Rewriting Part 6. Completion of Term Rewriting Systems

Temur Kutsia

RISC, JKU Linz

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recall the word problem:

Given: A set of identities E and two terms s and t. Decide: $s \approx_E t$ holds or not.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Word problem

Recall the word problem:

Given: A set of identities E and two terms s and t. Decide: $s \approx_E t$ holds or not.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• The problem is undecidable for an arbitrary *E*.

Recall the word problem:

Given: A set of identities E and two terms s and t. Decide: $s \approx_E t$ holds or not.

- The problem is undecidable for an arbitrary *E*.
- ▶ Try to construct a decision procedure for a given finite *E*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall the word problem:

Given: A set of identities E and two terms s and t. Decide: $s \approx_E t$ holds or not.

- The problem is undecidable for an arbitrary E.
- ► Try to construct a decision procedure for a given finite *E*.
- ▶ When E is finite and \rightarrow_E is convergent, the word problem is decidable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

First Approach

Construction of a decision procedure.

First Approach

Construction of a decision procedure.

Show Termination: Try to find a reduction order > which orients all identities in E. If this succeeds, consider the TRS $R := \{s \rightarrow t \mid s \approx t \in E \text{ or } t \approx s \in E, \text{ and } s > t\}$, and continue with this system in the next step. Otherwise fail.

First Approach

Construction of a decision procedure.

Show Termination: Try to find a reduction order > which orients all identities in E. If this succeeds, consider the TRS $R := \{s \to t \mid s \approx t \in E \text{ or } t \approx s \in E, \text{ and } s > t\}$, and continue with this system in the next step. Otherwise fail.

Show Confluence: Decide confluence of the terminating TRS R, by computing all critical pairs between rules in R and testing them for confluence. If this step succeeds, the rewrite relation \rightarrow_R yields a decision procedure for the word problem for E. Otherwise fail.

(日) (同) (三) (三) (三) (○) (○)

Example When The Simple Approach Succeeds

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example 6.1 Let $E := \{x + 0 \approx x, x + s(y) \approx s(x + y)\}.$

Example When The Simple Approach Succeeds

Example 6.1 Let $E := \{x + 0 \approx x, x + s(y) \approx s(x + y)\}.$ Show Termination: Use the Ipo $>_{lpo}$ induced by + > s. We get a terminating term rewriting system $R := \{x + 0 \rightarrow x, x + s(y) \rightarrow s(x + y)\}.$

Example When The Simple Approach Succeeds

Example 6.1 Let $E := \{x + 0 \approx x, x + s(y) \approx s(x + y)\}.$ Show Termination: Use the Ipo $>_{lpo}$ induced by + > s. We get a terminating term rewriting system $R := \{x + 0 \rightarrow x, x + s(y) \rightarrow s(x + y)\}.$ Show Confluence: It is also confluent since there are no critical pairs.

Example When The Simple Approach Does Not Succeed

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example 6.2 Let $E := \{x + 0 \approx x, x + s(y) \approx s(x + y)\}.$ Example When The Simple Approach Does Not Succeed

Example 6.2 Let $E := \{x + 0 \approx x, x + s(y) \approx s(x + y)\}.$ Show Termination: Now we use the Ipo $>_{lpo}$ induced by s > +. We get a terminating term rewriting system $R := \{x + 0 \rightarrow x, s(x + y) \rightarrow x + s(y)\}.$

Example When The Simple Approach Does Not Succeed

Example 6.2 Let $E := \{x + 0 \approx x, x + s(y) \approx s(x + y)\}.$

Show Termination: Now we use the Ipo $>_{lpo}$ induced by s > +. We get a terminating term rewriting system $R := \{x + 0 \rightarrow x, \ s(x + y) \rightarrow x + s(y)\}.$

Show Confluence: It is not confluent since the following critical pair is not joinable:

$$s(x+0)$$

$$x+s(0)$$

$$s(x)$$

Main Ideas Behind Completion

- ► If the critical pair (s,t) of R is not joinable, then there are distinct normal forms ŝ, t̂ of s, t.
- ► Adding ŝ → t̂ or t̂ → ŝ does not change the equational theory generated by R, because ŝ ≈ t̂ is an equational consequence of R.
- In the extended system, $\langle s,t\rangle$ is joinable.
- To obtain a terminating new system, we need $\hat{s} > \hat{t}$ or $\hat{t} > \hat{s}$

Input:

A finite set E of Σ -identities and a reduction order > on $T(\Sigma, V)$.

