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A Solving Linear Ordinary Differential Equations 74

Part I

Monoids, Groups, Rings, Fields, and
Modules
1 Monoids and Groups
Definition 1 (Monoid). A monoid (M, �, ε) is a set M together with an operation � : M ×M →M
such that the following properties hold:

Associativity For every a, b, c ∈M we have (a � b) � c = a � (b � c).

Neutral Element There is an ε ∈M such that ε � a = a and a � ε = a for all a ∈M .

The element ε is called the neutral element of the monoid.
A monoid (M, �, ε) is called Abelian (or commutative) if additionally

Commutativity for all a, b ∈M we have a � b = b � a.

Example 2 (Monoids and Non-Monoids). Examples of monoids include:

(a) The natural numbers N with the usual addition. The neutral element is 0. Moreover, this
monoid is Abelian.

(b) The natural numbers with the usual multiplication. The neutral element is now 1; the monoid
is again Abelian.

(c) The natural numbers with the maximum max as operation. The neutral element is 0; the
monoid is Abelian.

(d) The integers Z with the greatest common divisor gcd as operation. The neutral element is
zero because gcd(0, a) = a for all a ∈ Z by definition (see Definition 125). Again, this is an
Abelian monoid.

(e) The square n-by-nmatrices nQn with rational entries and multiplication. The neutral element
is the identity matrix 1n. This monoid is not Abelian for n > 2.

The following are not examples of monoids:

(a) The natural numbers with the minimum min as operation. Here, we do not have a neutral
element.

(b) The integers with subtraction. In this case, the operation is not associative since, for example,
1− (2− 3) = 2 6= −4 = (1− 2)− 3.

(c) The natural numbers with exponentiation, that is, a�b = ab. This operation is not associative
since, for example, 2(3

2) = 512 6= 64 = (23)2.
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Notation 3. Often the operation of an (abstract) monoid is simply denoted by the multiplication
symbol · or by juxtaposition1 and the neutral element is denoted by 1. In case of Abelian monoids,
the operation is traditionally denoted by + and the neutral element by 0. Consequently, we often
just speak about the monoid M instead of the more correct (M, ·, 1) (or (M,+, 0) in the Abelian
case). Moreover, since because of associativity products (or sums) can be computed in any order,
we usually leave out parentheses and just write abc instead of (ab)c (or a(bc)).

Exercise 4. Show that a monoid has only one neutral element.

Notation 5. Let M be a monoid. For a ∈M and n ∈ N we define

an = a · a · · · a︸ ︷︷ ︸
n times

if n > 1 and a0 = 1. (Note that because of an = aan−1 for n > 1 we could also define the powers
recursively.) If the we use additive notation for M , then we write

na = a+ a+ . . .+ a︸ ︷︷ ︸
n times

for n > 1 and 0a = 0.2

Exercise 6. Let M be a monoid such that a2 = 1 for all a ∈M . Show that M is Abelian.

Definition 7 (Group). A monoid (G, ·, 1) is a group if it fulfills the additional property that

Inverses for all a ∈ G there exists an element a−1 ∈ G such that aa−1 = 1 and a−1a = 1.

We call a−1 the inverse of a.

Notation 8. For an Abelian group G the inverse of a ∈ G is usually denoted by −a. Moreover, we
normally write a− b for a+ (−b).
Exercise 9. Show that the inverse of a group element is uniquely determined.

Example 10 (Groups and Non-Groups). Examples of groups are

(a) The integers Z with the usual addition. This is an Abelian group.

(b) The invertible n-by-n matrices GLn(Q) with rational coefficients and the usual multiplication.
This group is not Abelian for n > 2.

(c) The permutations SM = {f : M → M | f is bijective} of a non-empty set M together with
the composition of functions ◦. This group is also not Abelian.

On the other hand, none of the monoids in Example 2 is a group.

Notation 11. For a group G we can define negative powers as a−n = (a−1)n for a ∈ G and n ∈ N
(or in additive notation (−n)a = n(−a)).

1That is, writing just ab for the product a · b.
2Note that in 0a = 0 the first 0 is in N while the second 0 is the neutral element of M .
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2 Rings and Fields
Definition 12 (Ring). A (unitary, commutative) ring (R,+, 0, ·, 1) is a set R together with two
operations +: R×R→ R and · : R×R→ R such that

(a) (R,+, 0) is an Abelian group,

(b) (R, ·, 1) is an Abelian monoid,

and such that

Distributivity for all a, b, c ∈ R we have a · (b+ c) = a · b+ a · c.

Notation 13. In Definition 12 we made use of the convention that · binds more strongly than +.
That is, we always read a · b + c as (a · b) + c. Also, we will often just speak about a ring R and
not name the operations explicitly. If we talk about several structures at the same time, we will
sometimes write 0R and 1R in order to emphasise from which ring the (additive and multiplicative)
neutral elements originate.

Example 14 (Rings and Non-Rings). The following sets are examples of rings

(a) The integers Z with the usual addition and multiplication.

(b) The square n-by-n matrices nRn with entries from any ring R and with the usual addition
and multiplication. This ring is not commutative (that is, (nRn, ·,1n) is not Abelian).

(c) The set of polynomials R[X] over any ring R with the usual addition and multiplication.

(d) For any set S, we can make its power set P(S) into a ring by setting

A+B := (A ∪B) \ (A ∩B) and A ·B = A ∩B

for A,B ⊆ S.

The following sets are not examples of rings

(a) The natural numbers N with the normal addition and multiplication.

Exercise 15. Prove that item (d) of Example 14 is indeed a ring.

Exercise 16. Prove that for any ring R we have

(a) 0a = 0 for all a ∈ R;3

(b) (−a)b = a(−b) = −(ab) for all a, b ∈ R; and

(c) (−a)(−b) = ab for all a, b ∈ R.

Remark 17 (Zero Ring). If in a ring R we have 0 = 1, then with Exercise 16 we obtain that R = {0}.
Since this ring is not terribly interesting, we will from now on always assume that 0 6= 1.

Definition 18 (Units). If R is a ring, then the invertible elements in the monoid (R, ·, 1) are called
units. We denote the set of all units in R by R∗.

3Here we mean 0Ra = 0R in contrast to the notation for exponents in additive notation introduced in Notation 5.
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Remark 19. In general, we have R∗ 6= R \ {0}. For instance, in the ring of integers the only units
are 1 and −1; that is, Z∗ = {−1, 1}.
Definition 20 (Zero Divisors, Regular, Integral Domain). Let R be a ring. A zero divisor is an
element a ∈ R such that there exists b ∈ R \ {0} with ab = 0.

An element a ∈ R which is not a zero divisor is called regular.
A ring which does not have any zero divisors except for 0 is called an integral domain.

Exercise 21 (Cancellation Rule). Let R be an integral domain and let a, b, c ∈ R such that c 6= 0.
Show that ac = bc or ca = cb implies a = b.

Definition 22 (Field). A ring (R,+, 0, ·, 1) is a field if

(a) 0 6= 1, and

(b) (R \ {0}, ·, 1) is an Abelian group.

(That is, every non-zero element has a multiplicative inverse.)

Example 23 (Field and Non-Fields). The following are fields:

(a) The rational, real and complex numbers Q, R and C with their usual addition and multiplic-
ation.

(b) The set F2 = {0, 1} where addition and multiplication are given by the tables

+ 0 1
0 0 1
1 1 0

and
· 0 1
0 0 0
1 0 1

.

The following are not fields:

(a) The integers Z.

Exercise 24. Prove that every field is an integral domain.

Exercise 25. Prove that every finite integral domain is a field.

Example 26 (Field of Fractions). If R is an integral domain, then we can form the field of fractions
of R. The construction is exactly the same as for the rational numbers: Consider the set S =
R× (R\{0}). We introduce an equivalence relation ∼ on S by setting (a, b) ∼ (x, y) if ay = bx. Let
Q(R) = S/ ∼ be the equivalence classes of ∼. We write the equivalence class of a pair (a, b) ∈ S as
fraction a/b. Addition and multiplication in Q(R) are now defined as

a

b
+
x

y
=
ay + xb

by
and

a

b
· x
y

=
ax

by
.

We can show (see Exercise 27) that this yields a field. Note that we can identify the original ring R
with the subset {a/1 | a ∈ R} ⊆ Q(R); we say that R is embedded in Q(R). The field of fractions
Q(R) of R is the smallest field which contains R.

Exercise 27. Show that the operations in Example 26 are well-defined and that they do indeed
make Q(R) a field. What are the neutral elements? What are the inverses?
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3 Modules and Ideals
Definition 28 (Module). Let (R,+, 0, ·, 1) be a ring; and let (M,+, 0) be an Abelian group. We call
M a (left) R-module if there exists an action : R×M →M such that

(a) a (x+ y) = (a x) + (a y) for all a ∈ R and x, y ∈M ;

(b) (a+ b) x = (a x) + (b x) for all a, b ∈ R and x ∈M ;

(c) a (b x) = (ab) x for all a, b ∈ R and x ∈M ;

(d) 1 x = x for all x ∈M .

The action is sometimes called the scalar multiplication of M by R.

Notation 29. Note that the + in Definition 28 is used both for the operation of the ring R and the
module M . We assume that binds more strongly than + but weaker than ·; that is, we would
interprete ab x as (ab) x and a x+ b x as (a x)+(b y). Sometimes we will omit the and denote
the scalar multiplication by juxtaposition.

Notation 30. We useRMod to denote the collection of all left R-modules. Thus, instead of saying
that M is a left R-module, we will sometimes just write M ∈ RMod. Some authors write RM to
indicate that M ∈RMod; but we will not use that notation here.

Notation 31. In German, a module is called “der Modul” (with the stress on the first syllable), the
plural is “die Moduln”.

Remark 32. Analogously, we can introduce right modules where the scalar multiplication is done
from the right (that is, M ×R→M) and the module laws are changed accordingly.

Example 33 (Vector Space). Every vector space over a field F is an F -module.

Example 34 (The Free Module). Let R be a ring. We consider the set

Rn = R× . . .×R︸ ︷︷ ︸
n times

of all n-tuples over R. This becomes a module via

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

and
a · (x1, . . . , xn) = (ax1, . . . , axn)

for all (x1, . . . , xn), (y1, . . . , yn) ∈ Rn and a ∈ R.
Exercise 35. Prove that Example 34 indeed yields a module.

Example 36 (Abelian Groups). Let G be an Abelian group. Then forming (additive) multiples

: Z×G→ G, (n, a) 7→ na

as in Notation 5 and Notation 11 makes G into a Z-module.

Exercise 37. Prove that Example 36 is correct.
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Example 38 (Linear Differential Operators). Consider the polynomials R = R[x] over the real
numbers R. We let

C∞(R) = {f : R→ R | f is differentiable infinitely often}

and define the action : R[x]× C∞(R)→ C∞(R) by( n∑
j=0

ajx
j
)
f(t) =

n∑
j=0

ajf
(j)(t).

We can easily check that this turns C∞(R) into an R[x]-module. This action makes R[x] an algebraic
model for linear differential operators with constant coefficients.
Exercise 39. Verify that the definition in Example 38 indeed yields a module.
Notation 40. We will revisit the module C∞(R) in other examples where we will then usually use
the symbol ∂ as the indeterminate instead of x. Note that R[∂] is still just the regular polynomial
ring over R despite the funny symbol.
Exercise 41. Let M be an R-module. Prove that for all x ∈M and a ∈ R

(a) 0 x = 0,4

(b) a 0 = 0, and

(c) −1 x = −x.

Definition 42 (Submodule). Let M be an R-module. A non-empty subset N ⊆ M is called a
submodule of M if for all x, y ∈ N and all a ∈ R we have

x+ y ∈ N and a x ∈ N ;

that is, N is an R-module in its own right. We will usually denote the fact that N is a submodule
of M by writing N 6M .
Remark 43. We want to show why in Definition 42 N is indeed an R-module: For this, we have
to show that N is an Abelian group and that the scalar multiplication fulfills the properties of
Definition 28. Looking at Definition 7, we see that the addition is associative and commutative on
N since it is on the superset M . It remains to prove that 0 ∈ N and −x ∈ N for every x ∈ N .
Both follow from Exercise 41. The scalar multiplication must again have the desired properties
since they hold for the larger set M .
Example 44 (Trivial Submodules). For every R-module M , both {0} and M are submodules. Non-
trivial submodules are called proper.
Example 45. Consider the R[∂]-module C∞(R) (see Example 38). Define

N = {f ∈ C∞(R) | (∂2 + 1) f = 0}.

Then N is a submodule of C∞(R). This follows from the module laws: Let f, g ∈ N and a ∈ R[∂].
Then

(∂2 + 1) (f + g) = (∂2 + 1) f + (∂2 + 1) g = 0

4That is, 0R x = 0M .
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and
(∂2 + 1) (a f) =

(
(∂2 + 1)a

)
f =

(
a(∂2 + 1)

)
f = a

(
(∂2 + 1) f

)
= a 0 = 0.

Thus, N is a submodule by Definition 42. We will see that this example is just a kernel of an
R-linear map in Definition 73 and Example 68.
Definition 46 (Ideal). Let R be a ring. We can consider R as a module over itself.5 The submodules
of R are called ideals.6

Exercise 47. Prove that if N,P 6M are submodules of M , then so are N + P and N ∩ P .
Definition 48 (Generated Submodule). Let M be an R-module; and let S ⊆ M be any set. The
submodule of M generated by S is the set of all linear combinations of elements in S; that is, the
set {∑

s∈S
ass

∣∣∣ as ∈ R and as = 0 for almost all s ∈ S
}
.

We will denote it by RS (or SR in the case of right modules). If S = {x} is a singleton set, we also
just write Rx. We extend the same notation to ideals.
Remark 49. Alternatively, we could define

RS =
{∑
s∈T

ass
∣∣∣ T ⊆ S finite and as ∈ R for all s ∈ T

}
.

The submodule generated by S is the smallest submodule of M which contains S. Since the empty
sum is usually taken to be just 0, we have R∅ = {0}.
Remark 50. Another way to characterise RS is by saying that

RS =
⋂

N6M,S⊆N

N

that is, that RS is the intersection of all submodules of M which contain S.
Remark 51. A subset N ⊆M is a submodule (see Definition 42) if and only if RN = N .
Definition 52 (Generating Set). Let M be an R-module; and let S ⊆ M be any set. We say that
S generates M if RS = M .
Definition 53 (Cyclic Module/Principal ideal). A (sub-) module M which is generated by a single
element x (that is, M = Rx) is called cyclic. A cyclic ideal is usually called principal.
Example 54. Consider the set M = R{sin, cos} = {a sin +b cos | a, b ∈ R} which consists of all R-
linear combinations of the sine and the cosine. This is an R[∂]-module under the action introduced
in Example 38. We will show that M is cyclic; in fact, we will prove the stronger claim that
M = R[∂]x for every non-zero element x ∈ M . Let x = a sin +b cos ∈ M with a, b ∈ R not both
zero; that is, a2 + b2 6= 0. Then ∂ x = a cos−b sin. Let now y = u sin +v cos ∈M be any element.
We obtain

(av − bu)∂ + (bv + au)

a2 + b2
(a sin +b cos) =

(av − bu)(a cos−b sin) + (bv + au)(a sin +b cos)

a2 + b2
=

(b2u− avb+ bvaa2u) sin +(a2v − bua+ b2v + aub) cos

a2 + b2
= u sin +v cos;

that is, y ∈ R[∂]x.
5This is a special case of Example 34 with n = 1.
6Please note that we consider only commutative rings in this lecture. Thus, left and right ideals are the same.
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Definition 55 (Linearly Independence). Let M be an R-module; and let S ⊆ M be any set. Then
the set S is called (R-) linearly dependent if there exists a family (as)s∈S ⊆ R such that∑

s∈S
ass = 0

where as = 0 for almost all s ∈ S but as 6= 0 for at least one s ∈ S. A subset T ⊆M which is not
linearly dependent is called linearly independent.

Remark 56. Again, there an alternative definition: The set S ⊆ M is linearly dependent if there
exists a non-empty, finite subset T ⊆ S and as ∈ R \ {0} for all s ∈ T such that∑

s∈T
ass = 0.

Note that every set S which includes 0 is linearly dependent.

Remark 57. In a vector space V , if S ⊆ V is linearly dependent, then there is s ∈ S such that s
can be written as a linear combination of vectors in S \ {s}. This is not true for a general module.
As an example, consider the Z-module Z2. Here S = {(2, 0), (3, 0)} is linearly dependent; but no
element can be written as a (Z-linear) combination of the other.

Definition 58 (Basis). Let M be an R-module. A subset B ⊆ M is called a basis of M if it is
linearly independent and generates M .

Remark 59. When dealing with finite bases, we will usually assume that the elements are ordered
in a specific way. In fact, we will often just write them as a family (b1, b2, . . . , bn) instead of as a
set. The implicit convention here is that two (finite) bases with the same elements are considered
to be different if the order of the elements differs.

Example 60. For a ring R, consider the free module Rn (see Example 34). One possible basis is
given by the family (e1, . . . , en) consisting of the unit vectors

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en−1 = (0, . . . , 0, 1, 0), en = (0, . . . , 0, 1).

Example 61. The R[∂]-module M = R{sin, cos} from Example 54 does not have a basis since
(∂2+1) (a sin +b cos) = 0 for all a, b ∈ R. That is, any non-empty subset ofM is linearly dependent
and can hence not be a basis. (Actually, M is just the submodule of Example 45.) A module M
where for each x ∈M there is a regular a ∈ R such that a x = 0 is called a torsion module.

Exercise 62. Show that R[x] ⊆ C∞(R) does not have a basis when considered as an R[∂]-module;
but that it does have a basis if we consider it just as an R-module.

Remark 63. In a vector space V , for B ⊆ V the following statements are equivalent:

(a) B is a basis of V .

(b) B is a minimal generating set for V .

(c) B is a maximally linearly independent set in V .

However, this is generally not true for modules. As an example, consider Z2 as a Z-module. The
set

{(2, 0), (3, 0), (0, 2), (0, 3)}
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is a minimal generating set (that is, every element of Z2 can be represented as a linear combinations
of the elements of this set and removing any one of these will destroy that property); however, it is
not a basis because the elements are linearly dependent. Similarly, the set

{(2, 0), (0, 2)}

is maximally linearly independent (that is, adding any other vector would make the set linearly
dependent); but it is not a basis since it does not generate Z2.

Exercise 64. If an R-moduleM has a basis B, then every element x ∈M has a unique representation
as a linear combination of basis elements.

4 Linear Maps
Definition 65 (Linear Map/Homomorphism/Endomorphism). Let M and N be two R-modules. A
map ϕ : M → N is called linear over R or a homomorphism over R if

ϕ(x+ y) = ϕ(x) + ϕ(y) and ϕ(ax) = aϕ(x)

for all x, y ∈ M and a ∈ R. We denote the sets of all R-linear maps between M and N by
HomR(M,N).

If M = N , then the linear map ϕ is called an endomorphism. We write the set of all endo-
morphisms from M to itself as EndR(M).

Definition 66 (Isomorphism/Automorphism). An R-linear map ϕ : M → N is called an isomorph-
ism if it is bijective. A bijective endomorphism is also called an automorphism. We say that two
modulesM and N are isomorphic if there exists an isomorphism betweenM and N . This is usually
denoted by M ∼= N .

Notation 67 (Identity). For every R-module M the identity map idM : M →M is an isomorphism.
We will often leave out the index if it is clear to which module we are referring.

Example 68. Let M be an R-module, and let a ∈ R. Then the map ϕ given by x 7→ ax is linear.
Indeed, let x, y ∈M and b ∈ R; then by the module laws we have

ϕ(x+ y) = a(x+ y) = ax+ ay = ϕ(x) + ϕ(y)

and
ϕ(bx) = a(bx) = (ab)x = (ba)x = b(ax) = bϕ(x).

(Note that we used the commutativity of R in the second computation; for a non-commutatve ring
this kind of map is in general not linear.)

Exercise 69. Let ϕ : M → N be R-linear. Show that ϕ(0) = 0.

Exercise 70. Let ϕ, ϕ̂ : M → N and ψ : N → P be R-linear maps; and let a ∈ R. Show that also
ϕ+ ϕ̂, aϕ, and ψ ◦ϕ are R-linear, too. In that case that ϕ and ψ are isomorphisms, show that also
ψ ◦ ϕ and ϕ−1 are isomorphisms.

Remark 71. Let M,N be R-modules. From Exercise 70 we can conclude that HomR(M,N) is also
an R-module. Moreover, EndR(M) is a non-commutative ring with composition ◦ as multiplication
and with units EndR(M)∗ = AutR(M).
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Exercise 72. Let ϕ : M → N be an R-linear map; and let U 6M and V 6 N be submodules. Then
ϕ(U) is a submodule of N and ϕ−1(V ) is a submodule of M .
Definition 73 (Kernel/Image). For an R-linear map ϕ : M → N the kernel is kerϕ = ϕ−1({0}).
Furthermore, we call imϕ = ϕ(M) the image of ϕ. As Exercise 72 shows, kerϕ 6M and imϕ 6 N .

Theorem 74. Let M be an R-module with a finite basis B = (b1, . . . , bn), let N be any R-module,
and let ϕ : M → N be an R-linear map. Then ϕ is completely determined by the images of the basis
elements. Conversely, any choice of images for the basis elements of M defines a homomorphism
ψ : M → N .

Proof. Let cj = ϕ(bj) for j = 1, . . . , n. For any x ∈M we have the representation x = x1b1 + . . .+
xnbn with x1, . . . , xn ∈ R since B is a basis. Then,

ϕ(x) = ϕ(x1b1 + . . .+ xnbn) = x1ϕ(b1) + . . .+ xnϕ(bn) = x1c1 + . . .+ xncn.

Thus, we can easily reconstruct ϕ from how it maps the basis elements.
Conversely, let d1, . . . , dn ∈ N and define

ψ(x) = ψ(x1b1 + . . .+ xnbn) = x1d1 + . . .+ xndn.

It is easy to check that this is indeed a homomorphism.

Corollary 75 (Free Modules). Let M be an R-module with a finite basis B = (b1, . . . , bn). Then
we have M ∼= Rn.

Proof. It is easy to check that ϕ defined by ϕ(ej) = bj is an isomorphism.

Remark 76. Modules with a basis are usually called free. Moreover, Theorem 74 also holds for
infinitely generated modules with basis B where we have to use the direct sum R(B) =

⊕
b∈B R.

5 Matrices
Remark 77. Let M and N be two free R-modules with finite bases B = (b1, . . . , bm) for M and
C = (c1, . . . , cn) for N . Let ϕ : M → N . Then ϕ is completely determined by the images of the
basis elements in B, and those images have a unique representation

ϕ(bi) =

n∑
j=1

aijcj

for aij ∈ R with i = 1, . . . ,m and j = 1, . . . , n. In particular, the image of x =
∑m
i=1 xibi under ϕ

is

ϕ(x) =

m∑
i=1

xiϕ(bi) =

n∑
j=1

m∑
i=1

xiaijcj .

Under the canonical identification of M with Rm with respect to B in Corollary 75 we write x as
(row) vector (x1, . . . , xn). Then the vector representing ϕ(x) with respect to C is

(∑m
i=1 xiai1 · · ·

∑m
i=1 xiain

)
=
(
x1 · · · xm

)a11 · · · a1n
...

