for Vij irreducible. But then

V =
⋃

i,j

Vij ,

a contradiction.
(b) Uniqueness: In the decomposition V = V1 ∪ . . . ∪ Vm eliminate all components
which are properly contained in another component and also double occurrences of
components. The resulting decomposition is reduced.

Now consider two reduced decompositions

V = V1 ∪ . . . ∪ Vm

and
V = W1 ∪ . . . ∪ Wl.

Then

Vi = V ∩ Vi =

l⋃

j=1

(Wj ∩ Vi).

Because of the irreducibility of the Vi, Wj, every Vi ⊆ Wj(i) for some j(i), and on the
other hand Wj(i) ⊆ Vk for some k. This is only possible for Vi = Wj(i) = Vk, i.e. i = k.
Thus, every Vi is equal to some Wj(i).

In the same way, we can show that every Wj is equal to some Vi(j). 2

Def. 3.3.2. Let V ⊆ An be an algebraic set. Let V = V1 ∪ . . . ∪ Vm be the unique
decomposition guaranteed by Theorem 3.3.3. This decomposition is called the decom-

position of V into irreducible components. 2

In Section 4.3 we will compare this result on decompositon of algebraic sets with
primary decomposition of polynomial ideals. The situation for primary decomposition
is much more complicated.

Theorem 3.3.4. If K is infinite, then An(K) is irreducible.

Proof: Suppose An(K) were reducible, and An(K) = V1 ∪ V2 a decomposition. Con-
sider non-zero polynomials f1 ∈ I(V1)\ I(V2), f2 ∈ I(V2)\ I(V1). f1 ·f2 ∈ I(V1)∩I(V2),
so 0 6= f1 ·f2 vanishes on all points of An(K). This is a contradiction to Theorem 3.1.1.
2

We will take the affine plane A2(K) as an example and give a complete classification
of the algebraic subsets of the plane. Because of Theorem 3.3.3 it suffices to classify
the irreducible algebraic sets. All others are constructed from these components.

Theorem 3.3.5. Let f, g ∈ K[x, y], f and g relatively prime. Then V (f, g) = V (f) ∩
V (g) is a finite set of points.
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Proof: f and g are relatively prime in K[x][y], so by Gauss’ Lemma they are also
relatively prime in K(x)[y]. But K(x)[y] is a Euclidean domain, so we can write the
gcd as a linear combination

1 = r · f + s · g,

for some r, s ∈ K(x)[y]. After eliminating the denominators from this equation, we get

d = a · f + b · g,

for some d ∈ K[x], a, b ∈ K[x, y].
Now if (c1, c2) ∈ V (f, g), then d(c1) = 0. But d has only finitely many roots. So

there are only finitely many possible values for the x–coordinate of points in V (f, g).
By an analogous consideration we determine that there are only finitely many possible
values for the y–coordinate of points in V (f, g). 2

Corollary. If f(x, y) is irreducible in K[x, y] and V (f) is infinite, then I(V (f)) = 〈f〉
and V (f) is irreducible.

Proof: If g ∈ I(V (f)), then V (f, g) = V (f) is infinite. So, by the Theorem, f must
divide g, and therefore g ∈ 〈f〉. The irreducibility of V (f) follows from Theorem 3.3.1.
2

Theorem 3.3.6. (classification) Let the field K be infinite. The following is a complete
classification of the irreducible algebraic subsets of A

2(K):

(a) A2(K) and ∅,

(b) single points,

(c) irreducible algebraic curves V (f), where f is an irreducible polynomial and V (f)
is infinite.

Proof: Let V be an irreducible algebraic set in A2(K). If V is finite or I(V ) = 〈0〉,
then V is of type (a) or (b).

Otherwise, I(V ) contains a non-constant polynomial f . Since I(V ) is prime, it
must also contain an irreducible factor of f . So w.l.o.g. let f be irreducible. Now we
claim that I(V ) = 〈f〉. To see this, let h ∈ I(V ) \ 〈f〉. h and f are relatively prime,
so by Theorem 3.3.5 V ⊂ V (f, h) is finite. 2

Theorem 3.3.7. Let K be algebraically closed, f ∈ K[x, y]. Let f = fα1

1 · . . . · fαs

s be
the factorization of f . Then

(a) V (f) = V (f1)∪ . . .∪ V (fs) is the decomposition of V (f) into irreducible compo-
nents, and

(b) I(V (f)) = 〈f1 · . . . · fs〉.
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Proof: obvious. 2

Example 3.3.1. We consider the intersection of a sphere with radius 2 and a cylinder
with radius 1 defined by

f1 = x2 + y2 + z2 − 4 = 0 ,

f2 = y2 + z2 − 1 = 0 .

V = V (f1, f2) can be decomposed as

V = V (x −
√

3, y2 + z2 − 1) ∪ V (x +
√

3, y2 + z2 − 1),

and these are the irreducible components of V . 2
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