Output:

A finite convergent TRS R that is equivalent to E, if the procedure terminates successfully;

"Fail", if the procedure terminates unsuccessfully.

Initialization:

If there exists $(s \approx t) \in E$ such that $s \neq t$, $s \neq t$ and $t \neq s$, then terminate with output Fail. Otherwise, i := 0 and $R_0 := \{l \to r \mid (l \approx r) \in E \cup E^{-1} \land l > r\}$.

repeat $R_{i+1} := R_i;$

for all $\langle s,t
angle\in CP(R_i)$ do

- (a) Reduce s, t to some R_i -normal forms $\hat{s}, \hat{t};$
- (b) If $\hat{s} \neq \hat{t}$ and neither $\hat{s} > \hat{t}$ nor $\hat{t} > \hat{s}$, then terminate with output Fail;

(c) If
$$\widehat{s} > \widehat{t}$$
, then $R_{i+1} := R_{i+1} \cup \{\widehat{s} \to \widehat{t}\};$

(d) If
$$t > \hat{s}$$
, then $R_{i+1} := R_{i+1} \cup \{t \to \hat{s}\};$

i := i + 1;

until $R_i = R_{i-1};$ output $R_i;$

The procedure shows three different types of behavior, depending on particular input E and >:

 It may terminate with failure because one of the nontrivial input identities can not be ordered using >, or the normal forms of the terms in one of the critical pairs are distinct and can not be oriented by using >. Not much is gained. One can restart the procedure with a different reduction order.

The procedure shows three different types of behavior, depending on particular input E and >:

- It may terminate with failure because one of the nontrivial input identities can not be ordered using >, or the normal forms of the terms in one of the critical pairs are distinct and can not be oriented by using >. Not much is gained. One can restart the procedure with a different reduction order.
- 2. It may terminate successfully with output R_n because in *n*th step of the iteration all critical pairs are joinable. R_n is a finite convergent system equivalent to E. It can be used to decide the word problem for E.

The procedure shows three different types of behavior, depending on particular input E and >:

- It may terminate with failure because one of the nontrivial input identities can not be ordered using >, or the normal forms of the terms in one of the critical pairs are distinct and can not be oriented by using >. Not much is gained. One can restart the procedure with a different reduction order.
- 2. It may terminate successfully with output R_n because in *n*th step of the iteration all critical pairs are joinable. R_n is a finite convergent system equivalent to E. It can be used to decide the word problem for E.
- 3. It may run forever since infinitely many new rules are generated. In this case, $R_{\infty} := \bigcup_{i \ge 0} R_i$ is an infinite convergent system that is equivalent to E. Yields a semidecision procedure for \approx_E .

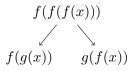
Input:

$$E := \{ f(f(x)) \approx g(x) \}$$
, LPO $>_{lpo}$ induced by $f > g$.

Input:

 $E:=\{f(f(x))\approx g(x)\}\text{, LPO}>_{lpo}\text{ induced by }f>g.$

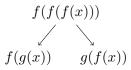
 $R_0 := \{f(f(x)) \rightarrow g(x)\}$ has a non-joinable critical pair:



Input:

 $E:=\{f(f(x))\approx g(x)\}, \text{ LPO }>_{lpo} \text{ induced by } f>g.$

 $R_0 := \{f(f(x)) \rightarrow g(x)\}$ has a non-joinable critical pair:

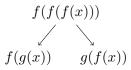


 $R_1:=\{f(f(x))\to g(x), f(g(x))\to g(f(x))\} \text{ is confluent.}$ $R_2=R_1.$

Input:

 $E:=\{f(f(x))\approx g(x)\}\text{, LPO}>_{lpo}\text{ induced by }f>g.$

 $R_0 := \{f(f(x)) \rightarrow g(x)\}$ has a non-joinable critical pair:



 $R_1 := \{f(f(x)) \rightarrow g(x), f(g(x)) \rightarrow g(f(x))\}$ is confluent. $R_2 = R_1.$

Output:

$$R_2 := \{ f(f(x)) \to g(x), f(g(x)) \to g(f(x)) \}.$$

Example: The Procedure Terminates with Failure

Input:

$$\begin{split} E := \{x*(y+z) \approx (x*y) + (x*z), \ (u+v)*w \approx (u*w) + (v*w)\}, \\ \mathsf{LPO}>_{lpo} \text{ induced by } *>+. \end{split}$$