. . .
...

am1 · · · amn

 .
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That is, the matrix A = (aij)
m,n
i,j=1,1 describes the effect of the homomorphism ϕ with respect to

to the bases B and C. It is easy to see that conversely each matrix leads to a unique linear map.
Thus, the set of all m-by-n matrices and the homomorphisms from M to N are in one-to-one
correspondence (with respect to the two bases B and C).
Notation 78 (Matrices). We denote the set of m-by-n matrices by mRn. If m = 1, then we simply
write Rn; and if n = 1, then we write mR. We denote the n-by-n unit matrix by 1n, and the
m-by-n zero matrix by 0m×n. In both cases we will omit the indices if they are obvious from the
context. We will denote the transpose of a matrix A ∈ mRn by At. For elements a1, . . . , an ∈ R we
use diag(a1, . . . , an) ∈ nRn to denote a diagonal matrix with diagonal entries a1, . . . , an.7

Exercise 79. Let M with basis B = (b1, . . . , bm), N with basis C = (c1, . . . , cn), and P with
basis D = (d1, . . . , dp) be free R-modules. We denote the map from Remark 77 which associates a
homomorphism with its matrix with respect to the bases B and C byMB,C : HomR(M,N)→ mRn

(and similarlyMC,D andMB,D). Show that

MB,C(ϕ+ ψ) =MB,C(ϕ) +MB,C(ψ) and MB,D(% ◦ ϕ) =MB,C(ϕ)MC,D(%)

for all ϕ,ψ ∈ HomR(M,N) and % ∈ HomR(N,P ).
Definition 80 (Singular/Regular/Unimodular). Let B ∈ mRn be a matrix. We call B

singular if there exists v ∈ Rm such that v 6= 0 and vB = 0;

regular if it is not singular; and

unimodular if m = n and there exists A ∈ mRm such that AB = 1m.

(Strictly speaking we have defined left singular, left regular and left unimodular; however, as we
will show below in Theorem 82, this does not matter.)
Notation 81. We write GLm(R) for the set of all unimodular m-by-m matrices over R.

Theorem 82. Let R be an integral domain.

(a) A matrix in mRn is left singular if and only if it is right singular.

(b) A matrix in mRn is left regular if and only if it is right regular.

(c) A matrix in mRm is left unimodular if and only if it is right unimodular.

Proof. Since R is an integral domain, we can form the field of fractions Q(R). Assume that B ∈ mRn

is singular, then there is v ∈ Rm such that vB = 0. This equation remains true if we consider B
and v to have entries in Q(R). Since Q(R) is a field, we know from linear algebra that there exists
w ∈ nQ(R) such that Bw = 0. We can bring the entries of w to a common denominator d ∈ R
and write w = d−1ŵ where ŵ ∈ nR. Then 0 = Bw = B(d−1w) = d−1(Bw) which implies Bw = 0.
Conversely, whenever B is right singular, a similar argument shows that B is also left singular. This
proves part (a). Part (b) is equivalent to that.

Let now U ∈ mRm be a left unimodular matrix. That is, there exists V ∈ mRm such that
V U = 1. Again, this relation remains true over Q(R). It follows once more from linear algebra,
that U has an inverse which must then be equal to V ; that is, also UV = 1. The converse can be
proved analogously. Thus, part (c) holds, too.

7Later on, we will also abuse this notation for matrices which are not square.
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Exercise 83. Let R be an integral domain, and let a, b ∈ Q(R) be fractions over R. Show that we
can write a = d−1â and b = d−1b̂ where â, b̂, d ∈ R. (That is, show that we can bring fractions to a
common denominator.)

6 Determinants
Definition 84 (Determinant). A function det : mRm → R from the square matrices into the base
ring is called a determinant if

(a) it is linear in each row, that is,

det



a1
...

aj−1
v + w
aj+1

...
am


= det



a1
...

aj−1
v

aj+1

...
am


+ det



a1
...

aj−1
w
aj+1

...
am


and det



a1
...

aj−1
bv
aj+1

...
am


= bdet



a1
...

aj−1
v

aj+1

...
am


for all j and for all (rows) a1, . . . , aj−1, v, w, aj+1, . . . , am ∈ Rm and b ∈ R;

(b) detA = 0 if the matrix A ∈ mRm has two adjacent rows which are equal; and

(c) det1m = 1.

Remark 85. From Definition 84 we get all the usual properties of determinants. Below, let A ∈ mRm

with rows a1, . . . , am ∈ Rm, and let det : mRm → R be a determinant.

(a) If a row of A is zero, then detA = 0. This follows from rule (a) of Definition 84 by using
b = 0.

(b) Adding a linear multiple of a row to an adjacent row does not change the determinant since
for b ∈ R and 1 6 j < m

det


...

aj + baj+1

aj+1

...

 = det


...
aj
aj+1

...

+ bdet


...

aj+1

aj+1

...

 = det


...
aj
aj+1

...


by first rule (a) and then rule (b).

(c) We can exchange two adjacent rows which will switch the sign of the determinant since by
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rule (b) and rule (a)

0 = det


...

aj + aj+1

aj + aj+1

...

 = det


...
aj
aj
...

+ det


...
aj
aj+1

...

+ det


...

aj+1

aj
...

+ det


...

aj+1

aj+1

...



= det


...
aj
aj+1

...

+ det


...

aj+1

aj
...


for any 1 6 j < m. By extension, since every permutation is a product of transpositions, we
can permute the rows of A in any way where the determinant changes by the sign of of the
permutation8. That is, if Sm denotes the set of all permutations of {1, . . . ,m} and if π ∈ Sm,
then

det


a1
a2
...
am

 = sign(π) det


aπ(1)
aπ(2)
...

aπ(m)

 .

(d) By the previous item, a determinant is zero if any two rows of A are equal. Moreover, adding
a scalar multiple of any row to any other row does not change the determinant.

(e) Let B = (bij)ij ∈ mRm be another matrix. We look now at the product BA. We have by
linearity that

det(BA) = det


∑m
j1=1 b1j1aj1

...∑m
jm=1 bmjmajm

 =

m∑
j1=1

b1j1 det

 aj1
...∑m

jm=1 bmjmajm


=

m∑
j1=1

b1j1 . . .

m∑
jm=1

bmjm det

aj1...
ajm

 .

The matrices in the last expression contain all possible combinations of rows of A. However,
whenever in any of them a specific row appears twice, the determinant is zero by rule (b)
of Definition 84. Thus, only terms survive where all the j1, . . . , jm are pairwise different.
In other words, j1, . . . , jm is a permutation of {1, . . . ,m}. Moreover, any such permutation
occurs in the sum. Thus, we obtain

det(BA) =
∑
π∈Sm

b1π(1) · · · bmπ(m)

aπ(1)
...

aπ(m)

 =
∑
π∈Sm

b1π(1) · · · bmπ(m) sign(π) detA

8The sign is the number of transpositions needed to express the permutation.
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where we used item (c) in the last identity.

(f) We have not used rule (c) of Definition 84 so far. Letting A = 1m in the last identity of
item (e) and using rule (c), we obtain the Leibniz formula for the determinant

detB =
∑
π∈Sm

sign(π)b1π(1) · · · bmπ(m).

In particular, this formular proves that there is only one determinant: As soon as we have
the properties of Definition 84, we always arrive at the above formula.

(g) The Leibniz formula item (f) together with item (e) does also yield the formula for the product
of determinants

det(BA) =
( ∑
π∈Sm

sign(π)b1π(1) · · · bmπ(m)

)
detA = (detB)(detA).

(h) Consider a permutation π ∈ Sn. Then for each pair (j, π(j)), we have a corresponding pair
(π−1(j), j). Thus, we can rewrite the product b1π(1) · · · bmπ(m) as bπ−1(1)1 · · · bπ−1(m)m by
reordering the factors appropriately. If π now runs through all permutations, then so does
π−1. Moreover, sign(π) = sign(π−1) since π−1 is a product of the same transpositions in the
opposite order (because transpositions are their own inverses). Thus, we obtain

detB =
∑
π∈Sn

sign(π)b1π(1) · · · bmπ(m) =
∑

π−1∈Sn

sign(π−1)bπ−1(1)1 · · · bπ−1(m)m = detBt

where Bt = (bji)ij ∈ mRm is the transpose of B.

(i) By item (h) we see that the determinant is also linear in every column, vanishes if two columns
are the same, changes sign if we permute the columns, and remains unchanged if we add scalar
multiples of one column to another.

Remark 86. From linear algebra we remember that there is another way to define the determinant:
Let A = (aij)ij ∈ mRm. Let Ajk denote the matrix A with the jth row and the kth column removed.
Then for k 6 m the Laplace expansion with respect to the kth column is9

detA =
m∑
j=1

(−1)j+kajk detAjk

or detA = (a11) if m = 1 where the determinants detAjk can be computed with any formula. In
order to show that this definition does indeed yield the determinant, we just have to prove that
the rules of Definition 84 hold. For this, we use induction over m. During the proof, we write det′

for the determinant defined by the formula to distinguish it from the determinant of Definition 84.
For m = 1 the rules are obviously true. Let now m > 2 and k 6 m. Pick any j 6 m and assume
that the jth row of A is of the form v + w. Then for any Aik with i < j, the (j − 1)th row will be

9It would be more precise to use a different symbol until we have proved that this is indeed a determinant.
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the sum of v and w with the kth entry removed. Therefore, the ith term in the sum for det′A is

(−1)i+kaik detAik = (−1)i+kaik det


...

v + w
...


ik

= (−1)i+kaik det


...
v
...


ik

+ (−1)i+kaik det


...
w
...


ik

by induction. The same holds for i > j and the jth row. If i = j, then the term is

(−1)j+k(vk + wk) detAjk = (−1)j+kvk detAjk + (−1)j+kwk detAjk.

Thus, the sum splits into the determinant of A with kth row equal to v and the determinant of A
with kth row equal to w. Similarly, we can see that multiplication by a scalar works as required.
Let us assume that for j < m the jth row and the (j + 1)th row of A are the same. Then all Aik
where i < j or i > j + 1 have two equal rows which means that their determinants vanish. On the
other hand, Ajk and Aj+1,k are the same matrix. Thus,

det′A = (−1)j+kajk detAjk + (−1)j+1+kaj+1,k detAj+1,k

= (−1)j+kajk detAjk − (−1)j+kajk detAjk = 0.

Finally, if A = 1m is the identity, then Ajk has a zero row unless j = k in which case Akk = 1m−1.
Thus

det′1m = (−1)k+k det1m−1 = 1

as required. We see that det′ is indeed a determinant in the sense of Definition 84.
Using the transpose, we obtain the Laplace expansion with respect to the kth column.

Theorem 87. Let A = (aij)ij ∈ mRm. Then the determinant detA is given by the

Leibniz formula
detA =

∑
π∈Sm

sign(π)a1π(1) · · · amπ(m)

(where Sm are the permutations of {1, . . . ,m}), or the

Laplace expansion with respect to the kth column

detA =

m∑
j=1

(−1)j+kajk detAjk

(where Ajk is A with the jth row and kth column removed), or the

Laplace expansion with respect to the kth row

detA =

m∑
j=1

(−1)j+kakj detAkj .
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Moreover, the determinant is linear in every row and column, vanishes if any two rows or any
two columns are the same, changes sign when any two rows or any two columns are swapped, and
remains the same if a scalar multliple of any row is added to any other row or a scalar multliple
of any column is added to any other column. Furthermore we have detA = detAt and det(AB) =
(detA)(detB) for any matrix B ∈ mRm.

Example 88. Consider the polynomials R[x] over R. Let A = (aij)ij ∈ nRn be a constant matrix.
Then det(1nx−A) ∈ R[x] is a polynomial of degree n of the form xn + r1x

n−1 + . . .+ rn−1x+ rn
where r1 = −a11 − . . .− ann and rn = (−1)n detA. Formulae for the other coefficients also exist.
Definition 89 (Adjugate Matrix). Let A ∈ mRm. The adjugate (matrix) adjA is the m-by-m matrix
with entries

(adjA)ij = (−1)i+j detAji

where as before Aji is the matrix A with jth row and ith column removed.

Theorem 90. For any matrix A ∈ mRm we have

A adjA = (adjA)A = detA · 1m.

Proof. Indeed, for the first product we have

(A adjA)ij =

m∑
k=1

aik(adjA)kj =

m∑
k=1

aik(−1)k+j detAjk.

Now, if i = j this is exactly the Laplace expansion for detA with respect to the ith row. However,
for i 6= j this is equal to the Laplace expansion of a copy of A where the jth row is replaced by the
ith row. So, (A adjA)ij = 0 in that case. Similarly, we can prove (adjA)A = detA · 1.

Theorem 91. Let R be an integral domain and A ∈ mRm be a square matrix. Then

(a) A is singular if and only if detA = 0;

(b) A is regular if and only if detA 6= 0; and

(c) A is unimodular if and only if detA ∈ R∗. In that case (detA)−1 = detA−1.

Proof. Let A ∈ mRm be singular. Then A is also singular over the field of fractions Q(R) and thus
detA = 0. Conversely, if detA = 0, then A is singular over Q(R). Thus there is v ∈ Q(R)m with
vA = 0. Bring the entries of v to a common denominator v = d−1w with d ∈ R and w ∈ Rm.
Then 0 = vA = d−1(wA); that is, wA = 0 and we see that A is also singular over R. This proves
part (a). Part (b) is equivalent to part (a).

Let now A ∈ GLm(R) be unimodular. Then A−1A = 1 and thus (detA−1)(detA) = 1 showing
that detA ∈ R∗ and also that detA−1 = (detA)−1. On the other hand, let detA be a unit. Then
we have (adjA)A = (detA)1 and thus we see that A has the inverse A−1 = (detA)−1 adjA; that
is, A is unimodular.

Remark 92. If R is not an integral domain, then A can be singular even if detA 6= 0. Consider
R = Z8 (that is, the integers modulo 8) and

A =

(
1 2
3 4

)
∈ 2Z8

2.

Then detA ≡ 6 6≡ 0 (mod 8); but v = (4, 4) ∈ Z2
8 \ {0, 0} fulfills vA = (16, 24) ≡ 0 (mod 8).
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7 The Theorem of Caley-Hamilton
Exercise 93. Let I 6 R be an ideal, and let M be an R-module. Show that

IM = {a1x1 + . . .+ akxk | k > 0, a1, . . . , ak ∈ I, and x1, . . . , xk ∈M}

is a submodule of M . If M is generated by S, then show that IM is generated by IS.

Remark 94. Since any ideal I 6 R is an R-submodule of R, we can apply Exercise 93 to M = I
and define the ideals I2 = II, I3 = II2, and so on.

Exercise 95. Let M be an R-module, and let ϕ ∈ EndR(M) be an endomorphism. Show that the
action

: R[x]×M →M, (anx
n + . . .+ a1x+ a0, m) 7→ anϕ

n(m) + . . .+ a1ϕ(m) + a0m

makes M into an R[x]-module.

Remark 96. Let M be an R-module. Then we can let the matrices mRn act on (column) vectors
nM over M in the following way: For A = (aij)ij ∈ mRn and x = (x1, . . . , xn)t ∈ nM we leta11 . . . a1n

...
...

am1 . . . amn


x1...
xn

 =

 a11x1 + . . .+ a1nxn
...

am1x1 + . . .+ amnxn

 .

This yields an R-linear map A : nM → mM . (In order to prove A(rx) = r(Ax) for all r ∈ R, we
need to use commutativity.) It is obvious that A 7→ A is a R-linear map mRn → HomR(nM,mM).

Exercise 97. Show that with the action defined in Remark 96 we have A(Bx) = (AB)x for all
A ∈ mRn, B ∈ nRp, and x ∈ pR.

Theorem 98 (Caley-Hamilton). Let I 6 R be an ideal, and let M be an R-module which is
generated by n elements. Let ϕ : M →M be an endomorphism such that ϕ(M) ⊆ IM . Then there
exists a monic polynomial

f = xn + a1x
n−1 + . . .+ an−1x+ an ∈ R[x]

such that aj ∈ Ij for j = 1, . . . , n and

f(ϕ) = ϕn + a1ϕ
n−1 + . . .+ an−1ϕ+ an idM = 0.

Proof. Let y1, . . . , yn ∈ M be the generators of M . Then for each i = 1, . . . , n we have ϕ(yi) =
ai1y1 + . . . + ainyn for some ai1, . . . , ain ∈ I. By Exercise 95, we can consider M as a R[x]-
module. We can extend the R[x]-action to nR[x]

n as shown in Remark 96. Consider the matrix
A = (δijx− aij)ij ∈ nR[x]

n and y = (y1, . . . , yn)t ∈ nM . Then the equations above give

Ay =


x− a11 −a12 · · · −a1n

−a21 x− a22
. . .

...
...

. . . . . . −an−1,n
−an1 · · · −an,n−1 x− ann


y1...
yn

 =

ϕ(y1)− a11y1 − . . .− a1nyn
...

ϕ(yn)− an1y1 − . . .− annyn

 = 0.
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By Exercise 97, we have

0 = (adjA)0 = (adjA)(Ay) = ((adjA)A)y = (detA)1ny = (detA)y.

Thus, detA annihilates every entry of y; that is, (detA)yj = 0 for j = 1, . . . , n. Consequently, since
y1, . . . , yn generate M , we obtain (detA)z = 0 for every z = z1y1 + . . . + znyn ∈ M . Using the
Leibniz formula for the determinant (see Theorem 87), we obtain

detA = xn + a1x
n−1 + . . .+ an

where aj ∈ Ij as required.

Remark 99. In particular, we can use Theorem 98 for endormorphisms given by a matrix: Let
A ∈ mRm and consider the endormorphism A : Rm → Rm which is given by v 7→ vA. We can use
I = R and obtain a polynomial f = xn + b1x

n−1 + . . .+ bn ∈ R[X] such that

0 = f( A) = ( A)n + b1( A)n−1 + . . .+ bn id = (An + b1A
n−1 + . . .+ bn id) = f(A)

by the way matrix multiplication and addition corresponds to the composition of endormorphisms
(see Exercise 79). Applying the map f(A) to the unit vectors extracts the rows of f(A) which
must thus all be zero. Hence we see that the Theorem of Caley-Hamilton as tought in basic linear
algebra is just a special case of Theorem 98.

Corollary 100. LetM be a finitely generated R-module, and I 6 R be an ideal such that IM = M .
Then there exists r ∈ I such that (1− r)M = 0.

Proof. Consider the R-linear map id : M →M . By Theorem 98, there is n > 1 and a1, . . . , an ∈ I
such that

0 = idn +a1 idn−1 + . . .+ an id = id +(a1 + . . .+ an) id .

Thus, with r = −(a1 + . . .+ an) we obtain (1− r)x = x− rx = 0 for all x ∈M .

Theorem 101. Let M be a finitely generated R-module. If ϕ : M → M is a surjective R-linear
map, then ϕ is an isomorphism.

Proof. We regard M as an R[x] module with action xy = ϕ(y) for all y ∈ M as in Exercise 95. It
is easy to see that M is also finitely generated as an R[x]-module. Consider the ideal I = R[x]x.
Since ϕ is surjective, we have xM = M and thus also IM = M . By Corollary 100 there exists
g ∈ I with (1− g)y = 0 or y = gy for all y ∈M . Since we can write g = g̃x = xg̃ for some g̃ ∈ R[x],
we have id = g̃(ϕ)ϕ = ϕg̃(ϕ); that is, g̃(ϕ) = ϕ−1.

Theorem 102. If M ∼= Rn for an R-module M , then every generating set of M with n elements is
a basis of M . In particular, the number of elements of a basis of a free module is always the same.

Proof. Let y1, . . . , yn be n generators of M . Define the R-linear map ϕ : Rn →M by ϕ(ej) = yj for
j = 1, . . . , n where e1, . . . , en are the unit vectors. Obviously, ϕ is surjective. By the assumption
of the theorem, there is an isomorphism ψ : M → Rn. Then ϕ ◦ ψ : M → M is also surjective and
R-linear. Thus, from Theorem 101 we obtain that ϕ ◦ ψ is an isomorphism. Consequently, also
ϕ = (ϕ ◦ ψ) ◦ ψ−1 is an isomorphism. This implies that y1, . . . , yn is a basis of M .

Assume now that M had a basis B = (b1, . . . , bm) with m and a basis C = (c1, . . . , cn) with
n elements where m < n. Then we can add elements of C to B obtaining a generating set
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{b1, . . . , bm, cm+1, . . . , cn} with n elements. However, this cannot be a basis of M since, for ex-
ample, cn = a1b1 + . . . + ambm for some a1, . . . , am ∈ R. This contradicts the first part of the
theorem.

Corollary 103. By Theorem 102, Rm ∼= Rn if and only if m = n.

Remark 104. We remark that Corollary 103 does not in general hold for non-commutative rings.
See [Lam99, (1.4) Example] for an example.
Remark 105. With Theorem 101 we also obtain a different proof that left unimodular matrices
are also right unimodular. However, this version works even for rings with zero divisors. Let
A,B ∈ mRm such that AB = 1m. Then ·B : Rm → Rm defined as v 7→ vB is surjective. Indeed,
for every x ∈ Rm we have (xA)B = x. By Theorem 101, ·B is an isomorphism. Thus, there exists
a matrix C ∈ mRm corresponding to (·B)−1 such that CB = BC = 1m. (Of course, C = A.)
Definition 106 (Rank). Let M be a finitely generated free R-module. The size of a (and thus any)
basis of M is called the rank of M . We denote it by rankRM (or just rankM if it is clear to which
ring we are referring).
Example 107. Even if a module has a finite basis, its submodules do not need to be finitely generated:
Let F be a field and X = {x1, x2, x3, . . .} be an infinite set of indeterminates. Then F [X] is finitely
generated as a module over itself (for instance, F [X] · 1 = F [X]). However, F [X]X 6 F [X] is not
finitely generated.
Exercise 108. Prove that the claim in Example 107 is correct.

Part II

Matrix Normal Forms
8 Basic Notations for Matrices
Remark 109 (Block Matrices). Let m1, . . . ,ms and n1, . . . , nt be positive integers and Aij ∈ miRnj

be matrices for i = 1, . . . , s and j = 1, . . . , t. Then the block matrixA11 · · · A1t

...
...

As1 · · · Ast

 ∈ m1+...+msRn1+...+nt

is defined as the matrix where the (i, j)th entry is the (̃ı, ̃)th entry of Ak` where

ı̃ = i−m1 − . . .−mk−1 and ̃ = j − n1 − . . .− n`−1

and k and ` are such that

m1 + . . .+mk−1 < i 6 m1 + . . .+mk and n1 + . . .+ n`−1 < j 6 n1 + . . .+ n`.

For instance, if

A11 =

(
1 2
3 4

)
, A12 =

(
5
6

)
, A21 =

(
7 8

)
, and A22 =

(
9
)
,

20



then the block matrix would be (
A11 A12

A21 A22

)
=

1 2 5
3 4 6
7 8 9

 .

Furthermore, assume that we have positive integers p1, . . . , pu and matrices Bij ∈ niRpj for
i = 1, . . . , t and j = 1, . . . , u. ThenA11 · · · A1t

...
...

As1 · · · Ast


B11 · · · B1u

...
...

Bt1 · · · Btu

 =


∑t
k=1A1kBk1 · · ·

∑t
k=1A1kBku

...
...∑t

k=1AskBk1 · · ·
∑t
k=1AskBku

 .

In other words, when the sizes of the blocks match, then we can multiply block matrices like normal
matrices with the blocks as entries.