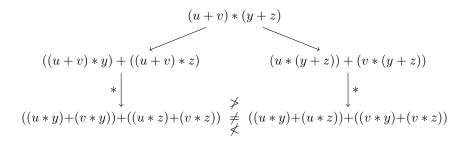
<□ > < @ > < E > < E > E のQ @

Example: The Procedure Terminates with Failure

Input:

$$\begin{split} E &:= \{x*(y+z) \approx (x*y) + (x*z), \ (u+v)*w \approx (u*w) + (v*w)\},\\ \mathsf{LPO} &>_{lpo} \text{ induced by } *> +. \end{split}$$

 $R_0 := \{x*(y+z) \to (x*y) + (x*z), \ (u+v)*w \to (u*w) + (v*w)\}$ has a non-joinable critical pair:

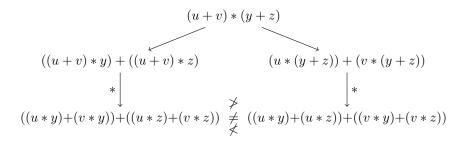


Example: The Procedure Terminates with Failure

Input:

$$\begin{split} E &:= \{x*(y+z)\approx (x*y)+(x*z), \ (u+v)*w\approx (u*w)+(v*w)\},\\ \mathsf{LPO}>_{lpo} \text{ induced by }*>+. \end{split}$$

 $R_0 := \{x*(y+z) \to (x*y) + (x*z), \ (u+v)*w \to (u*w) + (v*w)\}$ has a non-joinable critical pair:



The procedure fails.

Input: $E:=\{x+0\approx x,\ x+s(y)\approx s(x+y)\}\text{, LPO}>_{lpo}\text{ induced by }s>+.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Input:

 $E:=\{x+0\approx x,\ x+s(y)\approx s(x+y)\}\text{, LPO}>_{lpo}\text{ induced by }s>+.$

 $R_0 := \{x + 0 \to x, \ s(x + y) \to x + s(y)\}.$ $R_1 := R_0 \cup \{x + s(0) \to s(x)\}.$

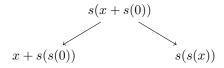
Input:

 $E:=\{x+0\approx x,\ x+s(y)\approx s(x+y)\},$ LPO $>_{lpo}$ induced by s>+.

$$R_0 := \{x + 0 \to x, \ s(x + y) \to x + s(y)\}.$$

$$R_1 := R_0 \cup \{x + s(0) \to s(x)\}.$$

 R_1 is not confluent since the following critical pair is not joinable:



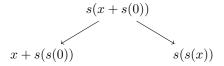
Input:

 $E:=\{x+0\approx x,\ x+s(y)\approx s(x+y)\}\text{, LPO}>_{lpo}\text{ induced by }s>+.$

$$R_0 := \{x + 0 \to x, \ s(x + y) \to x + s(y)\}.$$

$$R_1 := R_0 \cup \{x + s(0) \to s(x)\}.$$

 R_1 is not confluent since the following critical pair is not joinable:



At each step of the iteration a new rule of the form $x + s^n(0) \rightarrow s^n(0)$ is generated. The procedure does not stop.

Drawbacks of the Basic Completion

- In practice, the basic completion procedure generates a huge number of rules.
- All of them should be taken into account when computing critical pairs.
- It makes both time and space requirement often unacceptably high.

Addressing the Drawbacks

- All implementations of completion "simplify" rules by reducing them with the help of other rules.
- If both sides of a rule reduce to the same term, the rule can be removed.
- Yields smaller rules.
- Improved completion procedure.

Example 6.3

 $R:=\{f(f(x,y),z)\to f(x,f(y,z)),\ f(x,f(y,z))\to f(x,z)\}$

Addressing the Drawbacks

- All implementations of completion "simplify" rules by reducing them with the help of other rules.
- If both sides of a rule reduce to the same term, the rule can be removed.
- Yields smaller rules.
- Improved completion procedure.

Example 6.3 $R := \{f(f(x, y), z) \rightarrow f(x, f(y, z)), f(x, f(y, z)) \rightarrow f(x, z)\}$ $f(f(x, y), z) \longrightarrow f(x, f(y, z))$ \downarrow f(x, z)

Addressing the Drawbacks

- All implementations of completion "simplify" rules by reducing them with the help of other rules.
- If both sides of a rule reduce to the same term, the rule can be removed.
- Yields smaller rules.
- Improved completion procedure.

Example 6.3

$$R:=\{f(f(x,y),z)\to f(x,f(y,z)),\ f(x,f(y,z))\to f(x,z)\}$$

$$\begin{array}{c} f(f(x,y),z) \longrightarrow f(x,f(y,z)) \\ \downarrow \\ f(x,z) \end{array}$$

Simpler rules:

 $R=\{f(f(x,y),z)\to f(x,z),\ f(x,f(y,z))\to f(x,z)\}.$

An Improved Completion Procedure

- Described as a set of inference rules.
- Specific completion procedure is obtained by fixing a strategy for application of the rules.
- ▶ Works on pairs (E, R), where E is a set of identities and R is a set of rewrite rules.
- ► *E* contains input identities and not-yet-oriented critical pairs with the input reduction ordering >.
- R is a set of rewrite rules oriented with input ordering >.
- ► Goal: To transform an initial pair (E₀, Ø) into (Ø, R) such that R is convergent and equivalent to E.

An Improved Completion Procedure

DEDUCE	$\frac{E,R}{E\cup\{s\approx t\},R}$	$\text{if } s \leftarrow_R u \rightarrow_R t$
Orient	$\frac{E \cup \{s \stackrel{.}{\approx} t\}, R}{E, R \cup \{s \rightarrow t\}}$	$ \text{if} \ s>t$
Delete	$\frac{E \cup \{s \approx s\}, R}{E, R}$	
Simplify-identity	$\frac{E \cup \{s \stackrel{.}{\approx} t\}, R}{E \cup \{u \approx t\}, R}$	$ \text{if } s \to_R u \\$
R-Simplify-rule	$\frac{E, R \cup \{s \to t\}}{E, R \cup \{s \to u\}}$	$ \text{if } t \to_R u \\$
L-SIMPLIFY-RULE	$\frac{E, R \cup \{s \to t\}}{E \cup \{u \approx t\}, R}$	if $s \stackrel{\square}{\to}_R u$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

▶ In the L-SIMPLIFY-RULE, $s \xrightarrow{\square}_R u$ says that s is reduced by a rule $l \to r \in R$ such that l can not be reduced by $s \to t$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ In the L-SIMPLIFY-RULE, $s \xrightarrow{\square}_R u$ says that s is reduced by a rule $l \to r \in R$ such that l can not be reduced by $s \to t$.
- ▶ If $R := \{f(x, x) \to x, f(x, y) \to x\}$, then L-SIMPLIFY-RULE can be applied to $f(x, x) \to x$.

(日) (同) (三) (三) (三) (○) (○)

- ▶ In the L-SIMPLIFY-RULE, $s \xrightarrow{\square}_R u$ says that s is reduced by a rule $l \to r \in R$ such that l can not be reduced by $s \to t$.
- ▶ If $R := \{f(x, x) \to x, f(x, y) \to x\}$, then L-SIMPLIFY-RULE can be applied to $f(x, x) \to x$.
- ▶ If $R := \{f(x, y) \to x, f(x, y) \to y\}$, then L-SIMPLIFY-RULE can not be applied.

- ▶ In the L-SIMPLIFY-RULE, $s \xrightarrow{\square}_R u$ says that s is reduced by a rule $l \to r \in R$ such that l can not be reduced by $s \to t$.
- ▶ If $R := \{f(x, x) \to x, f(x, y) \to x\}$, then L-SIMPLIFY-RULE can be applied to $f(x, x) \to x$.
- ▶ If $R := \{f(x, y) \to x, f(x, y) \to y\}$, then L-SIMPLIFY-RULE can not be applied.

▶ Notation: $(E, R) \vdash_{\mathcal{C}} (E', R')$ means that (E, R) can be transformed into (E', R') by one of the inference rules.

Termination

Lemma 6.1 (Termination) If $R \subseteq >$ and $(E, R) \vdash_{\mathcal{C}} (E', R')$, then $R' \subseteq >$.

Proof.

All rules are oriented wrt the reduction order >.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Lemma 6.2 (Soundness)

If $(E_1, R_1) \vdash_{\mathcal{C}} (E_2, R_2)$, then $\approx_{E_1 \cup R_1} = \approx_{E_2 \cup R_2}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma 6.2 (Soundness)

If $(E_1, R_1) \vdash_{\mathcal{C}} (E_2, R_2)$, then $\approx_{E_1 \cup R_1} = \approx_{E_2 \cup R_2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof.

Trivial for the first three rules.

Lemma 6.2 (Soundness) If $(E_1, R_1) \vdash_{\mathcal{C}} (E_2, R_2)$, then $\approx_{E_1 \cup R_1} = \approx_{E_2 \cup R_2}$. Proof.