Finally, we are also going to use block diagonal matrices which are defined as follows: For
matrices C1 ∈ m1Rn1 , . . . , Cs ∈ msRns we let diag(C1, . . . , Cs) be the block matrix (Aij)ij with
blocks Aii = Ci and Aij = 0mi×nj for i 6= j.

Exercise 110. Prove that the multiplication formula of Remark 109 is correct.

Exercise 111. Let U1 ∈ GLn1
(R), . . . , Uk ∈ GLnk(R) be unimodular matrices. Prove that the block

diagonal matrix diag(U1, . . . , Uk) is also unimodular.

Definition 112 (Elementary Matrix). Let R be a ring and m > 1. We define three types of
elementary matrices:

Row/Column Addition Matrices For q ∈ R and j, k 6 m with j 6= k let Addjk(q) ∈ mRm be the
identity matrix except with q at the (j, k)th position; that is, let

Addjk(q) =





1
. . .

1
. . .

q 1 ← jth row

. . .
1

↑
kth column

(where all the other entries are 0).

Row/Column Scaling Matrices For a unit in u ∈ R∗ and j 6 m let Multj(u) ∈ mRm be the
identity matrix except with u at the (j, j)th position; that is, Multj(u) = diag(1j−1, u,1m−j)
using block matrix notation.

Row/Column Permuting Matrices For j, k 6 m and j 6= k let Swapjk ∈ mRm be like the identity
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matrix except that the jth row and the jth column are exchanged; that is,

Swapjk =



e1
...

ej−1
ek
ej+1

...
ek−1
ej
ek+1

...
em



=





1
. . .

1
0 1 ← jth row

1
. . .

1
1 0 ← kth row

1
. . .

1

(using block matrix notation and showing the case that j < k).

Remark 113. Let A ∈ mRn be a matrix.

(a) For q ∈ R, Addjk(q)A equals A with q times the kth row added to the jth row, and AAddjk(q)
equals A with q times the jth column added to the kth column.

(b) For u ∈ R∗, Multj(u)A equals A with the jth row multiplied by u, and AMultj(u) equals A
with the jth column multiplied by u.

(c) Swapjk A equals A with the jth and kth rows interchanged, and ASwapjk equals A with the
kth and jth columns interchanged.

Remark 114. All elementary matrices are unimodular. More precisely, we have

Addjk(q)−1 = Addjk(−q), Multj(u)−1 = Multj(u
−1), and Swap−1jk = Swapjk .

Moreover, it is

det Addjk(q) = 1, det Multj(u) = u, and det Swapjk = −1.

Exercise 115. Let M be an R-module and let N,P 6M be two submodules. The sum N +P of N
and P is defined as N +P = {a+ b | a ∈ N and b ∈ P}. Show that N +P is a submodule and that
N 6 N + P and P 6 N + P . If S generates N and T generates P , then S ∪ T generates N + P .
Definition 116 (Row/Column Space). Let A ∈ mRn be a matrix. The row space of A is the set of
all R-linear combinations of the rows of A. We denote it by RmA. Similarly, the column space is
the R-linear combinations of all columns of A and we write A nR for that.
Remark 117. The idea of the notation in Definition 116 is that the row (or column) space is equal
the sum of the cyclic modules generated by the rows (or columns) of M . Thus, in pseudo-notation,
we have

RmM =
(
R · · · R

)a1
...
am

 = Ra1 + . . .+Ran = R{a1, . . . , an}

where a1, . . . , am ∈ Rn are the rows of M .
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Remark 118. Another way to think about the row space of M ∈ mRn is as the image of the linear
map ·M given by v 7→ vM . Indeed, RmM = im(·M). Analogously, M nR = im(M ·).
Remark 119. We will also apply Definition 116 to row vectors v = (v1, . . . , vm) ∈ Rm and column
vectors w = (w1, . . . , wn)t ∈ nR regarding them as matrices with only one row or one column,
respectively. For example, Rnw = Rw1 + . . .+Rwn is the ideal generated by w1, . . . , wn.

9 Divisibility
Definition 120 (Divisor/Associates). Let a, b ∈ R. We say that a divides b and write a | b if there
exists c ∈ R such that ac = b. We say that a and b are associated if a divides b and b divides a.

Exercise 121. Prove that in an integral domain a is an associate of b if and only if there exists a
unit u ∈ R∗ such that au = b.

Exercise 122. Show that being associated is an equivalence relation on R.

Exercise 123. Let a, b ∈ R. Show that a | b if and only if Rb 6 Ra.

Exercise 124. Show that the associates of 1 are precisely the units of R.

Definition 125 (Greatest Common Divisor). A common divisor of a1, . . . , an ∈ R is an element
h ∈ R such that h divides aj for each j = 1, . . . , n. An element g ∈ R is a greatest common divisor
(or GCD for short) of a1, . . . , an if g is a common divisor and every other common divisor h ∈ R of
a1, . . . , an divides g. We write g = gcd(a1, . . . , an).

Exercise 126. Despite the use of the equality sign in the notation g = gcd(a1, . . . , an), greatest
common divisors do not need to be unique. In fact, prove that every associate of a greatest common
divisor of a1, . . . , an is also a greatest common divisor of a1, . . . , an, and that conversely all greatest
common divisors of a1, . . . , an are associated.

Exercise 127. Let R be an integral domain, let a1, . . . , an ∈ R be not all zero, and let d =
gcd(a1, . . . , an). Write aj = dãj for j = 1, . . . , n. Show that gcd(ã1, . . . , ãn) = 1.

Definition 128 (Principal Ideal Domain). A ring R is called a principal ideal domain (or PID for
short) if all its ideals are principal; that is, if all ideals I 6 R are of the form I = Ra for some
a ∈ R (see Definition 53).

Example 129. Every field is a principal ideal domain: A field F has only two ideals {0} = F · 0 and
F = F · 1 which are both principal.

Example 130. The integers Z form a principal ideal domain. In order to prove this, we use integer
long division (with remainder): If a and b ∈ Z with b 6= 0, then there are q and r ∈ Z with a = qb+r
and either r = 0 or |r| < |b|. Let now I 6 Z be any non-zero ideal. Then I \ {0} is not empty.
Choose an element b ∈ I \ {0} with the smallest absolute value. Let a ∈ I be any element. Then
a = qb+ r where r = 0 or |r| < |b|. Let us assume that r 6= 0. Then a− qb = r ∈ I was a member
of I with a strictly smaller absolute value than b contradicting the choice of b. Thus, r = 0 and
a = qb ∈ Rb. It follows that I 6 Rb; but of course we also have Rb 6 I, that is, Rb = I.

Example 131. If F is a field, then the univariate polynomials F [X] are a principal ideal domain.
The proof is exactly the same as in Example 130 using polynomial long division instead of integer
long division.
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Example 132. Multivariate polynomials are not principal ideal domains. For instance, for R =
Q[x, y], the ideal R{x, y} cannot be generated by one element. Also the polynomials R = Z[x] over
the integers are also not a principal ideal domain. The ideal R{2, x} cannot be generated by one
element.

Definition 133. An integral domain R is a Euclidean domain, if there exists a map deg : R\{0} → N
(called a degree function) such that

(a) for every a and b ∈ R with b 6= 0 there exist q, r ∈ R such that a = qb+ r and either r = 0 or
deg r < deg b; and

(b) for all non-zero a, b ∈ R we have deg a 6 deg(ab).

We call q in item (a) a quotient of a divided by b and r a remainder.

Example 134. The following rings are examples of Euclidean domains:

(a) The integers with deg a = |a|.

(b) Univariate polynomial rings over fields with the usual degree function.

(c) Fields F with the degree function deg f = 0 for all f 6= 0.

(d) The Gaussian integers Z[i] = {a + bi | a, b ∈ Z} ⊆ C where i =
√
−1. The degree function

here is the square of the complex norm deg(a+ bi) = a2 + b2.

Exercise 135. Look up the division for the Gaussian integers (part (d) of Example 134) and imple-
ment it in a programming language of your choice.

Notation 136. Let R be a Euclidean domain and a, b ∈ R with b 6= 0. Then there are q, r ∈ R
such that a = qb + r with r = 0 or deg r < deg b. We will write a quo b = q for the quotient and
a rem b = r for the remainder. Note that quotient and remainder do not need to be unique: For
instance, considering the integers with a = 7 and b = 4 we have 7 = 1 · 4 + 3 = 2 · 4 − 1. We will
therefore assume that whenever a quotient and remainder of the same input a and b is computed,
they will match each other. That is, we always assume a = (a quo b)b+(a rem b) but do not bother
what the exact choices might be.

Exercise 137. The univariate polynomials F [x] over a field are a Euclidean domain with respect to
the degree and the usual polynomial long division. Prove that for F [x] quotient and remainder are
always uniquely determined.

Theorem 138. Every Euclidean domain is a principal ideal domain.

Proof. The proof is the same as in Example 130.

Remark 139. It is not easy to find a principal ideal domain which is not Euclidean. For an example
see [And88] where it was shown that the ring QJx, yK[(x2 + y3)−1] is a principal ideal domain but
not Euclidean.

Theorem 140. Let R be a principal ideal domain, and let a1, . . . , an ∈ R. Then

Ra1 +Ra2 + . . .+Ran = R gcd(a1, . . . , an).
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Proof. Consider the ideal Ra1+. . .+Ran. Since R is a principal ideal domain there must exist g ∈ R
such that Ra1 + . . . + Ran = Rg. Since then Raj 6 Ra1 + . . . + Ran = Rg for every j = 1, . . . , n
we get from Exercise 123 that g is a common divisor of a1, . . . , an. Assume that h | a1, . . . , an for
some h. This implies Raj 6 Rh for all j = 1, . . . , n, and thus also Rg = Ra1 + . . . + Ran 6 Rh.
Consequently, h | g. That means that g is a greatest common divisor of a1, . . . , an.

Let conversely g̃ be any greatest common divisor of a1, . . . , an. Then g and g̃ are associated by
Exercise 126. Thus, there exists u ∈ R∗ such that g̃ = ug and Rg̃ = Rug = Rg = Ra1 + . . .+Ran
because Ru = R.

Corollary 141. If R is a principal ideal domain, a1, . . . , an ∈ R, and g ∈ R is a greatest common
divisor of a1, . . . , an; then there are s1, . . . , sn ∈ R such that g = s1a1 + . . .+ snan.

Definition 142 (Least Common Multiple). An element m ∈ R is called a common multiple of
a1, . . . , an ∈ R if aj divides m for j = 1, . . . , n. We say that m is a least common multiple of
a1, . . . , an if it is a common multiple and m divides every other common multiple of a1, . . . , an. We
write m = lcm(a1, . . . , an).
Exercise 143. Prove that any two least common multiples of a1, . . . , an ∈ R are associated; and
that any associate of a least common multiple of a1, . . . , an is itself a least common multiple.
Exercise 144. Let R be a principal ideal domain. Prove that for a1, . . . , an ∈ R we have Ra1∩ . . .∩
Ran = R lcm(a1, . . . , an).

Notation 145. If v = (v1, . . . , vm) ∈ Rm or w = (w1, . . . , wn)t ∈ nR, then write gcd(v) =
gcd(v1, . . . , vm) and gcd(w) = gcd(w1, . . . , wn).
Remark 146. Using Notation 145 for vector greatest common divisors and Definition 116 for row
spaces, we can write Theorem 140 in the more succinct form

Rna = R gcd(a)

where a = (a1, . . . , an)t ∈ nR since Rna = {s1a1 + . . .+ snan | s1, . . . , sn ∈ R} = Ra1 + . . .+Ran.

10 The Euclidean Algorithm
Theorem 147. Let R be a principal ideal domain. Let v ∈ nR and M ∈ mRn. Then we have
gcd(v) | gcd(Mv). (A similar state holds for row vectors.)

Proof. We can write the result of Theorem 140 in the form R gcd(v) = Rnv. Since RmM 6 Rn

is a subspace, we must have R gcd(Mv) = RmMv 6 Rnv = R gcd(v) as ideals; and consequently
gcd(v) | gcd(Mv).

Corollary 148. If in particular M ∈ GLn(R) in Theorem 147 is unimodular, then gcd(v) =
gcd(Mv).

Proof. By Theorem 147, we have

gcd(v) | gcd(Mv) | gcd(M−1Mv) = gcd(v).

Thus, gcd(v) and gcd(Mv) are associated. By Exercise 126, we obtain gcd(v) = gcd(Mv).

Algorithm 149 (Extended Euclidean Algorithm).
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Input A column vector v ∈ nR where R is a Euclidean domain.

Output gcd(v) and a row vector w ∈ Rn such that wv = gcd(v). Alternatively, return a unimod-
ular matrix Q ∈ GLn(R) such that Qv = (gcd(v), 0, . . . , 0)t.

Procedure

(a) Initialise Q = 1n.

(b) If v = (g, 0, . . . , 0)t, then return g and the first row of Q.

(c) Otherwise, choose a non-zero entry vj of v of minimal degree.

(d) Interchange v1 and vj as well as the first and jth row of Q.

(e) For k = 2, . . . , n, subtract vk quo v1 times v1 from vk and vk quo v1 times the first row of Q
from the kth.

(f) Go to step (b).

Theorem 150. Algorithm 149 is correct and terminates.

Proof. If the input vector is 0, the algorithm returns 0 (the correct greatest common divisor) and
e1. Else, there is at least one non-zero entry in the vector which will get swapped to position 1
in step (d). Therefore, the quotients in step (e) are well-defined. Similarly, when the termination
condition in step (b) does not hold, there is a non-zero entry and the quotients are well-defined.

Let v(0) denote the input vector v, and let v(k) denote the input vector v after k iterations (that
is, repetitions of steps (b) to (f)). Similarly, let Q0 denote the matrix Q at the start of the algorithm
and Q(k) be the same matrix after k iterations. We claim first that the invariants Q(k)v = v(k)

and Q(k) ∈ GLn(R) hold for every k > 0. Both claims are easy to see since they hold initially
and we mimick all the transformations on v which we do in steps (d) and (e) on Q and all these
transformations are elementary.

The algorithm terminates when v(`) = (g, 0, . . . , 0) for some ` > 0. In that case we have

g = gcd(v(`)) = gcd(Q(`)v) = gcd(v)

using Corollary 148. Thus, the algorithm returns the correct greatest common divisor. Moreover,
by the first invariant we have Q(`)

1,∗v = v
(`)
1 = g. The algorithm thus returns the correct result.

It remains to show that the algorithm terminates. For this we remark that the degrees of the
topmost entry v(k)1 form a strictly decreasing sequence for k > 1, that is,

deg v
(1)
1 > deg v

(2)
1 > deg v

(3)
1 > . . . .

Let k > 1 be arbitrary such that the termination condition in step (b) does not (yet) hold and
assume that we already did the swap in step (d). Doing the reductions in step (e) will replace v(k)j

by v(k)j − (v
(k)
j quo v

(k)
1 )v

(k)
1 = v

(k)
j rem v

(k)
1 for all j = 2, . . . , n. Because deg(v

(k)
j rem v

(k)
1 ) = 0

or deg(v
(k)
j rem v

(k)
1 ) < deg v

(k)
1 for each j = 2, . . . , n, in the next iteration we will either have

reached the termination condition (if all the remainders are 0) or there will be at least one entry
of strictly smaller degree which gets swapped to the topmost position. Thus, the chain is indeed
strictly decreasing. Since the topmost entries (except in the case v = 0) are always non-zero, their
degrees are natural numbers and the chain can only contain finitely many members. Thus, the
algorithm must terminate after finitely many steps.
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Exercise 151. Implement the Extended Euclidean algorithm in a programming language of your
choice. (It is sufficient if the implementation works for integers.)

Example 152. As an example for the application of Algorithm 149, we consider the ring R = Z of
integers and the input vector 15

6
10

 ∈ 3Z.

In step (a) of Algorithm 149 we initialise Q (and v) to be

v =

15
6
10

 and Q =

1 0 0
0 1 0
0 0 1

 .

In step (b) we see that the termination condition is not yet reached. Thus, step (c) we search for
the lowest degree entry of v. This is 6 in the second row. Thus, we swap the first two rows in
step (d). Then, in step (e) we subtract 15 quo 6 = 2 times the first row of v and Q from the second
and 10 quo 6 = 1 times the first row from the third. This yields

v =

6
3
4

 and Q =

0 1 0
1 −2 0
0 −1 1

 .

We go back to step (b). Again, the termination condition is false and thus, we choose again the
lowest degree entry (3 in the second row) and bring it to the top row. Then we subtract 6 quo 3 = 2
times the first row from the second and 4 quo 3 = 1 times the first row from the third mimicking
the transformations on Q. This gives us

v =

3
0
1

 and Q =

 1 −2 0
−2 5 0
−1 1 1

 .

Since the termination condition does still not hold, we do one more iteration. The lowest (no-zero)
degree entry of v is 1 in the last row. Exchanging the first and last row and subtracting 3 quo 1 = 3
times the first row from the last finally yields

v =

1
0
0

 and Q =

−1 1 1
−2 5 0
4 −5 −3

 .

Here, the termination condition is reached and the algorithm returns 1 and (−1, 1, 1). We can easily
check that indeed (

−1 1 1
)15

6
10

 = −15 + 6 + 10 = 1.

We can also compute detQ = −1 which is a unit. Thus, Q is indeed unimodular (by Theorem 91).
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Exercise 153. Apply the Euclidean algorithm (Algorithm 149) to the following inputs x4 + x2 + x+ 1
x3 + 1

x4 + x3 + x2 + 1

 ∈ 3F2[x];

 42
210
105

 ∈ 3Z; and

x4 + 2x3 + x2 + x+ 1
x3 + 2x2 + 2x+ 1

x4 + x3 + x2 + 2x+ 1

 ∈ 3Q[x].

Exercise 154. Let R be a Euclidean domain, and let a, b ∈ R. Apply the extended Euclidean
algorithm (Algorithm 149) but return Q as a whole instead of only the first row. We obtain an
equation (

s t
u v

)
︸ ︷︷ ︸

=Q

(
a
b

)
=

(
gcd(a, b)

0

)
.

Show that ua = lcm(a, b) (or, equivalently, vb = lcm(a, b)).
Exercise 155. Let R be an Euclidean domainand v = (v1, . . . , vn)t ∈ nR. Let g = gcd(v), and let
Q ∈ GLn(R) be the transformation matrix with

Qv =


g
0
...
0


as computed by the Euclidean algorithm (Algorithm 149). Show that the first column of Q−1 is
v/g = (v1/g, . . . , vn/g)t. Use that to prove that gcd(v/g) = 1.
Application 156 (Linear Diophantine Equations). Let R be a Euclidean domain. Consider the linear
diophantine equation

a1x1 + . . .+ anxn = b

where a1, . . . , an, b ∈ R and where we are looking for solutions x1, . . . , xn ∈ R. We will show how
to find all possible solutions.

Form the column vector a = (a1, . . . , an)t ∈ nR and apply the Euclidean algorithm (Al-
gorithm 149) obtaining g = gcd(a) and Q ∈ GLn(R) such that Qa = (g, 0, . . . , 0)t. We claim
that the equation has a solution if and only if g | b: For any choice of x1, . . . , xn ∈ R, the left hand
side of the equation is an element of Ra1+. . .+Ran = Rg. Thus, a solution can only exist if b ∈ Rg;
that is, if g | b. Conversely, if b = cg for some c ∈ R, then cQa = (cg, 0, . . . , 0)t = (b, 0, . . . , 0)t. In
other words, the entries of the first row of cQ are a possible solution.

It is obvious that adding linear combinations of the other rows of Q to w will also yield a solution
to the equation: Write the rows of Q as Q1,∗, . . . , Qn,∗. Then Qj,∗a = 0 for j 6= 1 and therefore for
all s2, . . . , sn ∈ R

(cQ1,∗ + s2Q2,∗ + . . .+ snQn,∗)a = cQ1,∗a+ s2Q2,∗a+ . . .+ snQn,∗a = b.

Thus, cQ1,∗ +RQ2,∗ + . . .+RQn,∗ is contained in the set of all solutions.
Let conversely x = (x1, . . . , xn) ∈ Rn be any solution. Then

b = xa = (xQ−1)(Qa) = (xQ−1)


g
0
...
0

 .
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Write xQ−1 = (y1, y2, . . . , yn) ∈ Rn. Then the equation implies that the first entry is b = y1g; that
is, y1 = c. Moreover,

x =
(
c y2 · · · y2

)
Q = cQ1,∗ + y2Q2,∗ + . . .+ ynQn,∗ ∈ cQ1,∗ +RQ2,∗ + . . .+RQn,∗.

Thus, we see that cQ1,∗ +RQ2,∗ + . . .+RQn,∗ is indeed equal to the solution set.
Example 157. Consider the equation

2x+ 3y + 7z = 5

over the integers Z. Computing the greatest common divisor of 2, 3, 7 with Algorithm 149 yields−1 1 0
−3 2 0
−5 1 1

2
3
7

 =

1
0
0

 where Q =

−1 1 0
−3 2 0
−5 1 1

 ∈ GL3(Z)

is unimodular. Since 1 | 5, we find that the solutions are(
x y z

)
= 5

(
−1 1 0

)
+ Z

(
−3 2 0

)
+ Z

(
−5 1 1

)
;

or, using s, t as arbitrary integers, we can write this as

x = −5− 3s− 5t, y = 5 + 2s+ t, and z = t.

It is easy to check that this indeed solves the equation.
Remark 158 (Syzygy Module). Let R be a Euclidean domain, and let a = (a1, . . . , an)t ∈ nR. The
module of syzygies of a is

Syz(a) = {w = (w1, . . . , wn) ∈ Rn | wa = w1a1 + . . .+ wnan = 0}.

We can see that this is actually just a special case of Application 156 with the right hand side b = 0.
Thus, we obtain that

Syz(a) = RQ2,∗ + . . .+RQn,∗

where Q ∈ GLn(R) is the transformation matrix computed by Algorithm 149 and Q1,∗, . . . , Qn,∗ are
its rows. Since Q is unimodular, its rows must be linearly independent (because the determinant
is non-zero). Hence, Q2,∗, . . . , Qn,∗ is actually a basis of Syz(a).
Remark 159. The approach of Application 156 can be employed in more general situations: Let R
be a Euclidean domain and let M be an R-module. Consider the linear equation

a1 x1 + . . .+ an xn = b

where a1, . . . , an ∈ R, b ∈ M and we look for solutions x1, . . . , xn ∈ M . Using the notation
from Remark 96, we can rewrite the problem as a x = b where a = (a1, . . . , an) ∈ Rn and
x = (x1, . . . , xn)t ∈ nM . As before we apply Algorithm 149 to at obtaining g = gcd(a) and
Qt ∈ GLn(R) such that Qtat = (g, 0, . . . , 0)t. Thus, by Exercise 97 we can rewrite the equation as

b = ax = aQQ−1x =
(
g 0 · · · 0

)
Q−1x.

Setting y = (y1, . . . , yn)t = Q−1x, we obtain that b = g y1; and there are no conditions on
y2, . . . , yn. Assume that we can solve the single variable equation g y1 = b; that is, that we find
(one or all) c ∈M such that g c = b, then we can extend that to solutions of the original equation
by just leaving y2, . . . , yn as variables and setting x = Q(c, y2, . . . , yn)t.
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Example 160. We solve the differential system

y′′′ − y − z′′ + z′ = x

for y, z ∈ C∞(R) (where x means the function f(x) = x). Modelling this as operator equation as
in Example 38 and using the matrix notation from Remark 96, we obtain

(
∂3 − 1 −∂2 + ∂

) (y
z

)
= x.