Trivial for the first three rules.

For SIMPLIFY-IDENTITY, $E_1 = E \cup \{s \approx t\}$, $E_2 = E \cup \{u \approx t\}$, $R_1 = R = R_2$, and $s \to_R u$. We have $u \approx_{E_1 \cup R_1} t$, which implies $\approx_{E_2 \cup R_2} \subseteq \approx_{E_1 \cup R_1}$. Conversely, $u \approx t \in E_2$, $s \to_R u$, and $R = R_2$ imply that $s \approx_{E_2 \cup R_2} t$ and, hence, $\approx_{E_1 \cup R_1} \subseteq \approx_{E_2 \cup R_2}$.

Lemma 6.2 (Soundness) If $(E_1, R_1) \vdash_{\mathcal{C}} (E_2, R_2)$, then $\approx_{E_1 \cup R_1} = \approx_{E_2 \cup R_2}$. Proof.

Trivial for the first three rules.

For SIMPLIFY-IDENTITY, $E_1 = E \cup \{s \approx t\}$, $E_2 = E \cup \{u \approx t\}$, $R_1 = R = R_2$, and $s \to_R u$. We have $u \approx_{E_1 \cup R_1} t$, which implies $\approx_{E_2 \cup R_2} \subseteq \approx_{E_1 \cup R_1}$. Conversely, $u \approx t \in E_2$, $s \to_R u$, and $R = R_2$ imply that $s \approx_{E_2 \cup R_2} t$ and, hence, $\approx_{E_1 \cup R_1} \subseteq \approx_{E_2 \cup R_2}$.

For R-SIMPLIFY, we have $E_1 = E = E_2$, $R_1 = R \cup \{s \to t\}$, $R_2 = R \cup \{s \to u\}$, and $t \to_R u$. $s \to t \in R_1$, $t \to_R u$, and $R \subseteq R_1$ imply $s \approx_{E_1 \cup R_1} u$. $s \to u \in R_2$, $t \to_R u$, and $R \subseteq R_2$ imply $s \approx_{E_2 \cup R_2} u$. Hence, $\approx_{E_1 \cup R_1} = \approx_{E_2 \cup R_2}$.

(日) (同) (三) (三) (三) (○) (○)

Lemma 6.2 (Soundness) If $(E_1, R_1) \vdash_{\mathcal{C}} (E_2, R_2)$, then $\approx_{E_1 \cup R_1} = \approx_{E_2 \cup R_2}$. Proof.

Trivial for the first three rules.

For SIMPLIFY-IDENTITY, $E_1 = E \cup \{s \approx t\}$, $E_2 = E \cup \{u \approx t\}$, $R_1 = R = R_2$, and $s \to_R u$. We have $u \approx_{E_1 \cup R_1} t$, which implies $\approx_{E_2 \cup R_2} \subseteq \approx_{E_1 \cup R_1}$. Conversely, $u \approx t \in E_2$, $s \to_R u$, and $R = R_2$ imply that $s \approx_{E_2 \cup R_2} t$ and, hence, $\approx_{E_1 \cup R_1} \subseteq \approx_{E_2 \cup R_2}$.

For R-SIMPLIFY, we have $E_1 = E = E_2$, $R_1 = R \cup \{s \to t\}$, $R_2 = R \cup \{s \to u\}$, and $t \to_R u$. $s \to t \in R_1$, $t \to_R u$, and $R \subseteq R_1$ imply $s \approx_{E_1 \cup R_1} u$. $s \to u \in R_2$, $t \to_R u$, and $R \subseteq R_2$ imply $s \approx_{E_2 \cup R_2} u$. Hence, $\approx_{E_1 \cup R_1} = \approx_{E_2 \cup R_2}$.

For L-SIMPLIFY the proof is similar.

Definition 6.1 (Completion Procedure)

A completion procedure is a program that accepts as input a finite set of identities and a reduction order >, and uses the inference rules to generate a (finite or infinite) sequence

 $(E_0, R_0) \vdash_{\mathcal{C}} (E_1, R_1) \vdash_{\mathcal{C}} (E_2, R_2) \vdash_{\mathcal{C}} (E_3, R_3) \vdash_{\mathcal{C}} \cdots,$

where $R_0 := \emptyset$. The sequence is called a run of the procedure on input E_0 and >.