We apply the Euclidean algorithm to a = (∂3 − 1,−∂2 + ∂)t ∈ 2R[∂] obtaining

Q =

(
1 ∂ + 1
∂ ∂2 + ∂ + 1

)
∈ GL2(R[∂]) with Q

(
∂3 − 1
−∂2 + ∂

)
=

(
∂ − 1

0

)
.

Thus, the original equation becomes

x =

(
∂3 − 1
−∂2 + ∂

) (
y
z

)
=

(
∂3 − 1
−∂2 + ∂

)
Qt(Q−1)t

(
y
z

)
=
(
∂ − 1 0

)
(Q−1)t

(
y
z

)
.

Let us denote (Q−1)t(y, z)t = (ỹ, z̃). Then the equation reads now

ỹ′ − ỹ = x

while there is no restriction on z̃. We solve for ỹ by first computing an integrating factor µ such
that µ′ = −µ which implies µ = e−x. Thus the equation becomes e−xx = e−xỹ′ − e−xỹ = (e−xỹ)′

which leads to

e−xỹ =

∫
xe−x dx = −xe−x +

∫
e−x dx = −xe−x − e−x + C

(using partial integration with u = x and dv = e−x dx) where C ∈ R is an arbitrary constant.
Thus, ỹ = −x− 1 +Cex (while z̃ = f could be just any function in C∞(R)). We can now compute
the solution in terms of the original variables obtaining(

y
z

)
= Qt

(
ỹ
z̃

)
=

(
1 ∂

∂ + 1 ∂2 + ∂ + 1

) (
−x− 1 + Cex

f

)
=

(
−x− 1 + Cex + f ′

−2 + 2Cex − x+ f ′′ + f ′ + f

)
as the set of all solutions.

11 The Hermite Normal Form
Definition 161 (Hermite Normal Form). Let R be a Euclidean domain. A matrix A = (aij)ij ∈ mRn

is in (row) Hermite normal form (HNF) if there exist column indices 1 6 j1 < j2 < . . . < jm 6 n
such that for all i = 1, . . . ,m

(a) aiji 6= 0,

(b) aik = 0 for k < ji (that is, A is in row echelon form), and
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(c) akji = 0 or deg aiji > deg akji for k < i (entries above the pivots have smaller degree).

The entries a1j1 , . . . , amjm are called the pivots of A and j1, . . . , jm are the pivot indices.

Remark 162. By Exercise 122 being associated is an equivalence relation. We can therefore pick a
set of representatives for each equivalence class. For instance, for integers Z one usually chooses the
absolute value, while for polynomials F [x] over a field one usually chooses the monic polynomials10.
Let |a| denote the representative of a ∈ R. Then Definition 161 is usually extended by

(d) aiji = |aiji | (that is, the pivots are the representatives of their class).

Moreover, assume that we can make the remainders with respect to to Euclidean division in R
unique. For example, with the integers Z one can always choose the positive remainder11; while for
polynomials F [x] over a field the remainder is unique anyways by Exercise 137. In that case, we
replace property (c) by

(c′) akji = akji rem aiji for k < i (entries above a pivot are reduced with respect to the pivot).

Remark 163. Some authors define the Hermite normal form to be a lower row echelon form; that
is, with the pivot indices fulfilling j1 > . . . > jm. Moreover, some authors use row indices instead
of column indices obtaining a column echelon form. Since R is commutative, we can always switch
between row and column Hermite normal form by simply transposing all the matrices.

Exercise 164. Prove that for a field F the Hermite normal form is the same as the reduced row
echelon form.

Definition 165 (Row Equivalence). Two matrices A and B ∈ mRn are said to be row equivalent if
there exists a unimodular matrix U ∈ GLm(R) such that A = UB.

Exercise 166. Show that row equivalence is indeed an equivalence relation.

Theorem 167. Let A ∈ mRn be in Hermite normal form.

(a) The rows of A are linearly independent.

(b) Assume that we have fixed representatives of associate classes and unique remainders as in
Remark 162. If there is a matrix B ∈ mRn in Hermite normal form which is row equivalent
to A, then A = B (that is, a Hermite normal form is a unique representative for its class of
row equivalent matrices).

Proof. Let A = (aij)ij with pivot indices j1, . . . , jm. Denote the rows of A by A1,∗, . . . , Am,∗.
Part (a) follows essentially because A is in row echelon form: If there are s1, . . . , sn such that
s1A1,∗ + . . . + smAm,∗ = 0, then at the j1th position we have sj1a1j1 = 0 since akj1 = 0 for
k > 1 which follows from j1 < jk and property (b) of Definition 161. Since a1j1 6= 0 because of
property (a), we obtain s1 = 0. Inductively, we can now show s2 = . . . = sm = 0.

In order to prove part (b), write B as B = (bik)ik with pivot indices k1, . . . , km and with rows
B1,∗, . . . , Bm,∗; and let U = (Uij)ij ∈ GLm(R) be such that A = UB. We are first going to prove
that j1 = k1, . . . , jm = km. Assume that this was not the case. Then there exists a minimal row

10That is, polynomials with leading coefficient being 1.
11Some authors prefer to use the remainder with minimal absolute value instead.
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index ` such that j1 = k1, . . . , j`−1 = k`−1 but j` 6= k`. Assume without loss of generality that
j` < k` (otherwise, we switch the roles of A and B). We have

A`,∗ = U`,∗B = u`1B1,∗ + . . .+ u`mBm,∗.

Since a`i = 0 for i < j`, none of the rows B1,∗, . . . , B`−1,∗ can contribute to that sum: If, for
example, ν < ` was minimal such that u`ν 6= 0, then the kν th entry of U`,∗B is u`νbνkν 6= 0 (by
property (a) of Definition 161 since B is in Hermite normal form). However, because kν = jν < j`
and thus a`kν = 0 this cannot happen. On the other hand, bλj` = 0 for λ > ` since kλ > k` > j`.
This implies a`j` = 0 which contradicts the assumption. Thus, the pivot indices of A and B must
be the same.

Next, we show that the pivots are the same. For i = 1, . . . ,m it is easly seen that aiji = uiibiji
by an argument similar to the one above (rows with smaller pivot index cannot contribute and rows
with larger pivot index will not affect the jith entry). Thus bij1 divides aiji . Switching the roles
of A and B (using B = U−1A) we obtain that also aiji divides biji . Thus, the pivots of A are
associated to their respective counterparts in B. Since we chose a unique representative, it follows
that aiji = biji . This shows also that uii = 1 and uνi = 0 for ν < i.

Now we prove that Ai,∗ = Bi,∗ for i = 1, . . . ,m. Since uii = 1 and uνi = 0 for ν < i, we have

Ai,∗ = Bi,∗ + ui,i+1Bi+1,∗ + . . .+ uimBi,∗.

Consider the ji+1
th entry of this row. It must be ai,ji+1

= bi,ji+1
+ui,i+1bi+1,ji+1

since the other rows
Bi+2,∗, . . . , Bm,∗ of B have 0 in that position. Since deg bi,ji+1

< deg bi+1,ji+1
by property (c) of

Definition 161, we see that bi,ji+1
is the remainder of ai,ji+1

of division by bi+1,ji+1
(or we simply use

property (c′)); that is, bi,ji+1
= ai,ji+1

rem bi+1,ji+1
= ai,ji+1

rem ai+1,ji+1
= ai,ji+1

since the pivots
are equal and by property (c′) again. This implies further ui,i+1bi+1,ji+1 = 0 and thus ui,i+1 = 0
by property (a). Inductively, we can now prove that ui,i+2 = . . . = uim = 0. Thus, Ai,∗ = Bi,∗ as
required.

Exercise 168. Let R be a Euclidean domain; and let a, b ∈ R with b 6= 0. Show that if b | a, then
a rem b = 0.

Algorithm 169 (Hermite Division).

Input A matrix H = (hij)ij ∈ mRn in Hermite normal form with pivot indices j1 < . . . < jm; a
row vector w = (w1, . . . , wn) ∈ Rn.

Output A row vector matrix q ∈ Rm and a row vector r ∈ Rn such that w = qH + r and such
that rji = 0 or deg rji < deg hiji for all i = 1, . . . ,m.

Procedure

(a) Initialise q ← 0 and r ← w.

(b) For i = 1, . . . ,m do

(1) Let qi ← rji quo hiji .

(2) Update r ← r − qiHi,∗ (where Hi,∗ is the ith row of H).

(c) Return q and r.
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Theorem 170. (a) Algorithm 169 is correct and terminates.

(b) A vector w ∈ Rn is in the row space of a Hermite normal form H ∈ mRn if and only if
Algorithm 169 returns r = 0.

Proof. For part (a), please note first that the loop in step (b) of Algorithm 169 is over a finite range
of numbers. Thus, the procedure always terminates. Following the loop, it is easy to see that

r = w − q1H1,∗ − q2H2,∗ − . . .− qmHm,∗ = w − qH;

that is, indeed w = qH + r. Similarly, after the first iteration of the loop we have

rj1 = wj1 − (wj1 quo h1j1)h1j1 = wj1 rem h1j1 .

Thus, rj1 = 0 or deg rj1 < deg h1j1 . This does not change during the following iteration since
hkj1 = 0 for k > 2 by Definition 161. Similarly, in the next iteration we establish the required
property for rj2 . Going through all of the loop, it is easy to see that this works for all rji where
i = 1, . . . ,m.

For part (b), if w = qH, then obviously w ∈ RmH. Assume now that r 6= 0. We want to
show that there is no v ∈ Rn such that w = vH. Since in this case we had (v − q)H = r, it is
sufficient to show that r /∈ RnH. Let k = 1, . . . , n be minimal such that rk 6= 0. If k < j1, then
all entries of the kth column of H are zero by Definition 161; and we see that r /∈ Rn. Otherwise,
let ` = 1, . . . ,m be maximal such that j` 6 k. If ` = k, then first note that we cannot not use
any rows Hi,∗ with i < ` to generate r since all rji = 0 for such i. Similarly, rows Hν,∗ with ν > `
cannot contribute to rk = rj` . Thus, only H`,∗ could be used to generate rk = rj` . However, since
0 6= rk = rj` = wj` rem h`j` , Exercise 168 implies that h`j` does not divide rk. Thus, also H`,∗
cannot be used and we see that r /∈ RnH. Finally, if k /∈ {j1, . . . , jm}, then the rows Ri,∗ with
ji < k cannot be used to generate r since the entries rji = 0; and the rows Hν,∗ with jν > k cannot
be used to generate rk. Thus, also here r /∈ RmH.

Example 171. Consider the matrix

H =

1 1 0 3
0 2 1 0
0 0 0 7

 ∈ 3Z4

which is in Hermite normal form. Let the two row vectors(
1 6 2 −2

)
and

(
2 0 −1 13

)
∈ Z4

be given. Carrying out the division in Algorithm 169 for (1, 6, 2,−2) we obtain(
1 6 2 −2

)
− 1 ·H1,∗ =

(
0 5 2 −5

)
since 1 quo 1 = 1. Now, 5 quo 2 = 2 and have(

0 5 2 −5
)
− 2 ·H2,∗ =

(
0 1 0 −5

)
.

Finally, −5 quo 7 = −1 (using our convention to choose the positive remainders) and we obtain(
0 1 0 −5

)
+ 1H3,∗ =

(
0 1 0 2

)
.
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In total, we have computed that(
1 6 2 −2

)
=
(
1 2 −1

)
H +

(
0 1 0 2

)
.

Thus, by Theorem 170 (1, 6, 2,−2) /∈ Z3H.

Applying Algorithm 169 to (2, 0,−1, 13) yields(
2 0 −1 13

)
=
(
2 −1 1

)
H.

Thus, (2, 0,−1, 13) ∈ Z3H.

Algorithm 172 (Hermite Normal Form).

Input A matrix A ∈ mRn where R is a Euclidean domain.

Output A unimodular matrix Q ∈ GLm(R) and a matrix H ∈ rRn in Hermite normal form such
that r 6 m and

QA =

(
H
0

)
.

Procedure

(a) If m = 0 or n = 0 then stop and return the identity matrix Q = 1m and an empty matrix
H ∈ 0Rn.

(b) If the first column of A is zero, that is, if A = (0, Ã) where Ã ∈ mRn−1; then apply the
Hermite normal form algorithm recursively to Ã obtainig Q ∈ GLm(R) and a Hermite normal
form H̃ ∈ rRn−1, Return Q and H = (0, H̃) ∈ rRn.

(c) Otherwise:

(1) Apply the Euclidean algorithm (Algorithm 149) to the first column A∗,1 of A computing
g = gcd(A∗,1) and a unimodular matrix U ∈ GLm(R) such that UA∗,1 = (g, 0, . . . , 0)t.
If we have unique representatives (see Remark 162), then choose g such that it is the
unique representative of its associate class (if necessary multiply g and the first row of
U by a unit).

(2) Partition UA as

UA =

(
g w

0 Ã

)
where Ã ∈ m−1Rn−1 and w ∈ Rn−1.

(3) Apply the Hermite normal form procedure recursively to Ã obtainig a unimodular Q̃ ∈
GLm−1(R) and a Hermite normal form H̃ = (h̃ij)ij ∈ rRn−1.

(4) Apply Hermite division (Algorithm 169) in order to compute w = q̃H̃ + v with q̃ ∈ Rr
and v ∈ Rn−1. Let q = (q̃, 0) ∈ Rm−1.

(5) Return

H =

(
g v

0 H̃

)
∈ r+1Rn and Q =

(
1 −qQ̃
0 Q̃

)
U.
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Remark 173. Some authors refer to (
H
0

)
with H computed by Algorithm 172 as the Hermite normal form of A. We will sometimes adopt this
terminology as a convenient short hand for the more precise formulation chosen in the algorithm.

Remark 174. In Algorithm 172, instead of constructing the transformation matrix Q ∈ GLm(R)
explicitly as a matrix product, we might also just mimick the elementary row transformations (and
partitions) we apply to A on an identity matrix. In fact, if we apply the Hermite normal form
algorithm (without explicitly computing Q) to the matrix (A,1m), then we will obtain a matrix(

H
0

Q̃

)
such that Q̃A =

(
H
0

)
and where H is in Hermite normal form and Q̃ ∈ GLm(R) is unimodular. (Note that Q̃ computed
in this way is not necessarily exactly the same as Q computed by Algorithm 172; but it has the
same properties.)

Remark 175. In step (a) of Algorithm 172 we use empty matrices for convenience. However, if one
wishes to avoid that, one might replace this step by the following steps

(a′) If A = 0m×n, then return Q = 1m and and no H.

(a′′) If n = 1 (that is, if A is a single column), then apply the Euclidean Algorithm 149 to A
obtaining a matrix U ∈ GLm(R) and g = gcd(A). Let u ∈ R∗ be such that ug is the
unique representative of g (see Remark 162) and return the Hermite form H = (g) ∈ 1R1 and
Q = diag(u,1n−1)U ∈ GLn(R).

(a′′′) Ifm = 1 (that is, A is a single row), then let k be the minimal column index such that A1r 6= 0.
Let u ∈ R∗ be such that uA1r is the unique representative of its class (see Remark 162) and
return Q = (q) ∈ GL1(R) and H = qA.

It is easy to see that in each of the three steps the matrices which are returned fulfil the output
conditions of Algorithm 172.

Theorem 176. Algorithm 172 is correct and terminates.

Proof. It is easy to see that the algorithm terminates because in every recursive call the number of
rows or the number of columns of the argument decreases. This can only happen finitely often.

There are three cases in which the algorithm returns a value. We will go through all of them
and prove that they are correct. In step (a) of Algorithm 172 the base case of the reduction is
handled. An empty matrix is obviously in Hermite form because all the conditions are trivially
fulfilled. Moreover, Q = 1m is obviously unimodular and QA (which is again empty) fulfils the
output conditions. (See also Remark 175 for an approach without empty matrices.)

In step (b) We have (by the rules for multiplying block matrices)

QA =
(
0 QÃ

)
=

(
0 H̃
0 0

)
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where H̃ is in Hermite normal form by the recursion. Thus, we only have to show that also
H = (0, H̃) is in Hermite normal form. If j1, . . . , jr are the pivot indices of H̃, then we claim that
j′k = jk + 1 for k = 1, . . . , r are the pivot indices of H: We can easily see that the properties (a),
(b), and (c) hold for H since they hold for H̃ and the added first column contains only zeroes.
Moreover, the properties of Remark 162 do also hold for H because they hold for H̃.

Finally, in step (c), we first note that the matrix Q given in substep (c.5) is the product of
unimodular matrices: U in step (c.1) is unimodular, Q̃ in step (c.3) is unimodular, too, and we can
write the left factor of Q as (

1 −qQ̃
0 Q̃

)
=

(
1 −q
0 1

)(
1 0

0 Q̃

)
where both matrices are obviously unimodular by Exercise 111. Moreover, with

Q̃Ã =

(
H̃
0

)
which we get from the recursion in step (c.3), we indeed obtain that

QA =

(
1 −qQ̃
0 Q̃

)
UA =

(
1 −qQ̃
0 Q̃

)(
g w

0 Ã

)
=

g v

0 H̃
0 0

 =

(
H
0

)
.

Here, we used that v = w − q̃H̃ = w − (q̃, 0)Q̃Ã = w − qQ̃Ã. Thus, the matrix Q fulfils the output
condition.

It remains to check that

H = (hij)ij =

(
u v

0 H̃

)
is indeed in Hermite normal form. By the recursive nature of the algorithm, we can assume that
H̃ = (h̃ij)ij is in Hermite normal form (recalling that we have already shown that this is true in
the base case in step (a)). The pivot of the first row of H is obviously g at position (1, 1). Since
H̃ starts at the second column of H, the pivots which it contributes must be to the right of g.
More precisely, if j̃1 < . . . < j̃r are the pivot indices of H̃; then 1 < j̃1 + 1 < . . . < j̃r + 1 are
the pivot indices of H; we denote them by j1 = 1 and jk+1 = j̃k + 1 for k = 1, . . . , r. Moreover,
by the properties of Algorithm 169, we see that vj̃k is a remainder of division by h̃kj̃k . Thus, for
` = 1, . . . , r we obtain h1j`+1

= vj̃` is indeed a remainder of division by h`+1,j`+1
= h̃`,j̃` . In total,

all properties of Definition 161 are fulfilled. Moreover, by taking the unique representative of the
greatest common divisor in step (c.1), we also fulfil property (d) (in Remark 162).

Example 177. We use Algorithm 172 in order to compute the Hermite normal form of

A =


−3 9 1 4
3 −3 7 −7
−10 6 3 −1
−7 9 18 −11

 ∈ 4Z4.
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We will use superscripts in order to distinguish the matrices in the different recursive calls. Let
A(1) = A for the original input. The first column of A(1) is

−3
3
−10
−4


which is non-zero. Thus, we are in case item (c) of Algorithm 172. Applying the Euclidean algorithm
(Algorithm 149) yields the greatest common divisor g(1) = 1 with the transformation matrix

U (1) =


−7 0 2 0
1 1 0 0
10 0 −3 0
1 0 −1 1

 ∈ GL4(Z).

We obtain

U (1)A(1) =


1 −51 −1 −30
0 6 8 −3
0 72 1 43
0 12 16 −6

 =

(
g(1) w(1)

0 Ã(1)

)
.

We now call the algorithm recursively with A(2) = Ã(1). Since the first column is not zero, we have
again to apply the Euclidean algorithm (Algorithm 149) which yields the greatest common divisor
g(2) = 6, the transformation

U (2) =

 1 0 0
−12 1 0
−2 0 1

 and U (2)A(2) =

 6 8 −3
0 −95 79
0 0 0

 =

(
g(2) w(2)

0 Ã(2)

)
.

We continue recursively with A(3) = Ã(2). Although we can see that matrix is already in Hermite
normal form (except for the sign), we follow the algorithm. The first column of A(3) is non-zero
and computing the greatest common divisor with the Euclidean algorithm (Algorithm 149) gives
95 with transformation

U (3) =

(
−1 0
0 1

)
and

(
95 −79
0 0

)
=

(
g(3) w(3)

0 Ã(3).

)
We continue recursively with A(4) = Ã(3). Since the first (and only) column of A(4) is zero, we
are in case (b) of Algorithm 172. Thus, we skip the first column and continue recursively with the
empty 1-by-0 matrix A(5). Now we are in case (a) of Algorithm 172; and we return the empty 0-by-0
matrix H(5) and the identity Q(5) = (1). Going up the recursive calls, we have now H̃(4) = H(5)

and H(4) = (0, H̃(4)) (which is the empty 0-by-1 matrix) and Q(4) = Q(5). Up one level, we obtain
H̃(3) = H(4) and Q̃(3) = Q(4). We now have to divide w(3) by H̃(3) using Algorithm 169. As H̃(3)

is still the empty matrix, this step yields an empty row vector q̃(3) and v(3) = w(3) = (−79). We
otbain the row vector q(3) = (q̃(3), 0) = (0),

H(3) =

(
g(3) v(3)

0 H̃(3)

)
=
(
95 −79

)
, and Q(3) =

(
1 −q(3)Q̃(3)

0 Q̃(3)

)
U (3) =

(
−1 0
0 1

)
.
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One further level up, we have now H̃(2) = H(3) and Q̃(2) = Q(3). Dividing w(2) by H̃(2) using
Algorithm 169 gives us q̃(2) = 0 and v(3) = (8,−3). Thus, q(2) = (0, 0),

H(2) =

(
g(2) v(2)

0 H̃(2)

)
=

(
6 8 −3
0 95 −79

)
,

as well as

Q(2) =

(
1 −q(2)Q̃(2)

0 Q̃(2)

)
U (2) =

 1 0 0
0 −1 0
0 0 1

U (2) =

 1 0 0
12 −1 0
−2 0 1

 .

Finally, we are back in the uppermost level where H̃(1) = H(2) and Q̃(1) = Q(2). We apply Hermite
division (Algorithm 169) to w(1) and H̃(1) which gives q̃(1) = (−9, 0) and v(1) = (3, 71,−57). Then
q(1) = (q̃(1), 0) = (−9, 0, 0),

H(1) =

(
g(1) v(1)

0 H̃(1)

)
=

 1 3 71 −57
0 6 8 −3
0 0 95 −79

 ,

and

Q(1) =

(
1 −q(1)Q̃(1)

0 Q̃(1)

)
U (1) =


1 9 0 0
0 1 0 0
0 12 −1 0
0 −2 0 1

U (1) =


2 9 2 0
1 1 0 0
2 12 3 0
−1 −2 −1 1

 .

Having reached the top-most level of the recursive calls, the algorithm now returns H(1) and Q(1).
Remark 178 (Iterative Hermite Normal Form Computation). While the recursive Algorithm 172
for computing the Hermite normal form is easy to understand and easy to be proved correct, in
practical implementations one would usually prefer the following iterative version.

Input A matrix A = (aij)ij ∈ mRn where R is a Euclidean domain.

Output The Hermite normal form H ∈ rRn of A where r 6 m.

Procedure

(a) Initialise r ← 1 and c← 1.