► To treat finite and infinite runs simultaneously, we extend every finite run (E₀, R₀) ⊢_C ··· ⊢_C (E_n, R_n) to an infinite one by setting (E_{n+i}, R_{n+i}) := (E_n, R_n) for all i ≥ 1.

► To treat finite and infinite runs simultaneously, we extend every finite run (E₀, R₀) ⊢_C ··· ⊢_C (E_n, R_n) to an infinite one by setting (E_{n+i}, R_{n+i}) := (E_n, R_n) for all i ≥ 1.

Result of the run: persistent identities and rules:

$$E_\omega := igcup_{i \ge 0} igcup_{j \ge i} E_j ext{ and } R_\omega := igcup_{i \ge 0} igcup_{j \ge i} R_j.$$

► To treat finite and infinite runs simultaneously, we extend every finite run (E₀, R₀) ⊢_C ··· ⊢_C (E_n, R_n) to an infinite one by setting (E_{n+i}, R_{n+i}) := (E_n, R_n) for all i ≥ 1.

Result of the run: persistent identities and rules:

$$E_{\omega} := \bigcup_{i \ge 0} \bigcap_{j \ge i} E_j$$
 and $R_{\omega} := \bigcup_{i \ge 0} \bigcap_{j \ge i} R_j$.

• If the run is finite, then $E_{\omega} = E_n$ and $R_{\omega} = R_n$.

- ► To treat finite and infinite runs simultaneously, we extend every finite run (E₀, R₀) ⊢_C ··· ⊢_C (E_n, R_n) to an infinite one by setting (E_{n+i}, R_{n+i}) := (E_n, R_n) for all i ≥ 1.
- Result of the run: persistent identities and rules:

$$E_{\omega} := \bigcup_{i \ge 0} \bigcap_{j \ge i} E_j \text{ and } R_{\omega} := \bigcup_{i \ge 0} \bigcap_{j \ge i} R_j.$$

- If the run is finite, then $E_{\omega} = E_n$ and $R_{\omega} = R_n$.
- ▶ If the run is infinite, persistent identities (rules) are those that belong to some E_i (R_i) and are never removed in later inference steps.

Definition 6.2 (Success, Failure, Correctness)

A run on input E_0 of a completion procedure

▶ succeeds iff $E_{\omega} = \emptyset$ and R_{ω} is convergent and equivalent to E_0 ,

- fails iff $E_{\omega} \neq \emptyset$,
- ▶ is correct iff every run that does not fail succeeds.

For the basic completion procedure,

failure occurs if an input identity can not be oriented, or the normal forms of a critical pair are distinct (can not be removed by DELETE) and can not be oriented using >.

The other two cases (terminates successfully, does not terminate) are successful in terms of Definition 6.2.

An arbitrary completion procedure may also have infinite failing runs.

Example 6.4

Input:

$$\begin{split} E_0 &= \{h(x,y) \approx f(x), \, h(x,y) \approx f(y), f(g(f(x))) \approx f(g(x))\} \\ &>_{lpo} \text{ induced by } g > h > f > a. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The procedure generates an infinite run with

$$E_{\omega} = \{f(x) \approx f(y)\}$$

$$R_{\omega} = \{h(x, y) \rightarrow f(x), h(x, y) \rightarrow f(y)\} \cup$$

$$\{fg^n f(x) \rightarrow fg^n(x) \mid n \ge 1\}.$$

- It makes sense not to terminate with failure if a reduced and nonorientable identity is encountered.
- One simply defers the orientation of this identity until new rules are obtained.
- If the new set of rules allows one to simplify the identity to an orientable or trivial one, then one can apply ORIENT or DELETE.

• Otherwise, the treatment of this identity is deferred again.

Example 6.5

Input:

$$\begin{split} E_0 &= \{h(x,y) \approx f(x), \, h(x,y) \approx f(y), \, g(x,y) \approx h(x,y), \, g(x,y) \approx a \} \\ &>_{lpo} \text{ induced by } g > h > f > a. \end{split}$$

Example 6.5

Input:

$$\begin{split} E_0 &= \{h(x,y) \approx f(x), \, h(x,y) \approx f(y), \, g(x,y) \approx h(x,y), \, g(x,y) \approx a \} \\ &>_{lpo} \text{ induced by } g > h > f > a. \end{split}$$

Apply ORIENT 4 times:

$$\begin{split} E_4 &= \emptyset \\ R_4 &= \{h(x,y) \rightarrow f(x), \, h(x,y) \rightarrow f(y), \\ &\quad g(x,y) \rightarrow h(x,y), \, g(x,y) \rightarrow a\} \end{split}$$