(b) While r 6 m and c 6 n do

(1) Let P = {i | r 6 i 6 m and aic 6= 0}.
(2) If P = ∅, then set c← c+ 1 and continue the loop in step (b).
(3) Else, if P = {i}, then:

(i) Swap the rth and the ith row of A.
(ii) Multiply the rth row of A by a unit such that arc = |arc|.
(iii) For k = 1, . . . , r− 1 subtract (akc quo arc) times the rth row of A from the kth row.
(iv) Set r ← r + 1 and c← c+ 1, and continue the loop in step (b).
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(4) Else:
(i) Let i ∈ P be such that deg aic is minimal.
(ii) Swap the rth and the ith row of A.
(iii) For k = r+ 1, . . . ,m subtract (akc quo arc) times the rth row of A from the kth row.
(iv) Continue the loop in step (b).

(c) Remove all rows which are zero from A and return A.

(We have left out computation of the transformation matrix; it can be obtained as explained in
Remark 174.)
Exercise 179. Prove that the algorithm explained in Remark 178 does indeed compute the Hermite
normal form of A.
Exercise 180. Apply the algorithm in Remark 178 to the matrix

0 x2 x 0
x3 + x2 + 1 1 1 0

0 x3 + x 0 0
1 1 x2 + x+ 1 x

 ∈ 4 F2[x]
4
.

Exercise 181. Implement the algorithm in Remark 178 in a programming language of your choice.
(It is sufficient if it works for integer matrices.)
Remark 182. The Hermite normal form is implemented in several computer algebra systems. Ex-
amples include:

Maple The command is called HermiteForm and is located in the LinearAlgebra package. It
works for both integer and polynomial matrices. We do an example for integer matrices:

with ( LinearAlgebra ) :
A := RandomMatrix (4 , 3 , generato r =−9. .9);

A :=


6 2 4
2 0 −7
−4 0 −7
9 −1 −8


U, H := HermiteForm (A, output =[ ’U’ , ’H ’ ] ) ;

U,H :=


3 −13 9 5
3 −11 8 4
5 −26 17 10
7 −36 24 14

 ,


1 1 0
0 2 1
0 0 3
0 0 0


Equal (U.A, H) ;

true

Mathematica Here, we have the command HermiteDecomposition. This seems to work only
for integer matrices. An example would be:
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A = RandomInteger [{−9 ,9} , { 4 , 3 } ] ;
A // MatrixForm 

4 −2 2
5 −8 1
−8 5 −9
0 −6 2


{U,H} = HermiteDecomposition [A ] ;
MatrixForm /@ {U,H}

{
8 −3 2 3
20 −8 5 8
9 −4 2 4
75 −28 20 29

 ,


1 0 1
0 1 3
0 0 4
0 0 0

}

U.A == H

True

Sage Here the method is called hermite_form. It works for integer and polynomial matrices.
We do an example for integers:

A = random_matrix (ZZ , 4 , 3)
A 

−1 1 −3
8 0 −1
−2 0 1
−2 −1 0


H, U = A. hermite_form ( t rans fo rmat ion=True )
H, U

(
1 0 1
0 1 1
0 0 3
0 0 0

 ,


1 2 6 1
0 0 1 −1
0 1 4 0
2 3 9 2

)
For polynomial matrices, we have to declare the ring first. Then we can define the matrix
and compute the Hermite normal form.

R.<x>=QQ[ ]
A = matrix (3 , 3 , [ 1 , x−1, x , x , x+1, −1, −1, 0 , x+1])
A  1 x− 1 x

x x+ 1 −1
−1 0 x+ 1
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A. hermite_form ( ) 1 x− 1 1
0 1 1

2x
2 − 3

2
0 0 −x3 + x2 + 5x+ 1


Note, however, that Sage does not reduce the entries above the pivots here.

Remark 183. We can use the Hermite normal form implementations in the various computer algebra
systems to simulate the Euclidean algorithm (Algorithm 149): Simply apply the Hermite normal
form to a matrix consisting of a single column. For instance, in Example 160 we could have used
Maple for the computations

with ( LinearAlgebra ) :
v := <d^3 − 1 , −d^2 + d>;

v :=

[
d3 − 1
−d2 + d

]
HermiteForm (v , output =[ ’U’ , ’H ’ ] ) ;[

1 d+ 1
d d2 + d+ 1

]
,

[
d− 1

0

]
Theorem 184. The (non-zero) rows of the Hermite normal form H ∈ rRn of A ∈ mRn are a basis
for the row space RmA. In particular, the row space of A is free with rank r.

Proof. By Theorem 167 (part (a)), the rows of H are linearly independent. Further, if u = vA ∈
RmA for some v ∈ Rm, then u = vQ−1(QA). Since zero-rows in

QA =

(
H
0

)
do not contribute to u, we see that u ∈ RrH is in the row space of H. Conversely, if x = yH is in
the row space of H for some y ∈ Rr, then

x = yH =
(
y 0

)(H
0

)
=
(
y 0

)
QA

is also in the row space of A. Thus, the rows of H generate RmA. In total, we see that they form
a basis.

Corollary 185. For a Euclidean domain R, finitely generated submodules of Rn have a rank which
is less than or equal to n.

Proof. Let x1, . . . , xm be the generators of a submodule N of Rn. We form the matrix

A =

x1
...
xm

 ∈ mRn.
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Then RmA = N , and by Theorem 184 the Hermite normal form of A will be a basis of N . The
Hermite normal form has at most as many rows as A, which implies rankN 6 m. Moreover,
the Hermite normal form cannot have more rows than columns since it is in upper echelon form.
(By Definition 161 we can have at most as many pivots as columns.) Thus, n > m > rankN as
desired.

Definition 186 (Rank of a Matrix). Let R be a Euclidean domain, and let A ∈ mRn. We define the
(row) rank of A as the rank of the row space RmA of A (or, equivalently, as the number of non-zero
rows in the Hermite normal form of A). We denote it by rankA.

Definition 187 (Rank-Revealing Transformation). Let A ∈ mRn be a matrix over the Euclidean
domain R. A transformation Q ∈ GLm(R) is called rank-revealing if

QA =

(
B
0

)
for some regular B ∈ rRn (where r 6 m).

Remark 188. The Hermite normal form computation Algorithm 172 yields a rank-revealing trans-
formation.

Theorem 189. In the situation of Definition 187 we have r = rankA.

Proof. Since B is regular, its rows are linearly independent. At the same time, they generate the
row space of B. Thus, they must be a basis of RrB. Since

RrB = Rm
(
B
0

)
= RmQA = RmA,

we see that they are also a basis for RmA. Thus, r = rankA.

12 Applications of the Hermite Normal Form
Definition 190 (Left/Right Kernel). Let A ∈ mRn. The left kernel of A is

ker ·A = {v ∈ Rm | vA = 0} = ker (v 7→ vA)

while the right kernel is

kerA· = {w ∈ nR | Aw = 0} = ker (w 7→ Aw).

Theorem 191. Let R be a Euclidean domain, let A ∈ mRn, and let Q ∈ GLm(R) be a rank-
revealing transformation for A. If rankA = r, then the last m− r rows of Q are a basis for the left
kernel of A.

Proof. Partition Q into

Q =

(
V
W

)
where V ∈ rRm and W ∈ m−rRm.
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Since Q is rank-revealing, there exist a regular B ∈ rRn such that

QA =

(
V
W

)
A =

(
B
0

)
;

that is, V A = B and WA = 0. Thus, Rm−rW ⊆ ker ·A.
Let conversely u ∈ ker ·A. Then

0 = uA = uQ−1QA = (uQ−1)

(
B
0

)
.

Let uQ−1 = (x, y) with x ∈ Rr and y ∈ Rm−r. Then the equation above implies 0 = xB+y0 = xB.
Since the rows of B are linearly independent, we must have x = 0. Thus, we conclude that
u = (x, y)Q = (0, y)Q = yW ∈ Rm−rW ; that is, ker ·A ⊆ Rm−rW .

Application 192. Let R be a Euclidean domain, and let A ∈ mRn and b ∈ mR. We want to solve
the diophantine linear system

Ax = b

for x ∈ nR. Compute the Hermite normal form of the transpose At of A (or, equivalently, compute
the column Hermite normal form of A). With Algorithm 172 we find Qt ∈ GLn(R) such that QtAt
is in Hermite normal form. Let Φt ∈ GLm(R) be a column permutation such that the pivot indices
of QtAtΦt are 1, 2, . . . ,min{m,n}. Thus, after transposing everything we can write

ΦAQ =

(
L 0
M 0

)
where L ∈ rRr is a lower triangular matrix with a non-zero diagonal, M ∈ m−rRr is an arbitrary
matrix and r = rankA. We can rewrite the original equation as

Φb = ΦAQQ−1x =

(
L 0
M 0

)
Q−1x

multiplying by Φ from the left and inserting 1 = QQ−1. We partition Φb = (c, d)t and Q−1x =
(y, z)t to match the partition of ΦAQ. The equation becomes

Ly = c and My = d

with no conditions on z. Since L is lower triangular, we can inductively compute a solution for
Ly = c: Let L = (`ij)ij , c = (c1, . . . , cr), and y = (y1, . . . , yr)

t. Then the first entry of the
equation is `11y1 = c1. This has a solution if and only if `11 | c1. Assuming that this is the
case, the unique solution is y1 = c1/`11. The next entry of the equation is `21y1 + `22y2 = c2 or
`22y2 = c2 − `21(c1/`11). If `22 divides the right hand side, then we can also find a unique solution
for y2. We proceed in this way until we find solutions for all the y1, . . . , yr or until we fail to find
a solution for one of the rows. If we fail to find a solution, then the original equation Ax = b can
likewise not have a solution: Assume that this was not the case and that x was a solution, then the
first r entries of Q−1x would be a solution of Ly = c; contradicting the fact that we did not find one.
Let us assume that we found a solution Ly = c. As stated above, it must be unique since in each
row there is only one new variable. The equation My = d provides us wih further conditions on y;
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we sometimes call these the compatibility conditions. As above we find that My = d if and only if
Ax = b has a solution. Assuming that also the compatibility conditions hold, we find all solutions
to the original system by setting x = Q(y, z)t where y is the partial solution and z = (zr+1, . . . , zn)
are some variables.
Example 193. Consider R = Z and the linear diophantine system

−5x1 + 3x2 − 2x3 + 9x4 = 7
−47x1 + 31x2 − 18x3 + 87x4 = 65
−73x1 + 51x2 − 28x3 + 138x4 = 101
−47x1 + 32x2 − 18x3 + 88x4 = 65

.

In matrix form this becomes 
−5 3 −2 9
−47 31 −18 87
−73 51 −28 138
−47 32 −18 88


︸ ︷︷ ︸

=A∈4Z4

x =


7
65
101
65


︸ ︷︷ ︸
=b∈4Z

.

Computing the Hermite normal form of At yields

AQ =


1 0 0 0
1 2 0 0
2 0 3 0
1 1 1 0

 where Q =


5 −3 3 2
−1 −1 0 −2
−10 6 −3 1

1 0 1 2

 ∈ GL4(Z).

We do not need any permutations in this example; and we have already indicated the block structure
of AQ. We try to solve 1 0 0

1 2 0
2 0 3

y1y2
y3

 =

 7
65
101

 .

From the first row, we see that y1 = 7. In the second row we thus obtain 65 = y1 + 2y2 = 7 + 2y2
or, equivalently, 58 = 2y2. This equation has the solution y2 = 29. Finally, in the last row we get
101 = 2y1 + 3y3 = 14 + 3y3 or 87 = 3y3. This has the solution y3 = 29. We now have to check the
compatibility condition y1 + y2 + y3 = 65 which holds true for our solution (y1, y2, y3) = (7, 29, 29).
Thus, the original system has the solution set

x = Q

(
y
z

)
=


5 −3 3 2
−1 −1 0 −2
−10 6 −3 1

1 0 1 2




7
29
29
z

 =


35 + 2z
−36− 2z

17 + z
36 + 2z


where z ∈ Z is arbitrary.
Exercise 194. Solve the linear diophantine system

39x1 − 27x2 − 3x3 − 71x4 = 98
69x1 − 47x2 − 5x3 − 125x4 = 172

130x1 − 89x2 − 10x3 − 236x4 = 325
68x1 − 46x2 − 5x3 − 123x4 = 169

over the integers.
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Exercise 195. Implement the method described in Application 192 in a programming language of
your choice.

Example 196. We can use a similar strategy as in Application 192 in order to solve operator
equations. Let R = R[∂] and M = C∞(R) as in Example 38. We consider the system

2f ′′ − f ′ − f − g′′ + g′ − 2h′′ + h′ + h = 0
−2f ′′ + f ′ + 4f + g′′ − g′ − 2g + 2h′′ − h′ − 4h = 0
−2f ′ + 5f + g′ − 3g + 2h′ − 5h = 0

in the unknown functions f, g, h ∈ C∞(R). In matrix notation (see Remark 96) this system becomes
A y = 0 where

A =

 2∂2 − ∂ − 1 −∂2 + ∂ −2∂2 + ∂ + 1
−2∂2 + ∂ + 4 ∂2 − ∂ − 2 2∂2 − ∂ − 4
−2∂ + 5 ∂ − 3 2∂ − 5

 and y =

fg
h

 .

The column Hermite normal form of A is

H =

 ∂ − 1 0 0
2 ∂ + 2 0
2 3 0

 = AQ where Q =

 −∂ + 1 −∂ 1
−2∂ + 1 −2∂ − 1 0

0 0 1

 ∈ GL3(R[∂])

and where we partitioned H into the lower triangular part and the compatibility conditions. Letting
(u, v, w)t = Q−1y, we thus have to solve the system

u′ − u = 0
2u + v′ + 2v = 0
2u + 3v = 0

with no condition on h. The first equation yields u = C1e
x with C1 ∈ R arbitrary. Substituting

this into the second equation12 we have to solve

v′ + 2v = −2C1e
x.

This is a first order linear equation with integrating factor µ = e
∫
2dx = e2x. We obtain −2C1e

3x =
e2x(v′ + 2v) = (e2xv)′, and thus

v = −2C1e
−2x

∫
e3xdx = −2C1e

−2x
(1

3
e3x + C2

)
= −2

3
C1e

x − 2C1C2︸ ︷︷ ︸
=C̃2

e−2x.

with C̃2 ∈ R arbitrary. We still have to check the compatibility condition 2u+3v = 0. Substituting
our solutions for u and v this equation becomes

0 = 2C1e
x − 2C1e

x − 6C̃2e
−2x = −6C̃2e

−2x.

12For this specific system, using the third equation next would have been easier. However, we want to follow the
general method as closely as possible.
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Since e−2x is not zero, we see that C̃2 must be zero in order to make the compatibility condition
work. Thus, we obtain conditions on the constants. This is different to Application 192 where we
simply have to check whether the compatibility conditions hold or not. In total, we haveuv

w

 =

 C1e
x

− 2
3C1e

x

w

 and

fg
h

 = Q

uv
w

 =

 2
3C1e

x + w
C1e

x

w


where w ∈ C∞(R) and C1 ∈ R are arbitrary.
Exercise 197. Solve the system of linear differential equations

−2f ′ + 2f − 2g′ + 2g − h′ + h = 0
−2f ′′ − f ′ − 5f − 2g′′ − g′ − 5g − h′′ − h′ − 3h = 0
−2f ′′ + 3f ′ − 2f − 2g′′ + 3g′ − 2g − h′′ + h′ = 0

for f, g, h ∈ C∞(R).
Application 198. Using the Hermite normal form, we can design a method for computing the inverse
of a matrix A ∈ nRn over an Euclidean domain R if it exists, or prove that A is not unimodular:
Compute first the Hermite normal form H with transformation matrix Q ∈ GLn(R) and the rank of
A. If the rank is not n, then A cannot be unimodular as the determinant is zero (see Theorem 91).
If the rank is n, then

QA = H =

h11 ∗
. . .

0 hnn


is an upper triangular matrix with pivots h11, . . . , hnn. Since A = Q−1H and therefore detA =
(detQ)−1 detH = (detQ)−1h11 · · ·hnn we see that A is unimodular if and only if h11, . . . , hnn are
units; again by Theorem 91. Assuming that this is the case, by property (c) of Definition 161 that
implies that all entries above the h1, . . . , hn are zero. Thus, QA = diag(h11, . . . , hnn) which implies
A−1 = diag(h−111 , . . . , h

−1
nn)Q.

Example 199. Consider R = Q[x] and let

A =

 x x2 + x− 1 x2 − 1
−1 −x− 2 −1− 2x
−1 −1− x −1− x

 .

Then the Hermite normal form of A is H = 1 and the transformation matrix is

A−1 = Q =

−x2 + 1 x2 + x −x3 − x2 − 1
x −1− x x2 + x+ 1
−1 1 −1− x

 .

(In this case the diagonal entries of H are all already 1.)
Exercise 200. Compute the inverses of−2x2 + 3x− 1 −2x3 + 4x2 − 3x+ 1 x3 − x2 + 2x− 1

−4x+ 4 −4x2 + 6x− 3 2x2 − x+ 3
−5 + 6x 6x2 − 8x+ 4 −3x2 + x− 5

 ∈ 3Q[x]
3
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and 
−2 −7 −6 −5
−3 −11 −10 −8
−4 −17 −15 −12
−5 −20 −18 −14

 ∈ 4Z4

or show that they do not exist.

Corollary 201. Let R be a Euclidean domain. Then every unimodular matrix is the product of
elementary matrices.

Proof. Following Algorithm 172, it is easy to check that all transformations are elementary. Thus,
the inverse of A ∈ GLn(R) as computed by Application 198 is a product of elementary matrices.
But then also A itself must be a product of elementary matrices since the inverses of elementary
matrices are again elementary matrices by Remark 114.

Application 202. Let U ∈ mRn where R is a Euclidean domain. We want to determine whether U
can be completed to a unimodular matrix. That is, in the case m > n we want know whether there
is A ∈ mRm−n such that (U,A) ∈ GLm(R); and in the case m < n we want to know whether there
exists B ∈ n−mRn such that (

U
B

)
∈ GLn(R).

Without loss of generality, we concentrate on the case that m > n (for the other case simply use
the transposed matrices). Compute the Hermite normal form H of U with transformation matrix
Q ∈ GLm(R). Then

QU =

(
H
0

)
=


x1 ∗

. . .
xn

0


for some x1, . . . , xn ∈ R. (We do not require H to have rank n; some of the x’s could be part of
the zero block below H.) First assume that x1, . . . , xn are all units. Then as in Application 198, it
follows that the entries above the diagonal must be zero. That is, after dividing by x1, . . . , xn we
have

diag(x−11 , . . . , x−1n ,1)QU =

(
1
0

)
, or, equivalently, U =

(
Q−1 diag(x1, . . . , xn,1)

)(1
0

)
.

Thus, U equals the first n columns of the unimodular matrix Q−1 diag(x1, . . . , xn,1).
Assume now that at least one of x1, . . . , xn is not a unit. (This includes the case that H does

have a rank strictly less than n.) Assume there was a unimodular completion (U,A) ∈ GLn(R) for
some A ∈ mRm−n. We have

Q
(
U A

)
=


x1 ∗

. . . *
0 xn

0 W



47



for some matrix W ∈ m−nRm−n. Thus,

x1 · · ·xn(detW ) = (detQ)(det
(
U A

)
) ∈ R∗

since Q and (U,A) are unimodular. However, this contradicts our assumption about the x1, . . . , xn.
Thus, there cannot be a unimodular completion if any of the x1, . . . , xn is not a unit.

Example 203. We want to complete the vectors5
4
7

 ,

3
2
4

 ∈ 3Z

to a basis of 3Z. This is the same task as finding a unimodular completion of the matrix

U =

5 3
4 2
7 4

 ∈ 3Z2.

Following Application 202, we compute the Hermite normal form obtaining

QU =

1 0
0 1
0 0

 where Q =

−2 1 1
1 −3 1
−2 −1 2

 .

Since the diagonal entries of the Hermite normal form are units, the completion is

Q−1 =

 5 3 −4
4 2 −3
7 4 −5

 .

(Note that since the diagonal entries are just 1 in this example, we do not have the diagonal matrix
of Application 202 here.)

Application 204. Let A,B ∈ nRn where R is a Euclidean domain. We are looking for a right greatest
common divisor of A and B; that is, a matrix G ∈ nRn such that A = ÃG and B = B̃G for some
Ã, B̃ ∈ nRn and such that whenever A = ÂH and B = B̂H for some H ∈ nRn and Â, B̂ ∈ nRn

then G = ĜH for some Ĝ ∈ nRn. Form the block matrix(
A
B

)
∈ 2nRn

and compute the Hermite normal form

Q

(
A
B

)
=

(
G
0

)
where G ∈ nRn and Q ∈ GLn(R). Decompose

Q =

(
M N
S T

)
and Q−1

(
U V
X Y

)
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into n-by-n blocks. Then(
A
B

)
= Q−1

(
G
0

)
=

(
U V
X Y

)(
G
0

)
=

(
UG
XG

)
.

That is, G is a right divisor of A and B. Let now H ∈ nRn be another right divisor, say, A = ÂH
and B = B̂H for some Â, B̂ ∈ nRn. We have(

G
0

)
= Q

(
A
B

)
=

(
M N
S T

)(
A
B

)
=

(
MA+NB
SA+ TB

)
.

Thus, G = MA+NB = (MÂ+NB̂)H; that is, H is a right factor of G.

Remark 205. By transposing everything, we can use the approach of Application 204 to compute
also left greatest common divisors of two matrices.

Remark 206. In Application 204 (and Remark 205), instead of using the Hermite normal form we
could employ any rank-revealing transformation U ∈ GLn(R): The important part is that the lower
n rows of

U

(
A
B

)
are zero. However, since the rank of (

A
B

)
is at most n, this must be the case for the rank-revealing transformation U .

Example 207. Consider the matrices

A =

−12 80 19
25 53 31
68 8 12

 and B =

−82 39 15
−24 23 25

0 17 −23

 ∈ 3Z3.

Computing the Hermite normal form yields
−44 263 −342 −197 0 0
−12 38 −39 −19 0 0
−37 204 −260 −148 0 0
−44 332 −453 −268 0 0
−30 230 −315 −187 1 0
−20 142 −192 −113 0 1




−12 80 19
25 53 31
68 8 12
−82 39 15
−24 23 25

0 17 −23

 =


1 0 258
0 1 197
0 0 281
0 0 0
0 0 0
0 0 0

 .

That means, a right greatest common divisor of A and B is

G =

1 0 258
0 1 197
0 0 281

 .

49



13 The Smith–Jacobson Normal Form
Definition 208 (Equivalence). Two matrices A and B ∈ mRn are said to be equivalent if there exist
unimodular matrices P ∈ GLm(R) and Q ∈ GLn(R) such that PAQ = B.

Exercise 209. Proof that equivalence is indeed an equivalence relation.

Definition 210 (Smith–Jacobson Normal Form). A matrix A ∈ mRn is in Smith–Jacobson normal
form if A = diag(a1, a2, . . . , ak) where k = min{m,n}, a1, . . . , ak ∈ R, and a1 | a2 | . . . | ak. The
non-zero elements among a1, . . . , ak are called the invariant factors of A.

Remark 211. The Smith–Jacobson normal form was first described by Henry J. S. Smith in 1861
for the integers. Consequently, it is also often called the Smith normal form in that context. Later
it was generalised to other domains with the most general version being given by Nathan Jacobson.
(His normal form works in non-commutative principal ideal domains.)

Algorithm 212. Input A matrix A = (aij)ij ∈ mRn where R is a Euclidean domain.

Output A matrix N ∈ mRn in Smith–Jacobson normal form which is equivalent to A.

Procedure

(a) If A is empty (that is, m = 0 or n = 0) or A = 0, then return N = A.

(b) Choose a non-zero entry in A and swap it to position (1, 1).

(c) Apply the Euclidean algorithm (Algorithm 149) to the first column of A obtaining a matrix
of the form (

f ∗
0 ∗

)
where f is non-zero.

(d) Apply the Euclidean algorithm (Algorithm 149) to the first row of A obtaining a matrix of
the form (

g 0
w ∗

)
where g is non-zero.

(e) If g - w,13 then go to step (c).

(f) Else, use g to eliminate each entry of w. Now, the matrix A is of the form(
g 0

0 Ã

)
with g 6= 0.

(1) If there is any entry ã in Ã (in the ith column of A) such that g does not divide ã, then
add the ith column of A to the first column and go to step (c).

(2) Else, apply the algorithm recursively to Ã obtaining Ñ and return N = diag(g, Ñ).
13That is, g does not divide (every entry of) w.
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Example 213. We are going to compute the14 Smith–Jacobson normal form of the matrix0 0 12 10
6 −3 12 9
2 −5 10 7

 ∈ 3Z4.

Since the top-left entry is zero, we swap the first and the third column of A which gives us12 0 0 10
12 −3 6 9
10 −5 2 7

 .

Now, we apply the Euclidean algorithm (Algorithm 149) to the first column of A. This yields2 −40 40 −10
0 −48 48 −14
0 −45 42 −13

 .

Next, we apply the Euclidean algorithm to the first row of A obtaining2 0 0 0
0 −48 48 −14
0 −45 42 −13

 .

At this point, we have achieved a block diagonalisation. We see that the lower-right block contains
entries which are not divisible by the top-left entry 2. We choose the −13 in the last column and
add this column to the first which yields 2 0 0 0

−14 −48 48 −14
−13 −45 42 −13

 .

Now, we once more apply the Euclidean algorithm to the first column and get1 −93 90 −27
0 −186 180 −54
0 −138 132 −40

 .

With another application of the Euclidean algorithm on the first row we reach again a block diag-
onalisation 1 0 0 0

0 −186 180 −54
0 −138 132 −40

 .

This time, it is clear that the top-left entry divides every other entry. Thus, we continue now
recursively with to lower-right block (

−186 180 −54
−138 132 −40

)
.

14We will show in Corollary 231 later that the Smith–Jacobson normal form of a matrix is in fact unique.
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We do not need to do any row or column swaps, but can immediately apply the Euclidean algorithm
to the first column. We get (

6 −12 2
0 −48 2

)
.

Now, we apply the Euclidean algorithm to the first row, which gives us(
2 0 0
−46 −138 −90

)
.

In this situation we have to once more apply the Euclidean algorithm to the first column. This
yields another block diagonalisation (

2 0 0
0 −138 −90

)
.

Here, all entries are divisible by the top-left entry 2. Thus, we continue recursively on the lower-right
block (

−138 −90
)
.

Also here, we do not need to swap any columns or rows. Moreover, since we only have one row, we
can skip the application of the Euclidean algorithm on the first column. Using it instead on the
first row yields the matrix (

6 0
)
.

This is a block diagonalisation with an empty lower-right block. Thus, the matrix is now in Smith–
Jacobson normal form. Putting everything back together, the Smith–Jacobson normal form of A
is

diag(1,diag(2,
(
6 0

)
)) =

1 0 0 0
0 2 0 0
0 0 6 0

 .

Remark 214. We can easily modify Algorithm 212 to compute also the transformation matrices
P ∈ GLm(R) and Q ∈ GLn(R) with PAQ = N . Simply initialise P = 1m and Q = 1n, and then
mirror every row transformation done during the algorithm on P and every column transformation
on Q.

Lemma 215. Let R be a principal ideal domain. Then every ascending chain of ideals Ra1 ⊆ Ra2 ⊆
Ra3 ⊆ . . . must become stationary. That is, there exists an n > 1 such that Ran = Ran+1 = . . ..

Exercise 216. Prove that the union I =
⋃
i>1Rai of all the ideals Ra1, Ra2, . . . is an ideal.

Proof. By Exercise 216, the union I =
⋃
i>1Rai of all the ideals Ra1, Ra2, . . . is an ideal. Since

R is a principal ideal domain there must thus exist a b ∈ R such that I = Rb. However, we must
have b ∈ Ran for some n > 1. It follows that Rb ⊆ Ran ⊆ Ran+k ⊆ I = Rb for all k > 1; hence
Ran = Ran+1 = . . . as desired.

Theorem 217. Algorithm 212 is correct and terminates.
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Proof. We prove the correctness first. We note first, that the algorithm applies only elementary
row and column operations—some of them hidden in the application of the Euclidean algorithm
(Algorithm 149)—to A. Thus, whatever matrix N is returned in the end will be equivalent to
A. (This also holds through the recursive calls which we can simply imagine to operate on all of
A instead of just a block.) Thus, we just need to proof that the returned matrix N is indeed in
Smith–Jacobson normal form. This is obvious, if we return already in step (a) of Algorithm 212.
Assume that we have reach step (f.2). We only arrive there if we have turned A into a block
diagonal matrix A = diag(g, Ã) where g divides every entry of Ã. In other words Ã = gÂ for
some Â ∈ m−1Rn−1. Now, the recursive call will yields a matrix Ñ in Smith–Jacobson normal
form which is equivalent to Ã. That is, Ñ = diag(a2, a3, . . . , ak) for some a2, . . . , ak ∈ R with
a2 | . . . | ak and P̃ ÃQ̃ = Ñ for some unimodular matrices P̃ ∈ GLm−1(R) and Q̃ ∈ GLn−1(R).
Since Ñ = P̃ ÃQ̃ = P̃ gÂQ̃ = gP̃ ÂQ̃, we see that g also divides every entry in Ñ . Consequently,
g | a2 | . . . | ak and the matrix N = diag(g, Ñ) = diag(g, a2, . . . , ak) which we return is indeed in
Smith–Jacobson normal form.

It remains to prove that the algorithm does indeed terminate. For this it is sufficient to prove
that we can reach step (c) of Algorithm 212 only a finite number of times. First look at the
loop between the steps (c) and (e). When we apply the Euclidean algorithm (Algorithm 149)
alternatingly to the first column and the first row, the top-left entry of A is always involved. This
implies that the greatest common divisor which is computed is always a divisor of the top-left entry.
Thus, in the top-left entry we obtain a chain of elements g1, g2, g3, . . . such that gj+1 | gj for j > 1.
This corresponds to a chain of ideals Rg1 ⊆ Rg2 ⊆ . . . in R. By Lemma 215 the chain must become
stationary, that is, there is an n > 1 such that Rgn = Rgn+1 = . . .. Assume now that in step (e) gn
was not a divisor of w. Then, we go back to step (c) and do another Euclidean algorithm on the
first column ending up with a greatest common divisor gn+1 of g and the entries of w. However,
since gn and gn+1 are associated, also gn is a greatest common divisor of gn and the entries of w;
in particular gn | w contradicting our assumption. Hence, we must eventually get out of the inner
loop.

Similarly, the loop between the steps (c) and (f.1) of Algorithm 212 can only be run finitely
often. Whatever entry ã we bring to the first column of A by doing the addition, after returning to
step (c) we will still have a greatest common divisor of the (previous) top-left entry in the top-left
position. This implies that also here we obtain an ascending chain of ideals which again must
become stationary. If that happens, the top-left entry g must divide everything in Ã; for otherwise,
if there was a ã which was not divisible by g then step (c) would replace g by a common divisor
of ã and g. Since the chain of ideals is stationary, this common divisor would be associated to g,
contradicting the assumption that g does not divide ã.

Exercise 218. Compute the Smith–Jacobson normal form of the following matrices
1 1 1 0
3 3 1 2
8 2 0 8
9 3 1 8

 ∈ 4Z4 and

x− 5 1 −6
−6 x− 2 1
−3 −9 x+ 7

 ∈ 3Q[x]
3
.

Exercise 219. Implement the Smith–Jacobson normal form in a programming language of your
choice. (It is sufficient if the implementation works for the integers.)
Remark 220. The Smith–Jacobson normal form is implemented in most major computer algebra
systems. For instance,
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Maple The command is called SmithForm and its contained in the LinearAlgebra package.
It works with both integer and polynomial matrices. Optionally, also the transformation
matrices can be computed.

with ( LinearAlgebra ) :
A := <1 ,9 ,1 ,1 ; 4 , 3 , 4 , 1 ; 4 ,−9 ,4 ,1 ; −3 ,6 ,−3 ,0>;

A :=


1 9 1 1
4 3 4 1
4 −9 4 1
−3 6 −3 0


U, S , V := SmithForm(A, output =[ ’U’ , ’S ’ , ’V ’ ] ) ;

U, S, V :=


13 −12 9 0
12 −11 8 0
−32 29 −21 0
−1 1 0 1

 ,


1 0 0 0
0 3 0 0
0 0 12 0
0 0 0 0

 ,


1 −10 −10 −1
0 −2 −3 0
0 0 0 1
0 1 1 0


Equal (U . A . V, S ) ;

true

Mathematica Here the command is called SmithDecomposition. It only works with integer
matrices and will always return the transformation matrices.

A = {{1 ,9 ,1 ,1} , {4 ,3 ,4 ,1} , {4 ,−9 ,4 ,1} , {−3 ,6 ,−3 ,0}}
A // MatrixForm 

1 9 1 1
4 3 4 1
4 −9 4 1
−3 6 −3 0


({U,R,V} = SmithDecomposition [A] ) // MatrixForm

0 0 0 1
1 1 1 −1
9 8 11 0
13 12 16 −1

 ,


1 0 0 0
0 3 0 0
0 0 12 0
0 0 0 0

 ,


1 0 0 0
0 1 0 0
−10 −3 0 1
−1 0 1 0


U . A . V == R

True

There is also the Smith Normal Forms package which has commands to deal with polynomial
matrices, too.

Sage Here the command is called smith_form. It works for integer and for polynomial matrices.
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A = matrix ( [ [ 1 , 9 , 1 , 1 ] , [ 4 , 3 , 4 , 1 ] , [ 4 , −9 , 4 , 1 ] , [ −3 , 6 , −3 , 0 ] ] )
A 

1 9 1 1
4 3 4 1
4 −9 4 1
−3 6 −3 0


S ,U,V = A. smith_form ( )
S ,U,V

(
1 0 0 0
0 3 0 0
0 0 12 0
0 0 0 0

 ,


0 1 0 1
0 0 0 1
0 −1 1 −4
1 −1 0 −1

 ,


0 −3 −2 −1
0 −1 −1 0
0 0 0 1
1 12 11 0

)

U ∗ A ∗ V == S

True

For polynomial matrices we have to define the proper ring first. Then we can define the
matrix and compute the Smith–Jacobson normal form.

R.<x>=QQ[ ]
A = matrix (3 , 3 , [ x−1 ,2 ,3 , 4 ,x−5 ,6 , 7 ,8 , x−9])
A. smith_form ( )

(1 0 0
0 1 0
0 0 x3 − 15x2 − 18x+ 360

 ,

 0 1
4 0

− 49
382 − 28

191
7

382x+ 25
382

−7x+ 67 −8x+ 22 x2 − 6x− 3

 ,

1 − 1
4x+ 5

4
7

1528x
3 − 73

1528x
2 − 259

764x+ 156
191

0 1 − 7
382x

2 + 19
191x+ 354

191
0 0 1

)
Notation 221 (Submatrix). Let A = (aij)ij ∈ mRn, and let 1 6 i1 < . . . < ir 6 m and 1 6 j1 <
. . . < js 6 n where 1 6 r 6 m and 1 6 s 6 n. Let I = {i1, . . . , ir} and J = {j1, . . . , js}. Then with
AIJ we denote the submatrix

AIJ =

ai1,j1 . . . ai1,js
...

...
air,j1 . . . air,js

 ∈ rRs.

If I = {i} we also write AiJ , and if I = {1, . . . ,m} we write A∗J . Similarly for J = {j} we write
AIj and for J = {1, . . . , n} we write AI∗. If I = {1, . . . ,m} \ K and J = {1, . . . , n} \ L, we also
write AIJ = AKL.
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Definition 222 (Minor). Let A ∈ mRn. Then for k = 1, . . . ,min{m,n} a k-by-k minor of A is
detAIJ where I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} fulfil |I| = |J | = k.
Definition 223 (Determinantal Divisor). Let A ∈ mRn. For k = 1, . . . ,min{m,n} the kth deter-
minantal divisor of A is the greatest common divisor of all k-by-k minors of A. We will denote it
by dk(A).
Example 224. Consider

A =

1 2 3
4 5 6
7 8 9

 ∈ 3Z3.

Then the 1-by-1 submatrices are

(1), (2), (3), (4), (5), (6), (7), (8), and (9).

The 1-by-1 minors are thus 1, 2, 3, 4, 5, 6, 7, 8, 9 and their greatest common divisor is 1. Consequently,
the first determinantal divisor is d1(A) = 1. The 2-by-2 submatrices are

A{1,2},{1,2} =

(
1 2
4 5

)
, A{1,3},{1,2} =

(
1 2
7 8

)
, A{2,3},{1,2} =

(
4 5
7 8

)
,

A{1,2},{1,3} =

(
1 3
4 6

)
, A{1,3},{1,3} =

(
1 3
7 9

)
, A{2,3},{1,3} =

(
4 6
7 9

)
,

A{1,2},{2,3} =

(
2 3
5 6

)
, A{1,3},{2,3} =

(
2 3
8 9

)
, A{2,3},{2,3} =

(
5 6
8 9

)
;

and their determinants and thus the 2-by-2 minors are

detA{1,2},{1,2} = −3 detA{1,3},{1,2} = −6 detA{2,3},{1,2} = −3

detA{1,2},{1,3} = −6 detA{1,3},{1,3} = −12 detA{2,3},{1,3} = −6

detA{1,2},{2,3} = −3 detA{1,3},{2,3} = −6 detA{2,3},{2,3} = −3.

The greatest common divisor of the 2-by-2 minors and therefore the second determinantal divisor
is d2(A) = 3. There is only one 3-by-3 submatrix which is A itself. The third determinantal divisor
is hence d3(A) = detA = 0.

Lemma 225. Let A ∈ mRn and P ∈ mRm, then dk(A) | dk(PA) for all k = 1, . . . ,min{m,n}.

Proof. Let I ⊆ {1, . . . ,m} and J = {1, . . . , n} with |I| = |J | = k. Write I = {i1, . . . , ik} with
i1 < . . . < ik and let P = (prs)rs. Then

det(PA)IJ = det(PI∗A∗J) = det

Pi1∗A∗J...
Pik∗A∗J

 = det


∑m
`1=1 pi1,`1A`1,J

...∑m
`k=1 pik,`kA`k,J


=

m∑
`1=1

· · ·
m∑

`k=1

pi1,`1 · · · pik,`k det

A`1,J...
A`k,J

 =
∑

16`1<...<`k6m

C`1,...,`kpi1,`1 · · · pik,`k det

A`1,J...
A`k,J


=

∑
L⊆{1,...,m}

pL detALJ
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where C`1,...,`k is a constant which arises from adding all the determinants of the same matrix
with the correct signs obtained from sorting the rows, and where pL = C`1,...,`kpi1,`1 · · · pik,`k for
L = {`1, . . . , `k} with 1 6 `1 < . . . < `k 6 m. Here, we used the linearity in each row of
the determinant in the fourth equality; while for the fifth we reordered the rows of the matrices
(possibly changing the signs of the determinants) and removed matrices with identical rows (as
their determinants would be zero). The equation shows that the k-by-k minors of PA are linear
combinations of the k-by-k minors of A. Thus, every common divisor of the k-by-k minors of A
must also be a common divisor of the k-by-k minors of PA. In particular, this is true for the
greatest common divisor. We thus obtain dk(A) | dk(PA) as desired.

Exercise 226. Let A ∈ mRn. Show that dk(A) = dk(At) for all k = 1, . . . ,min{m,n}.
Exercise 227. Let A ∈ mRn and Q ∈ nRn. Show that dk(A) | dk(AQ) for all k = 1, . . . ,min{m,n}.
Exercise 228. Let A ∈ mRn, P ∈ GLm(R) and Q ∈ GLn(R). Prove that dk(A) = dk(PAQ) for
k = 1, . . . ,min{m,n}.

Theorem 229. Let A ∈ mRn have the Smith–Jacobson normal form N = diag(x1, . . . , xr, 0, . . . , 0)
where x1, . . . , xr 6= 0. Then r = rankA and x1 = d1(A) and xj = dj(A)/dj−1(A) for j = 2, . . . , r.

Proof. Let N = PAQ for some P ∈ GLm(R) and Q ∈ GLn(R). Since RmP = Rm and therefore
Rm(PAQ) = Rm(AQ), we know that rank(AQ) = rank(PAQ). The map v 7→ vQ is a (left) R-
module automorphism of Rn. Thus, for any submodule M of Rn we have rankM = rankMQ. In
particular; rankA = rankRmA = rankRmAQ = rank(AQ). In total, we have rankA = rankN ,
and it is easy to see that rankN = r.

By Exercise 228, we have dk(A) = dk(N) for k = 1, . . . ,min{m,n}. We will now show that
dk(N) = x1x2 · · ·xk for k = 1, . . . , r. This will then imply xk = dk(N)/dk−1(N) = dk(A)/dk−1(A)
for k > 2. The only k-by-k minors of N which are non-zero are those which do not include any zero
rows or zero columns. Thus, they are the determinants of submatrices of the form diag(xi1 , . . . , xik)
where 1 6 i1 < . . . < ik 6 r. Thus, the k-by-k minors are products xi1 · · ·xik . Recall that
x1 | x2 | . . . | xr. This implies that x1 divides every k-by-k minor, x2 divides every k-by-k minor
and so. Since x1x2 · · ·xk is one of the k-by-k minors as well, we thus obtain dk(N) = x1x2 · · ·xk
as claimed.

Exercise 230. For n > 1, compute the Smith–Jacobson normal form of

A =


x− 1 0 · · · 0

0 x− 2
. . .

...
...

. . . . . . 0
0 · · · 0 x− n

 ∈ nQ[x]
n
.

Corollary 231. The Smith–Jacobson normal form of a matrix over a principal ideal domain is
unique (except for the multiplication of its rows by units).

Proof. Let M = diag(x1, . . . , xr, 0, . . . , 0) and N = diag(y1, . . . , ys, 0, . . . , 0) be two matrices in
Smith–Jacobson normal form with x1, . . . , xr, y1, . . . , ys 6= 0; and assume that M and N are equi-
valent. Then r = s since both matrices must have the same rank by Theorem 229. Moreover,
Theorem 229 implies that x1 · · ·xk = dk(M) = dk(N) = y1 · · · yk for k = 1, . . . , r. Inductively,
one can now prove that x1 and y1 are associated, x2 and y2 are associated, and so on. Thus, the
diagonal entries of M and N differ only by multiplication with units.
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Remark 232. In light of Corollary 231, we can make the Smith–Jacobson normal form of a matrix
unique by picking unique representatives for each class of associates.

Corollary 233. Let A ∈ mRn where R is a Euclidean domain. Then rankRmA = rankA nR. In
particular, we could have defined rankA equivalently as the column rank of A.

Proof. Similar to the proof of Theorem 229 one shows that equivalent matrices have the same
column rank. Now consider the Smith–Jacobson normal form N = diag(x1, . . . , xr, 0, . . . , 0) of A
where x1, . . . , xr 6= 0. It has the same row rank and the same column rank as A. However, we can
easily see that rankRmN = r = rankN nR.

Application 234. We can use the Smith–Jacobson normal form to solve diophantine systems. Con-
sider the system

Ax = b

where A ∈ mRn and b ∈ mR. We want to solve for x ∈ nR. Let N = diag(a1, . . . , ar, 0, . . . , 0) be the
Smith–Jacobson normal form of A, and let P ∈ GLm(R) and Q ∈ GLn(R) be the transformation
matrices; that is, PAQ = N . We abbreviate the non-zero part of N by ∆ = diag(a1, . . . , ar). Then
we can transform the orginal equation into the equivalent equation

Pb = PAQQ−1x = N(Q−1x).

We write y = Q−1x and c = Pb. Then Ny = c has a solution if and only if Ax = b has a solution.
Write now y = (u, v)t and c = (f, g)t where the upper blocks have r entries. Then Ny = c has the
shape (

∆ 0
0 0

)(
u
v

)
=

(
f
g

)
which is equivalent to saying that ∆u = f (with no conditions on v) and g = 0. Thus, if the
compatibility conditions g = 0 are fulfilled, we have to solve aiui = fi for i = 1, . . . , r. This
is possible if and only if ai | fi for each i in which case the (unique) solution is ui = fi/ai for
i = 1, . . . , r. Since there are no conditions of v, its entries provide free variables. If the process
succeds, the original system has the solution x = Qy.
Example 235. Consider the system

x1 + 2x2 − x3 + x4 = −4
2x1 + 6x2 + 6x3 + 12x4 = 18
x1 + 4x2 + 7x3 + 11x4 = 22

2x1 + 8x2 + 4x3 + 12x4 = 14

over the integers. The coefficient matrix and the right hand side are

A =


1 2 −1 1
2 6 6 12
1 4 7 11
2 8 4 12

 ∈ 4Z4 and b =


−4
18
22
14

 ∈ 4Z.

The Smith–Jacobson normal form of A is

PAQ =


1 0 0 0
0 2 0 0
0 0 10 0
0 0 0 0

 =

(
diag(a1, a2, a3) 0

0 0

)
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with the transformation matrices

P =


1 1 0 −1
−2 1 0 0
8 −3 0 −1
1 −1 1 0

 and Q =


1 −1 −1 0
0 −3 −4 −1
0 1 1 −1
0 0 0 1

 ∈ GL4(Z).

We have

Pb =


0
26
−100

0

 =

(
f
g

)
.

Thus, the compatibility conditions g = 0 are fulfilled. Moreover, ai | fi for i = 1, 2, 3. Thus, we
find the solution

y =


0/1
26/2
−100/10

v

 =


0
13
−10
v


for the transformed system where v ∈ Z is arbitrary. This yields the solution

x = Qy =


−3

1− v
3− v
v


of the original system.
Remark 236. An approach similar to Application 234 works for more general equations over mod-
ules. Let R be a Euclidean domain and let M be a left R module. Moreover, let A ∈ mRn and
b ∈ mM . Then we can find solutions x ∈ nM of

A x = b

by computing the Smith–Jacobson normal form N = PAQ of A with transformation matrices
P ∈ GLm(R) and Q ∈ GLn(R). As in Application 234 let us decompose N = diag(∆,0) where
∆ = diag(a1, . . . , ar) as well as y = Q−1x = (u, v)t and c = Pb = (f, g)t. Then the original system
has a solution if and only if ∆ u = f has a solution and the compatibility condition g = 0 holds.
The difference to Application 234 is that determining whether there exists u1, . . . , ur ∈ M with
ai ui = fi for all i = 1, . . . , r can be much more difficult.
Example 237. Consider the following system of linear ordinary differential equations

2f ′′ + 3f + 2g′′ + g + 4h′′ + 4h = 7x2 − 2x+ 11
f ′′ + f + g′′ + g + 2h′′ + 2h = 3x2 + 5
f ′′ + 2f + g′′ + 2h′′ + 2h = 4x2 − 2x+ 6

.