Example 6.5

Input:

$$\begin{split} E_0 &= \{h(x,y) \approx f(x), \, h(x,y) \approx f(y), \, g(x,y) \approx h(x,y), \, g(x,y) \approx a \} \\ &>_{lpo} \text{ induced by } g > h > f > a. \end{split}$$

Apply ORIENT 4 times:

$$\begin{split} E_4 &= \emptyset \\ R_4 &= \{h(x,y) \to f(x), \, h(x,y) \to f(y), \\ g(x,y) \to h(x,y), \, g(x,y) \to a\} \end{split}$$

Apply DEDUCE twice:

$$\begin{split} E_6 &= \{f(x) \approx f(y), \, h(x,y) \approx a\}\\ R_6 &= \{h(x,y) \rightarrow f(x), \, h(x,y) \rightarrow f(y),\\ g(x,y) \rightarrow h(x,y), \, g(x,y) \rightarrow a\} \end{split}$$

Example 6.5

Input:

$$\begin{split} E_0 &= \{h(x,y) \approx f(x), \, h(x,y) \approx f(y), \, g(x,y) \approx h(x,y), \, g(x,y) \approx a \} \\ &>_{lpo} \text{ induced by } g > h > f > a. \end{split}$$

$$E_6 = \{f(x) \approx f(y), h(x, y) \approx a\}$$

$$R_6 = \{h(x, y) \rightarrow f(x), h(x, y) \rightarrow f(y),$$

$$g(x, y) \rightarrow h(x, y), g(x, y) \rightarrow a\}$$

Example 6.5

Input:

$$\begin{split} E_0 &= \{h(x,y) \approx f(x), \, h(x,y) \approx f(y), \, g(x,y) \approx h(x,y), \, g(x,y) \approx a \} \\ &>_{lpo} \text{ induced by } g > h > f > a. \end{split}$$

$$E_6 = \{f(x) \approx f(y), h(x, y) \approx a\}$$

$$R_6 = \{h(x, y) \rightarrow f(x), h(x, y) \rightarrow f(y),$$

$$g(x, y) \rightarrow h(x, y), g(x, y) \rightarrow a\}$$

Apply ORIENT:

$$E_7 = \{f(x) \approx f(y)\}$$

$$R_7 = \{h(x, y) \rightarrow f(x), h(x, y) \rightarrow f(y),$$

$$g(x, y) \rightarrow h(x, y), g(x, y) \rightarrow a, h(x, y) \rightarrow a\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example 6.5

Input:

$$\begin{split} E_0 &= \{h(x,y) \approx f(x), \, h(x,y) \approx f(y), \, g(x,y) \approx h(x,y), \, g(x,y) \approx a \} \\ &>_{lpo} \text{ induced by } g > h > f > a. \end{split}$$

$$E_7 = \{f(x) \approx f(y)\}$$

$$R_7 = \{h(x, y) \rightarrow f(x), h(x, y) \rightarrow f(y),$$

$$g(x, y) \rightarrow h(x, y), g(x, y) \rightarrow a, h(x, y) \rightarrow a\}$$

Example 6.5

Input:

$$\begin{split} E_0 &= \{h(x,y) \approx f(x), \, h(x,y) \approx f(y), \, g(x,y) \approx h(x,y), \, g(x,y) \approx a \} \\ &>_{lpo} \text{ induced by } g > h > f > a. \end{split}$$

$$E_7 = \{f(x) \approx f(y)\}$$

$$R_7 = \{h(x, y) \rightarrow f(x), h(x, y) \rightarrow f(y),$$

$$g(x, y) \rightarrow h(x, y), g(x, y) \rightarrow a, h(x, y) \rightarrow a\}$$

Apply DEDUCE: (The basic completion would fail here, since the critical pair $f(x) \approx f(y)$ is unoriantable.)