We want to solve for f, g, h ∈ C∞(R). We rewrite the equation in the language of rings and modules
using Example 38. Define the matrix

A =

2∂2 + 3 2∂2 + 1 4∂2 + 4
∂2 + 1 ∂2 + 1 2∂2 + 2
∂2 + 2 ∂2 2∂2 + 2

 ∈ 3R[∂]
3
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and the vectors x = (f, g, h)t and

b =

7x2 − 2x+ 11
3x2 + 5

4x2 − 2x+ 6

 ∈ 3C∞(R).

Then the system can be written as A x = b. The Smith–Jacobson normal form of A is

N = PAQ =

 1 0 0
0 ∂2 + 1 0
0 0 0


where the transformation matrices are

P =

 1 −2 0
− 1

2∂
2 − 1 ∂2 + 2 1

2
−2 2 2

 and Q =

1 1 −1
0 1 −1
0 0 1

 ∈ GL3(R[∂]).

Applying P to the right hand side b yields

P b =

x2 − 2x+ 1
x2 + x+ 1

0

 .

Hence, the compatibility conditions are fulfilled. Let now y = (u, v, w)t = Q−1x. Then the original
system is equivalent to

u = x2 − 2x+ 1 and v′′ + v = x2 + x+ 1

with no conditions on w. The first equation is already solved. For the second, we note that the
general solution of z′′+z = 0 is z = C1 cosx+C2 sinx. Thus, a fundamental system for the equation
is z1 = cosx and z2 = sinx. The Wronskian matrix is

Z =

(
cosx sinx
− sinx cosx

)
with inverse Z−1 =

(
cosx − sinx
sinx cosx

)
.

Using variation of constants (see Remark 286), we obtain

v = − cosx

∫
(x2 + x+ 1) sinx dx+ sinx

∫
(x2 + x+ 1) cosx dx.

With integration by parts, the integrals evaluate to∫
(x2 + x+ 1) sinx dx = (2x+ 1) sinx− (x2 + x− 1) cosx

and ∫
(x2 + x+ 1) cosx dx = (x2 + x− 1) sinx+ (2x+ 1) cosx.

This yields

v = x2 cos2 x+ x2 sin2 x+ x cos2 x+ x sin2 x− cos2 x− sin2 x = x2 + x− 1.
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Thus, we have the solution

y =

uv
w

 =

 x2 − 2x+ 1
x2 + x− 1 + C1 cosx+ C2 sinx

w


where w ∈ C∞(R) is arbitrary. This leads to the solution

x =

fg
h

 = Q y =

 2x2 − x+ C1 cosx+ C2 sinx− w
x2 + x− 1 + C1 cosx+ C2 sinx− w

w


of the original system.
Remark 238. For solving diophantine systems as in Application 234 (and also in Remark 236)
diagonalising the system matrix is sufficient. That is, we only need to transform A using elementary
row and column transformations into a matrix of the form diag(a1, . . . , ar, 0, . . . , 0); but it is not
necessary that a1 | . . . | ar. We can compute such a diagonalisation with Algorithm 212 where we
simply omit step (f.1) and immediately go into the recursive call in step (f.2) instead. Of course,
this diagonal form will no longer be unique.
Remark 239. If we do compute a full Smith–Jacobson normal form; then in Remark 236 we can make
use of the fact that the invariant factors divide each other: If we are solving differential equations
and we compute fundamental systems for the homogenous equations given by the invariant factors
using Remark 284, finding the factorisations will become easier if we do it iteratively. In this way,
instead of factoring aj from scratch, we only have to factor aj/aj−1.
Exercise 240. Solve the system of linear ordinary differential equations

f ′′ − 3f ′ + 2f − g′′ + 2g − h′ + h = 3x− 5
−f ′ + f − g′′ + 2g − h′ + h = 2x− 2
f ′ − f + g′′ − g + h′ − h = −2x+ 2

for f, g, h ∈ C∞(R).
Exercise 241. Let a, b ∈ R where R is a Euclidean domain. Show that the matrices(

a 0
0 b

)
and

(
gcd(a, b) 0

0 lcm(a, b)

)
are equivalent.
Exercise 242. Use Exercise 241 to derive a method to compute the Smith–Jacobson normal form
of a diagonal matrix.

14 The Popov Normal Form
Notation 243. In this whole section K be a field and let R = K[x] be the univariate polynomial
ring over K in the indeterminate x.
Remark 244. In this section we will present the Popov normal form as a normal form with respect
to row equivalence and we introduce related topics such as row reduction. Some authors prefer to
do the Popov normal form as a normal form with respect to column equivalence. In this case, we
can simply work on the transpose.
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Notation 245. Let A = (aij)ij ∈ mRn be a matrix. We define

degA = max{deg aij | i = 1, . . . ,m and j = 1, . . . , n}.

Further, for k > 0 we use coeffk(p) to denote the coefficient of xk in p ∈ R; and we extend this to
matrices by

coeffk(A) =
(
coeffk(aij)

)
ij
.

In order to avoid exceptions later, we also define the special case coeff−∞(p) = 0. We will use
the same notations for (row and column) vectors regarding them as (single row or single column)
matrices.
Definition 246 (Row Degrees). Consider the matrix

A =

a1
...
am

 ∈ mRn

with rows a1, . . . , am ∈ Rn. For k = 1, . . . ,m we define the kth row degree of A to be rdegk(A) =
deg ak.

Definition 247 (Order). The order of A ∈ mRn is defined as

ordA =

m∑
j=1

Aj,∗6=0

rdegj(A);

that is, as the sum of the degrees of all non-zero rows of A.
Definition 248 (Leading Coefficient Matrix). Let

A =

a1
...
am

 ∈ mRn

be a matrix with rows a1, . . . , am ∈ Rn. Denote the row degrees by ν1 = rdeg1(A), . . . , νm =
rdegm(A). We define the leading coefficient matrix of A as

LCM(A) =

 coeffν1(a1)
...

coeffνm(am)

 =
(

coeffdeg ai(aij)
)
ij
∈ mKn.

Example 249. Consider K = R, and let

A =

 x2 x− 1 x+ 2
x− 1 0 3
x2 x2 − x x2 + 1

 ∈ 3R[x]
3
.

Then the row degrees of A are

rdeg1(A) = 2, rdeg2(A) = 1, and rdeg3(A) = 2;
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and the order of A is ordA = 5. The leading coefficient matrix of A is

LCM(A) =

1 0 0
1 0 0
1 1 1

 ∈ 3R3.

Definition 250 (Row Reduced). A matrix A ∈ mRn is called row reduced if LCM(A) has full row
rank.

Example 251. The matrix A from Example 249 is not row reduced. On the other hand, the matrix

B =

 x x− 1 −2x+ 2
x− 1 0 3
x2 x2 − x x2 + 1

 ∈ 3R[x]
3 with LCM(B) =

1 1 −2
1 0 0
1 1 1


is row reduced. Note that B is row equivalent to A.

Algorithm 252 (Row Reduction). Input A matrix A ∈ mRn.

Output A row reduced matrix B ∈ rRn with r 6 m and a unimodular matrix Q ∈ GLm(R) such
that

QA =

(
B
0

)
.

Procedure

(a) Initialise Q← 1m.

(b) Swap all non-zero rows of A to the top and mimick the transformations on Q. Then delete
all zero rows from A.

(c) Compute L = LCM(A).

(d) If L has full row rank, then stop and return B = A and Q.

(e) Else,

(1) Find a vector v ∈ Km \ {0} such that vL = 0.

(2) Let i be such that vi 6= 0 and rdegi(A) is maximal.

(3) Let

U =



1
. . .

v1x
rdegi(A)−rdeg1(A) vi vmx

rdegi(A)−rdegm(A)

. . .
1

 ∈ GLm(R).

(4) Update A← UA and Q← diag(U,1)Q.

(5) Go to step (b).
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Theorem 253. Algorithm 252 is correct and terminates.

Proof. When the algorithm terminates, the resulting matrix B = A will have a regular leading
coefficient matrix and hence be row reduced. Moreover, since we always transform A and Q in the
same way (and since Q starts out as an identity matrix), we will have

QA =

(
B
0

)
.

It remains to show that the transformations are unimodular. We change A in two ways: Swapping
and deleting rows in step (b) and multiplication by U in step (e.4). Deleting rows basically amounts
to simply ignoring them; so we can view this as elementary row operation. The matrix U defined
in step (e.3) is a polynomial matrix since rdegi(A) − rdegk(A) > 0 for k = 1, . . . ,m by the choice
of i in step (e.2). Also, U has determinant detU = vi ∈ K \ {0} = R∗, again by the choice of i.
Thus U is indeed unimodular.

Now we prove that Algorithm 252 terminates. Consider the order ordA of A. In each iteration
of the algorithm, we (potentially) delete zero rows from A which does not change the order and we
multiply A by U defined in step (e.3). Multiplication by U replaces the ith row of A by

v1x
rdegi(A)−rdeg1(A)A1,∗ + . . .+ viAi,∗ + . . .+ vmx

rdegi(A)−rdegm(A)Am,∗.

We first note that every row vector xrdegi(A)−rdegk(A)Ak,∗ in that sum has degree rdegi(A): Since
Ak,∗ has degree rdegk(A) there must be at least one entry of degree rdegk(A). Multiplication
by xrdegi(A)−rdegk(A) raises that degree to rdegi(A). Obviously, also the term viAi,∗ has degree
rdegi(A). We now consider the coefficients of xrdegi(A) in the sum. Since multiplication by
xrdegi(A)−rdegk(A) does not change the leading coefficients, we have that

coeffrdegi(A)(x
rdegi(A)−rdegk(A)Ak,∗) = coeffrdegk(A)(Ak,∗).

Thus the coefficient of xrdegi(A) of the sum is
m∑
k=1

vk coeffrdegk(A)(Ak,∗) = vLCM(A) = 0

by the choice of v in step (e.1). It follows that multiplication with U replaces the ith row of A with a
row of strictly lower degree. Thus, the order ordA of A strictly decreases in each iteration. However,
since the order is a non-negative integer, this can only happen finitely often. Consequently, the
algorithm terminates.

Example 254. Consider K = Q and the matrix

A =

 12 + 12x 6x+ 18 −12− 6x
6x− 24 3x− 6 9− 3x
−20x2 + 20 −10x2 − 20x− 20 10x2 + 10x− 20

 ∈ 3Q[x]
3
.

We follow Algorithm 252 to compute the row reduced form of A. None of the rows of A are zero,
and thus we do not delete any of them. The leading coefficient matrix is

L = LCM(A) =

 12 6 −6
6 3 −3
−20 −10 10
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An entry in the left kernel of L is for example v = (1, 8, 3) ∈ Q3. The row degrees of A are 1, 1,
and 2. Thus, for the third entry v3 = 3 we have v3 6= 0 and rdeg3(A) is maximal. This leads to the
matrix

U =

1 0 0
0 1 0
x 8x 3

 ∈ GL3(Q[x]).

Next, we update A and obtain

A← UA =

 12 + 12x 6x+ 18 −12− 6x
6x− 24 3x− 6 9− 3x
−180x+ 60 −90x− 60 90x− 60

 .

Note that the degree of the last row decreased. There are no zero rows and the new leading
coefficient matrix is

L = LCM(A) =

 12 6 −6
6 3 −3
−180 −90 90

 .

Computing the kernel of L, we find that for instance v = (0, 30, 1) is an entry of the kernel. Here,
v2, v3 6= 0 and the second and third row degree of A are the same. We choose to reduce the third
row. This leads to

U =

1 0 0
0 1 0
0 30 1

 and A← UA =

12 + 12x 6x+ 18 −12− 6x
6x− 24 3x− 6 9− 3x
−660 −240 201

 .

The leading coefficient matrix of the new A is

L = LCM(A) =

 12 6 −6
6 3 −3
−660 −240 210


and the left kernel of L is spanned by v = (1,−2, 0). The first two entries are non-zero and the
first two row degrees of A are the same. We choose to reduce the first row of A leading to the
transformations matrix

U =

1 −2 0
0 1 0
0 0 1

 and A← UA =

 60 30 −30
6x− 24 3x− 6 9− 3x
−660 −240 201

 .

We obtain

L = LCM(A) =

 60 30 −30
6 3 −3
−660 −240 210


and the left kernel of L contains v = (1,−10, 0). Here, the first two entries of v are non-zero, but
the second row degree of A is higher than the first row degree. Thus, we have to reduce the second
row. This leads to

U =

1 0 0
x −10 0
0 0 1

 and A← UA =

 60 30 −30
240 60 −90
−660 −240 201

 .
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At this point, we have L = LCM(A) = A and detL = 270000 6= 0. Thus, the algorithm terminates
with

B = A =

 60 30 −30
240 60 −90
−660 −240 201


as its result. Multiplying all the matrices U together, we obtain the transformation matrix

Q =

1 −2 0
x −2x− 10 0
x 8x+ 30 3


which fulfils QA = B (for the original input A).
Exercise 255. Apply Algorithm 252 to the matrix

2− 2x 2x2 − x+ 1 −1 1− 2x
−2x2 + 2x+ 2 −1 + x −2− x 2x3 + 2x− 1
−2x3 + 2x+ 1 x2 − 2x− 1 x2 − 2x− 2 2x2 − x− 2

2 + 2x −2x3 − 2 2 −2x2 + 2

 ∈ 4Q[x]
4
.

Exercise 256. Implement Algorithm 252 in a computer algebra system of your choice.
Definition 257 (Leading Coefficient). Let p ∈ R \ {0}. Then lc(p) = coeffdeg p(p) is the leading
coefficient of p. Similarly, for a matrix (or vector) A ∈ mRn we let lc(A) = coeffdegA(A).

Remark 258. An equivalent way of defining the leading coefficient is to write p ∈ R as p = pdx
d +

pd−1x
d−1 + . . . + p1x + p0 with coefficients p0, . . . , pd ∈ K. If pd 6= 0, then lc(p) = pd. Similarly,

we can write a matrix A ∈ mRn as A = Adx
d + Ad−1x

d−1 + . . . + A1x + A0 with coefficients
A0, . . . , Ad ∈ mKn. Again, if Ad 6= 0, then lc(A) = Ad.
Remark 259. With the leading coefficient we have

LCM(A) =

 lc(A1,∗)
...

lc(Am,∗)


for all A ∈ mRn.
Exercise 260. Let p ∈ R and v ∈ Rn. Show that lc(pv) = lc(p) lc(v).

Theorem 261. Let G ∈ mRn be a matrix where all rows are non-zero. Then the following state-
ments are equivalent:

(a) G is row reduced.

(b) G has full row rank and ordG is minimal among all row equivalent matrices.

(c) The K-dimension of Vd = {v ∈ RnG | deg v < d} is

dimK Vd =

m∑
i=1

rdegi(G)6d

(
d− rdegi(G)

)
for all d > 0.
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(d) If v ∈ Rm and w = vG, then degw = max{deg vi + rdegi(G) | i = 1, . . . ,m}.

Proof. We show first that property (b) implies (a). Assume that ordG is minimal. Then LCM(G)
must have full rank because else we could construct a transformation matrix as in Algorithm 252
(in step (e.3)) which when multiplied to G yielded a matrix of smaller order.

We prove now that (a) implies (d). We denote the maximum by µ = max{deg vi + rdegi(G) |
i = 1, . . . ,m}. We first note that w = v1G1,∗ + . . . + vmGm,∗ and thus degw 6 deg(viGi,∗) =
deg vi + rdegi(G) for all i = 1, . . . ,m. That is, degw 6 µ. Assume now that degw was strictly
less than the maximum µ. Let 1 6 i1 < . . . < i` 6 m be the row indices for which vij 6= 0 and
deg(vijGij ,∗) = µ. Since degw < µ we must have deg(vi1Gi1,∗ + . . .+ vi`Gi`,∗) < µ; and thus

coeffµ(vi1Gi1,∗ + . . .+ vi`Gi`,∗) = 0.

Using Exercise 260, we obtain

lc(vi1) lc(Gi1,∗) + . . .+ lc(vi`) lc(Gi`,∗) = 0.

However, this yields a non-trivial relation of the rows of LCM(G) (using Remark 259). Thus, G
cannot be row reduced. The claim follows by contraposition.

Next, we show that (d) implies (c). By property (d), if w = vG ∈ Vd, then max{deg vi +
rdegi(G) | i = 1, . . . ,m} < d or, equivalently, deg vi < d− rdegi(G) for all i = 1, . . . ,m. The vector
space of polynomials of degree less than d − rdegi(G) is either empty and has thus dimension 0 if
d < rdegi(G), or it has dimension equal to d− rdegi(G). This implies (c).

Finally, we demonstrate that (c) implies (b). We can without loss of generality reorder the rows
of G such that rdeg1(G) 6 . . . 6 rdegm(G). By the assumption (c), the subspace Vd consists of the
vectors vG with v ∈ Rm and deg vi < d− rdegi(G) for i = 1, . . . ,m. Consequently, there are fewer
than i linearly independent (over R) vectors in RmG of degree less than i. Thus, by induction on i,
any i linearly independent vectors in RmG must have a sum of degrees at least

∑i
j=1 rdegj(G).

Remark 262. Because of property (b) of Theorem 261 (the rows of) row reduced matrices are
referred to as minimal basis by some authors.
Remark 263. Property (d) of Theorem 261 is also known as the predictable degree property.
Remark 264. As part (b) of Theorem 261 shows, the rows of any row reduced matrix are linearly
independent over R. Thus, computing a row reduced matrix via Algorithm 252 is a rank-revealing
transformation. Consequently, we can use row reduction to compute kernels as in Theorem 191 or
matrix greatest common divisors as in Remark 206.
Application 265. We can use the row reduction in Algorithm 252 in order to invert polynomial
matrices. Let A ∈ GLn(R). Apply row reduction to obtain

QA = B

where B ∈ nRn is row reduced and Q ∈ GLn(R) is unimodular. We cannot have any zero rows in
B since A has full rank. Moreover, we have RnB = RnA = Rn since A is unimodular. Therefore
the identity matrix forms another possible basis for the row space of B. We have ord1n = 0. By
Theorem 261 this implies ordB = 0 as well. Thus, B ∈ nKn and B = QA is invertible; that is,
B ∈ GLn(K). In total, we obtain A−1 = B−1Q.
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Example 266. Example 251 provides an example for Application 265: We had

A =

 12x+ 12 6x+ 18 −6x− 12
6x− 24 3x− 6 −3x+ 9
−20x2 + 20 −10x2 − 20x− 20 10x2 + 10x− 20

 ∈ 3Q[x]
3

and we computed

QA = B =

 60 30 −30
240 60 −90
−660 −240 210

 where Q =

1 −2 0
x −2x− 10 0
x 30 + 8x+ 3

 ∈ GL3(Q[x]).

The matrix B ∈ 3Q3 is invertible and we obtain

A−1 = B−1Q =
1

300

−10 1 −1
10 −8 −2
−20 −6 −4

1 −2 0
x −2x− 10 0
x 30 + 8x 3


=

1

300

 −10 −20− 10x −3
10− 10x 0 −6
−20− 10x −20− 20x −12

 .

Exercise 267. Compute the inverse of−x− 1 −x− 1 1
2 1 0

2− 2x 2x− 1 −6

 ∈ GL3(Q[x])

using the method from Application 265.
Exercise 268. Prove that a matrix A ∈ nRn is invertible if and only if row reduction (Algorithm 252)
yields a matrix B ∈ GLn(K). That is, prove that Application 265 can be used to decide whether a
matrix is invertible or not.
Definition 269 (Popov Normal Form). A matrix A = (aij)ij ∈ mRn is in Popov normal form15 if

(a) rdegi(A) 6 rdegi+1(A) for all i = 1, . . . ,m− 1;

(b) there exist column indices j1, . . . , jm (the pivot indices) such that

(1) ai,ji is monic and rdegi(A) = deg ai,ji for all i = 1, . . . ,m,
(2) deg aik < rdegi(A) if k < ji,
(3) deg ak,ji < rdegi(A) if k 6= i, and
(4) if rdegi(M) = rdegk(M) and i < k, then ji < jk.

If A is in Popov normal form with pivot indices j1, . . . , jm, then we call a1,j1 , . . . , am,jm the pivots
of A.

Theorem 270. If A ∈ mRn is in Popov normal form, then up to permutation of rows the leading
coefficient matrix LCM(A) of A is in row echelon form. In particular, A is row reduced.

15Also called “polynomial-echelon form” by some authors.
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Proof. We remark first, that the pivot indices must be pairwise different: If i 6= k and ji = jk, then
by properties (b.1) and (b.3) of Definition 269 we had

deg ak,ji < rdegi(A) = deg ai,ji = deg ai,jk < rdegk(A)

and similarly rdegk(A) < rdegi(A) which cannot both be true at the same time.
Since permutations are allowed, we permute the rows of A in such a way that that j1 < . . . < jm.

This will potentially violate property (a) of Definition 269; however, we do not need that property
for the proof. By property (b.1), the entries at position (i, ji) of LCM(A) will be simply 1 for all
i = 1, . . . ,m. By property (b.2), everything to the left in the same row of such an entry will be 0.
Since the pivots are in different columns, this concludes the proof.

Remark 271. Theorem 270 explains the choice of the names “pivot” and “pivot indices” in Defini-
tion 269.
Exercise 272. The converse of Theorem 270 is not true. Find a counter example.

Theorem 273. Let A,B ∈ mRn be both in Popov normal form and assume that there exists
Q ∈ GLm(R) such that QA = B. Then A = B.

Proof. We denote the pivot indices of A by j1, . . . , jm and those of B by k1, . . . , km. By property (a)
of Definition 269 we have

rdeg1(A) 6 . . . 6 rdegm(A) and rdeg1(B) 6 . . . 6 rdegm(B).

Decompose A and B into blocks where the row of each block have the same degree

A =

A1

...
As

 and B =

B1

...
Bt

 .

Let Ai consist of µi rows for i = 1, . . . , s and let B` have ν` rows for ` = 1, . . . , t. Also, decompose
Q = (qi`)i` into the same blocks as B and Q−1 into the same blocks as A.

Q =

Q1

...
Qt

 and Q−1 =

W1

...
Ws

 .

We first claim that degA1 = degB1. Assume that was not the case and degA1 > degB1. Then,
since Q1,∗A = B1,∗ we had a non-zero R-linear combination of rows of A with a smaller degree than
any of the rows of A. Since A is row reduced by Theorem 270, this violates the predictable degree
property (property (d) of Theorem 261). Similarly, by reversing the roles of A and B, we see that
degB1 > degA1 is not possible. Invoking again the predictable degree property, we see that the
rows of B1 must be linear combinations of the rows of A1 and vice versa (none of the other rows
of A or B respectively can contribute since their degrees are too high). Thus, the rows of A1 and
B1 span the same space. Since they are linearly independent, both sets of rows are bases for this
space. That implies, that A1 and B1 have the same number of rows; that is, µ1 = ν1. Thus, we
can write

A1 = A1,d1x
d1 + . . .+A1,1x+A1,0 and B1 = B1,d1x

d1 + . . .+B1,1x+B1,0
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where d1 = degA1 = degB1 and A1,0, . . . , A1,d1 , B1,0, . . . , B1,d1 ∈ µ1Kn. Moreover, the predictable
degree property actually implies that the rows of B1 are K-linear combinations of the rows of A1

and vice versa (again since otherwise the degrees would not match). Thus,

Q1 =
(
Q11 0

)
where Q11 ∈ µ1Kµ1 . Write now

Q =

(
Q11 0
∗ W

)
for some W ∈ m−µ1Rm−µ1 . Then using the Leibniz formula we obtain detQ = detQ11 detW ∈ R∗
which implies that detQ11 is a unit. Consequently, Q11 is invertible. From Q11A1 = B1 we conclude
that Q11A1,d1 = B1,d1 since Q11 is a constant matrix. In other words, A1,d1 and B1,d1 are row
equivalent. Since all rows of A1 have the same degrees, we find that LCM(A1) = A1,d1 . Moreover,
the rows of A1 are still in Popov normal form since it is a submatrix of A. By Theorem 270 this
means that A1,d1 is in row echelon form. Looking closer at the proof, we see that property (b.3)
of Definition 269 implies that A1,d1 is actually in reduced row echelon form. Similarly B1,d1 is
in reduced row echelon form. By the uniqueness of the reduced row echelon form, we must have
A1,d1 = B1,d1 and Q11 = 1µ1 . But this also implies A1 = B1.

Consider now B2. First assume that degB2 < degA2. By the predictable degree property (d)
of Theorem 261 and by QA = B, this implies that the rows of B2 are in the row space of A1.
However, since we already know that A1 = B1 and since the rows of B are linearly independent by
part (b) of Theorem 261, this is impossible. Similarly, by switching the roles of A and B, we find
that degB2 > degA2 is also not possible. Thus, we must have degA2 = degB2. Moreover, the
rows of B2 are generated by the rows of A1 and A2 since the other blocks of A cannot contribute.
Thus, for some matrices Q21 and Q22 we have

B2 = Q21A1 +Q22A2; that is, Q2 =
(
Q21 Q22 0

)
.

We consider the leading coefficient matrix of B2. By the predictable degree property, LCM(B2) is
generated by the rows of LCM(A2) and LCM(A1). Since A1 = B1 and thus LCM(A1) = LCM(B1),
the pivots of A1 and B2 cannot be in the same columns. Moreover, since degA1 < degB2 and
by property (b.3), every column of LCM(B2) where A1 has a pivot must be zero. In other words,
LCM(A1) cannot contribute to LCM(B2). That means that the rows of LCM(A2) generate those
of LCM(B2). Conversely, switching the roles of A and B, we see that also the rows of LCM(B2)
generate those of LCM(A2). Since both matrices are in reduced row echelon form they must thus
be equal. That means, Q22 = 1. This in turn implies B2 = A2 +Q21A1.

Assume now that Q21 6= 0. Then at least one row of B2 which we will call b is partly generated
from the rows of A1; that is,

b = a+

µ1∑
i=1

ciri

where a is the corresponding row of A2, c1, . . . , cµ1
∈ R are polynomials, and r1, . . . , rµ1

are the
rows of A1. Choose the smallest index 1 6 ` 6 µ1 such that c` is of maximal degree. Then the
left-most entry of highest degree of c1r1 + . . . + cµ1rµ1 originates from the pivot of r`; that is, it
will be at position j` and have a degree of deg c` + rdeg`(A1) > rdeg`(A1). Since the entry of a at
position j` has a degree strictly smaller than rdeg`(A1) by property (b.3) of Definition 269, this
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implies that the entry of b at position j` has degree larger or equal to rdeg`(A1). However, since
we have j` = k` and rdeg`(A1) = rdeg`(B1) because of A1 = B1, this violates property (b.3) of
Definition 269 for B. Thus, this is impossible and we must have Q21 = 0. Consequently, A2 = B2.

We can now apply the same argument to B3 and then to B4 and so on. This will show that
B3 = A3, B4 = A4 and so forth. In total this leads to A = B.

Algorithm 274 (Popov Normal Form). Input A matrix A ∈ mRn.

Output A matrix P ∈ mRn in Popov normal form and a matrix Q ∈ GLm(R) such that QA = P .

Procedure

(a) Use Algorithm 252 in order to row reduce the matrix A. Call the result A1 and call the
transformation matrix Q1.

(b) Sort the rows of A1 with respect to their degrees in order to obtain

A2 =


B1

...
B`

0m0×n


where the blocks B1 ∈ m1Rn, . . . , B` ∈ m`Rn consist of non-zero rows of equal degree
and where degB1 < . . . < degB`. Mimick the same transformation of Q1 obtaining Q2.

(c) For each j = 1, . . . , `:

(1) Compute Lj = LCM(Bj) ∈ mjKn.
(2) Compute a matrix Wj ∈ GLmj (K) such that WjLj is in reduced row echelon form.
(3) Let

Dj = diag(1m1+...+mj−1
,Wj ,1mj+1+...+m`+m0

)

and set A2 ← DjA2 (updating the blocks B1, . . . , B` accordingly) and Q2 ← DjQ2.
(4) Let νj1, . . . , νjmj be the pivot indices of Lj .
(5) For i = m1 + . . .+mj+1 + 1, . . . ,m and for k = 1, . . . ,mj :

(i) Subtract
lc((A2)i,νjk)

lc((Bj)k,νjk)
xrdegi(A2)−degBj

times the (m1 + . . . + mj + k − 1)th row of A2 from the ith row. Do the same
for Q2.
(This eliminates the highest degree term in the ith row and νjkth column of A2.)

(d) Return P = A2 and Q = Q2.

Theorem 275. Algorithm 274 terminates and is correct.

Proof. The termination of the algorithm is obvious. Moreover, since the matrix Q just records all
the row transformations, we obviously have Q ∈ GLm(R) and QA = P . Thus, we only have to
show that P is in Popov normal form.
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For this, we check the conditions of Definition 269. We start with property (a) of the definition.
At the same time, we will prove that the matrix A1 remains row reduced during the transformations
in step (c) of Algorithm 274. Both statements are true when we enter the loop in step (c) since the
matrix A2 is just a row permutation of the row reduced matrix A1 where the rows are sorted with
respect to their degree.

We claim that the properties continue to be true during step (c) of the algorithm. Since A1 is row
reduced, also all the submatrices B1, . . . , B` must be row reduced. For a given j, step (c.3) replaces
Bj withWjBj . Write Bj = Bj,djx

dj+. . .+Bj,0 where dj = degBj and where Bj,0, . . . , Bj,dj ∈ mjKn

are constant matrices. Obviously, we have Lj = Bj,dj since every row of Bj has dgeree dj . Then
WjBj = (WjLj)x

dj + (WjBj,dj−1)xdj−1 . . . + (WjBj,0). Consequently, the new leading coefficient
matrix is LCM(WjBj) = WjLj because Lj has full rank (as Bj is row reduced) andWj is invertible
and thus no row of WjLj is zero. In particular, the degree of all rows of WjBj is still dj such that
the rows of the modified matrix A2 are still sorted with respect to to their degrees. Moreover, the
(non-zero) rows of the leading coefficient matrix of A2 are still independent meaning that A2 is still
row reduced.

In step (c.5) of Algorithm 274. We subtract a multiple of the kth row of Bj from a row of
a block Bh where h > j. Denote the kth row of Bj by v and the modified row of Bh by w;
also denote the degree of Bh by dh = degBh. The multiplier µ = lc(wνjk)/ lc(vνjk)xdh−dj is
chosen in such a way that the highest degree term in the νjkth position of w is eliminated. Since
deg(µv) = dj + (dh − dj) = degw, the degree of w − µv is at most dh. However, since A2 is
row reduced, the transformation cannot lower the order of A2 which is minimal by Theorem 261.
Thus, the degree of w − µv must be equal to that of w. In particular, are the row of A2 after the
elimination still sorted with respect to their degrees. In addition, the transformation changes the
leading coefficient matrix of A2 by adding a multiple of one row to another. Since LCM(A2) had
full rank initially, the same is true after the transformation. Consequently, A2 remains row reduced
during the entire loop.

We turn now to property (b) of Definition 269. We will show that within step (c) of Al-
gorithm 274 each block of the matrix A2 is transformed in such a way that for each block Bj with
j = 1, . . . , ` (a) the leading coefficient matrix is in reduced row echelon form, and (b) the entries in
the other blocks Bk with j < k in columns corresponding to the pivots of LCM(Bj) have a degree
less than degBk. The latter point implies immediately property (b.3) of Definition 269; while the
former point implies the properties (b.1), (b.2), and (b.4).

We proceed by induction on the index j of the block. For j = 1, the first claim is easy to
verify since in step (c.3) of Algorithm 274 we convert the leading matrix of block B1 to reduced
row echelon form. In step (c.5), for k > j we eliminate the terms of degree degBk in the columns
corresponding to the pivots of Bj from the block Bk. Since for each higher degree block we always
start with the leftmost pivot, the later eliminations cannot undo the first eliminations. Thus, we
will indeed have that all entries in the other blocks Bk in those columns corresponding to pivots of
Bj have a degree lower than degBk.

Let now j > 2. Again, after step (c.3) of Algorithm 274 the leading coefficient matrix of Bj
will be in reduced row echelon form. Moreover, its columns corresponding to pivots of lower degree
block will be zero because they have been zero before step (c.3). During the reduction step (c.5) for
each k > j we remove the terms of degree degBk from the block Bk in the columns corresponding
to the pivots of Bj . This cannot introduce entries of degree degBk in the columns corresponding
to the pivots of lower degree blocks since the corresponding entries in Bj have a degree strictly less
than degBj by the induction hypothesis. Thus, the second claim also holds in this case.
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Example 276. Consider the matrix

A =


x2 x x2 + x 0

x2 + x x2 + x+ 1 −x2 x2 + x+ 2
x3 + 2x 2x3 + x2 2x2 x3 + x2 + 1

0 2x3 + x2 + 2x+ 1 x3 + x2 x+ 2

 ∈ 4Q[x]
4
.

The rows of A are already sorted with respect to their degree and we have two blocks, one of degree
2 and one of degree 3. Moreover since the leading coefficient matrix

LCM(A) =


1 0 1 0
1 1 −1 1
1 2 0 1
0 2 1 0


has full rank (the determinant is −1), A is also already row reduced. Thus, we are in the situation
after step (b) of Algorithm 274 with A2 = A.

We enter the loop in step (c). First we consider the block of the degree 2 rows. Its leading
coefficient matrix is (

1 0 1 0
1 1 −1 1

)
with reduced row echelon form (

1 0 1 0
0 1 −2 1

)
and transformation matrix (

1 0
−1 1

)
.

We apply the same transformation to the degree 2 block of the matrix A2. This is the same as
doing the multiplication

1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1

A2 =


x2 x x2 + x 0
x x2 + 1 −2x2 − x x2 + x+ 2

x3 + 2x 2x3 + x2 2x2 x3 + x2 + 1
0 2x3 + x2 + 2x+ 1 x3 + x2 x+ 2

 .

Now, we need to eliminate the degree 3 entries in the lower block for those columns corresponding
to the pivots of the upper block, that is, for the first and second column. For this, we subtract x
the first row of A2 from the third and then we subtract 2x times the second row from the third.
This yields the new matrix

x2 x x2 + x 0
x x2 + 1 −2x2 − x x2 + x+ 2

−2x2 + 2x −2x 3x3 + 3x2 −x3 − x2 − 4x+ 1
0 2x3 + x2 + 2x+ 1 x3 + x2 x+ 2

 .

Similarly, we eliminate the degree 3 entries in the first two columns of the the last row obtaining
x2 x x2 + x 0
x x2 + 1 −2x2 − x x2 + x+ 2

−2x2 + 2x −2x 3x3 + 3x2 −x3 − x2 − 4x+ 1
−2x2 x2 + 1 5x3 + 3x2 −2x3 − 2x2 − 3x+ 2

 .
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The leading coefficient matrix of the lower block is now(
0 0 3 −1
0 0 5 −2

)
which transforms into the reduced row echelon form(

2 −1
5 −3

)(
0 0 3 −1
0 0 5 −2

)
=

(
0 0 1 0
0 0 0 1

)
.

Applying this to the lower block of A2 yields the Popov normal form
x2 x x2 + x 0
x x2 + 1 −2x2 − x x2 + x+ 2

−2x2 + 4x −x2 − 4x− 1 x3 + 3x2 −5x
−4x2 + 10x −3x2 − 10x− 3 6x2 x3 + x2 − 11x− 1

 .

We can check that indeed the properties of Definition 269 hold for this matrix.
Exercise 277. Use Algorithm 274 in order to compute the Popov normal form of

2x3 + 28x2 + 16x 10x3 + 25x2 + 38x+ 23 4x3 − 6x2 + 8x x3 + 19x2 + 27x+ 45
x3 − x2 − x −x3 − x2 − 3x− 2 −2x3 − x2 − x x3 − 4

−2x3 + 3x2 + 3x 2x3 + 3x2 + 7x+ 5 4x3 + x2 + 2x −2x3 + x2 + x+ 10
−4x3 − 18x2 − 7x −8x3 − 16x2 − 24x− 12 2x2 − 5x −3x3 − 12x2 − 20x− 23


with R = Q[x].
Exercise 278. Implement Algorithm 274 in a computer algebra system of your choice.
Remark 279. We can use computer algebra systems to compute the Popov normal form:

Maple The command is called PopovForm and it resides in the LinearAlgebra package. It
computes the column Popov normal form instead of the row Popov normal form from Defin-
ition 269.

Sage In Sage we have the weak_popov_form method.

A Solving Linear Ordinary Differential Equations
In this chapter we do not worry about the analytical implications of differential equations
but rather present some simplified solution methods. For more details, please see a
textbook on differential equations.

Notation 280. In this section, we will denote the derivative of f with respect to x by f ′ = df/dx.
Higher derivatives are denoted by f ′′ = d2f/dx2, f ′′′ = d3f/dx3, and f (n) = dnf/dxn for n > 0.
Remark 281 (Integrating Factor). Consider the inhomogeneous first order equation

f ′ + pf = q

where p, q are C∞(R) functions. Consider

µ = e
∫
p dx.
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(We only need one particular solution here, it is not necessary to introduce the constant.) Note
that

µ′ = pµ

by the chain rule. Multiplying the original equation by µ yields

µq = µf ′ + pµf = µf ′ + µ′f = (µf)′

using the product rule. Thus,

µf =

∫
µq dx

and consequently

f = µ−1
∫
µq dx.

Example 282. Consider the equation

xf ′ = f + x3 sinx.

We rewrite the function into the form which we have in Remark 281 obtaining

f ′ − 1

x
f = x2 sinx.

Here, p = −1/x and q = x2 sinx. Thus, the integrating factor is

µ = e−
∫
dx
x = e− ln x =

1

eln x
=

1

x
.

This implies that the solution is

f = µ−1
∫
µq dx = x

∫
x sinx dx = x

(
−x cosx+

∫
cosx dx

)
= x

(
−x cosx+ sinx+ C

)
= x sinx− x2 cosx+ Cx

where C is an arbitrary constant. Note that we used integration by parts (with u = x and dv =
sinx dx) in order to do the integral.

Definition 283 (Fundamental System). Let a0, . . . , an−1 be functions. A fundamental system for
the equation

f (n) + an−1f
(n−1) + . . .+ a1f

′ + a0f = 0

of order n is a family y1, . . . , yn of n functions which are linearly independent over the constants.

Remark 284. Consider the homogenous nth order linear ordinary differential equation

cnf
(n) + cn−1f

(n−1) + . . .+ c1f
′ + c0f = 0

where the coefficients c0, . . . , cn ∈ R are real constants. We write the left hand side as operator
χ = cn∂

n + . . . + c1∂ + c0; that is, the equation is χ f = 0 using the action of R[∂] on C∞(R)
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as defined in Example 38. (This χ is also called the characteristic polynomial of the equation.)
Assume that we have a factorisation

χ = c(∂ − a1)e1 . . . (∂ − ak)ek

where c ∈ R, a1, . . . , ak ∈ C are the distinct roots and their multiplicities are e1, . . . , ek > 1.
Consider a single factor (x− aj)ej where we assume for the moment that aj ∈ R is real. Obviously,
if f fulfills (x − aj) f = 0, then f also fulfills χ f = 0. We claim that (∂ − aj)ej xkeajx = 0 for
k = 0, . . . , ej − 1. For this, note that

(∂ − aj) xkeajx = ajx
keaj + kxk−1eajx − ajxkeajx = kxk−1eajx

and that (∂ − aj) eajx = 0. From this, the claim follows by induction. Assume now that aj =
u + iv ∈ C was a complex root. The same computation as above applies; that is, xke(u+iv)x for
k = 0, . . . , ej−1 are solutions. However, these are complex valued functions, while we are searching
for real valued solutions. Recall that since χ is a real polynomial, also the conjugate aj = u−iv must
be a root of χ of the same multliplicity. That is, also xke(u−iv)x for k = 0, . . . , ej − 1 are solutions.
We know combine two solutions with the same power of x using Euler’s formula eix = cosx+ i sinx.
Let c+, c− ∈ C be complex numbers. Then

c+x
ke(u+iv)x + c−x

ke(u+iv)x = xk
(
c+e

uxei(vx) + c−e
uxei(−vx)

)
= xk

(
c+e

ux(cos vx+ i sin vx) + c−e
ux(cos vx+ i sin(−vx))

)
= xk

(
c+e

ux(cos vx+ i sin vx) + c−e
ux(cos vx− i sin vx)

)
= xk

(
c+e

ux cos vx+ ic+e
ux sin vx+ c−e

ux cos vx− ic−eux sin vx)
)

= xk
(
(c+ + c−)eux cos vx+ i(c+ − c−)eux sin vx

)
where used the fact that sin(−x) = − sinx for all x in the third equation. Now, we set c+ = c− =
1/2. Then the expression becomes

xkeux cos vx

which is a real valued function. Similarly, setting c+ = i/2 and c− = −i/2 leads to another real
valued function

−xkeux sin vx.

In total, we have found n different real solutions to the equation. It is possible to show that they are
all linearly independent over the real numbers. That means, we have found a fundamental system.
Example 285. Consider the equation

f (4) + f ′′ + 36f ′ + 52f = 0.

The characteristic polynomial is

χ = ∂4 + ∂2 + 36∂ + 52 = (∂ − 2− 3i)(∂ − 2 + 3i)(∂ + 2)2

Thus, we have the real root −2 with multliplicity 2 and the conjugate complex roots 2 − 3i and
2 + 3i. According to Remark 284, this means that a fundamental system is

e−2x, xe−2x, e2x cos 3x, and e2x sin 3x.

76



Remark 286 (Variation of Constants). Consider the equation

f (n) + an−1f
(n−1) + . . .+ a1f

′ + a0f = b

with coefficients a0, . . . , an−1 and right hand side b. In order to find a solution, we first rewrite the
equation as a first order linear system. Let

A =


0 1

0 1
. . . . . .

0 1
−a0 −a1 · · · −an−2 −an−1

 .

This is the companion matrix of the characteristic polynomial χ = ∂n + an−1∂
n−1 + . . .+ a1∂+ a0.

Then χ f = b if and only if

(∂1−A)


f
f ′

...
f (n−1)

 =


0
...
0
b


using the matrix on vector action described in Remark 96. Assume now that we have a fundamental
system z1, . . . , zn of the corresponding homogenous equation χ f = 0. Then we can define the so-
called Wronskian matrix Z = (z

(i)
j )ij of z1, . . . , zn. It is well-known that Z is invertible. Moreover,

(∂ −A) Z = 0; that is, Z ′ = AZ. Consider now the operator

G(Y ) = Z

∫
Z−1Y dx

where the integration is applied to every component of Z−1Y . Let Y be any vector, then

(∂ −A) G(Y ) = (∂ −A) Z

∫
Z−1Y dx = (Z∂ + Z ′ −AZ)

∫
Z−1Y dx

= Z∂

∫
Z−1Y dx = Z

(∫
Z−1Y dx

)′
= ZZ−1Y = Y

where the second identity comes from the product rule ∂ (MN) = M∂ N + (∂ M)N = (M∂ +
M ′) N for matrices and the fifth identity it the fundamental theorem of analysis (

∫
g dx)′ = g

applied to every entry of Z−1Y . So, as operators (∂ −A)G = id. In particular,

(∂ −A) G
(

0
...
0
b

) =


0
...
0
b

 .

That means, G((0, . . . , 0, b)t) is a solution of the inhomogeneous system. Hence, G maps right hand
sides to solutions; that is, G is the Green’s operator for the system. For our right hand side we
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obtain the solution 
f
f ′

. . .
f (n−1)

 = Z

∫
Z−1


0
...
0
b

 dx

or, in other words,

f =
(
z1 · · · zn

) ∫
(Z−1)∗,nb dx =

n∑
j=1

zj

∫
(Z−1)jnb dx

is a particular solution of the original equation.
Example 287. Consider the equation

f ′′′ − 3f ′′ + 3f ′ − f = ex.

Using Remark 284, we find that a fundamental system of the corresponding homogenous equation
(∂ − 1)3 f = 0 is ex, xex, x2ex. Thus, as in Remark 286 we form the fundamental matrix

Z =

ex xex x2ex

ex (x+ 1)ex (x2 + 2x)ex

ex (x+ 2)ex (x2 + 4x+ 2)ex

 .

The last column of Z−1 is  1
2x

2e−x

−xe−x
1
2e
−x

 .

Thus, we obtain ∫
Z−1∗,ne

x dx =

∫  1
2x

2

−x
1
2

 dx =

 1
6x

3

− 1
2x

2

1
2x


which yields the solution

1

6
x3ex − 1

2
x2xex +

1

2
xx2ex =

1

6
x3ex.

Exercise 288. Let p = xn + an−1x
n−1 + . . .+ a1x+ a0 ∈ R[x]; and let

A =


0 1

0 1
. . . . . .

0 1
−a0 −a1 · · · −an−2 −an−1


be the companion matrix of p. Show that the Smith–Jacobson normal form of x1− A ∈ nR[x]

n is
diag(1, . . . , 1, p).
Remark 289. Exercise 288 gives us another way to see that the nth order equation p f = b and the
first order system (∂1−A) y = ben are equivalent.
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Symbols
adjA adjugate matrix of A, 17

AutR(M) set of bijective R-linear maps from M to M ; automorphisms, 10

coeffk(A) coefficient of xk in A, 62

coeffk(p) coefficient of xk in p, 62

mR column vectors of length m over R, 12

detA determinant of A, 13

diag(a1, . . . , an) diagonal matrix with the entries a1, . . . , an, 12

EndR(M) set of R-linear maps from M to M ; endormorphisms, 10

gcd(a1, . . . , an) greatest common divisor of a1, . . . , an, 23

HomR(M,N) set of R-linear maps from M to N , 10

1m m-by-m identity matrix, 12

idM identity map on M , 10

imϕ image of ϕ, 11

ker ·A left kernel of the matrix A, 42

kerA· right kernel of the matrix A, 42

kerϕ kernel of the map ϕ, 11

lcm(a1, . . . , an) least common multiple of a1, . . . , an, 25

lc(A) leading coefficient of the matrix A, 66

lc(p) leading coefficient of the polynomial p, 66

mRn m-by-n matrices over R, 12

ordA the order of A, 62

rankA rank of the matrix A, 42
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rankM rank of the free module M , 20

RmA row space of A, 22

Rn row vectors of length n over R, 12

0m×n m-by-n zero matrix, 12

AnR column space of A, 22

a quo b quotient of a divided by b, 24

a | b a divides b, 23

a rem b remainder of a divided by b, 24

At transpose of A, 12

AIJ submatrix of A with rows in I and columns in J , 55

M ∼= N M and N are isomorphic, 10

N 6M N is a submodule of M , 7

Q(R) field of fractions over R, 5

RS set of all R-linear combinations of elements of S, 8

R∗ set of (multiplicative) units in R, 4
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