$$E_8 = \{f(x) \approx f(y), f(x) \approx a\}$$

$$R_8 = \{h(x, y) \rightarrow f(x), h(x, y) \rightarrow f(y),$$

$$g(x, y) \rightarrow h(x, y), g(x, y) \rightarrow a, h(x, y) \rightarrow a\}$$

Example 6.5

Input:

$$\begin{split} E_0 &= \{h(x,y) \approx f(x), \, h(x,y) \approx f(y), \, g(x,y) \approx h(x,y), \, g(x,y) \approx a \} \\ &>_{lpo} \text{ induced by } g > h > f > a. \end{split}$$

$$E_8 = \{f(x) \approx f(y), f(x) \approx a\}$$

$$R_8 = \{h(x, y) \rightarrow f(x), h(x, y) \rightarrow f(y),$$

$$g(x, y) \rightarrow h(x, y), g(x, y) \rightarrow a, h(x, y) \rightarrow a\}$$

Example 6.5

Input:

$$\begin{split} E_0 &= \{h(x,y) \approx f(x), \, h(x,y) \approx f(y), \, g(x,y) \approx h(x,y), \, g(x,y) \approx a \} \\ &>_{lpo} \text{ induced by } g > h > f > a. \end{split}$$

$$E_8 = \{f(x) \approx f(y), f(x) \approx a\}$$

$$R_8 = \{h(x, y) \rightarrow f(x), h(x, y) \rightarrow f(y),$$

$$g(x, y) \rightarrow h(x, y), g(x, y) \rightarrow a, h(x, y) \rightarrow a\}$$

 $\mathsf{Apply}\ \mathbf{O}\mathtt{RIENT}$

$$E_9 = \{f(x) \approx f(y)\}$$

$$R_9 = \{h(x, y) \rightarrow f(x), h(x, y) \rightarrow f(y), g(x, y) \rightarrow h(x, y)$$

$$g(x, y) \rightarrow a, h(x, y) \rightarrow a, f(x) \rightarrow a\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example 6.5

Input:

$$\begin{split} E_0 &= \{h(x,y) \approx f(x), \, h(x,y) \approx f(y), \, g(x,y) \approx h(x,y), \, g(x,y) \approx a \} \\ &>_{lpo} \text{ induced by } g > h > f > a. \end{split}$$

$$E_9 = \{f(x) \approx f(y)\}$$

$$R_9 = \{h(x, y) \rightarrow f(x), h(x, y) \rightarrow f(y), g(x, y) \rightarrow h(x, y)$$

$$g(x, y) \rightarrow a, h(x, y) \rightarrow a, f(x) \rightarrow a\}$$

Example 6.5

Input:

$$\begin{split} E_0 &= \{h(x,y) \approx f(x), \, h(x,y) \approx f(y), \, g(x,y) \approx h(x,y), \, g(x,y) \approx a \} \\ &>_{lpo} \text{ induced by } g > h > f > a. \end{split}$$

$$E_9 = \{f(x) \approx f(y)\}$$

$$R_9 = \{h(x,y) \rightarrow f(x), h(x,y) \rightarrow f(y), g(x,y) \rightarrow h(x,y)$$

$$g(x,y) \rightarrow a, h(x,y) \rightarrow a, f(x) \rightarrow a\}$$

Apply $\operatorname{SIMPLIFY-IDENTITY}$ twice

$$E_{11} = \{a \approx a\}$$

$$R_{11} = \{h(x, y) \rightarrow f(x), h(x, y) \rightarrow f(y), g(x, y) \rightarrow h(x, y)$$

$$g(x, y) \rightarrow a, h(x, y) \rightarrow a, f(x) \rightarrow a\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example 6.5

Input:

$$\begin{split} E_0 &= \{h(x,y) \approx f(x), \, h(x,y) \approx f(y), \, g(x,y) \approx h(x,y), \, g(x,y) \approx a \} \\ &>_{lpo} \text{ induced by } g > h > f > a. \end{split}$$

$$\begin{split} E_{11} &= \{a \approx a\} \\ R_{11} &= \{h(x,y) \rightarrow f(x), \, h(x,y) \rightarrow f(y), \, g(x,y) \rightarrow h(x,y) \\ &\quad g(x,y) \rightarrow a, \, h(x,y) \rightarrow a, \, f(x) \rightarrow a\} \end{split}$$

Example 6.5

Input:

$$\begin{split} E_0 &= \{h(x,y) \approx f(x), \, h(x,y) \approx f(y), \, g(x,y) \approx h(x,y), \, g(x,y) \approx a \} \\ &>_{lpo} \text{ induced by } g > h > f > a. \end{split}$$

$$E_{11} = \{a \approx a\}$$

$$R_{11} = \{h(x, y) \rightarrow f(x), h(x, y) \rightarrow f(y), g(x, y) \rightarrow h(x, y)$$

$$g(x, y) \rightarrow a, h(x, y) \rightarrow a, f(x) \rightarrow a\}$$

Apply Delete

$$\begin{split} E_{12} &= \emptyset \\ R_{12} &= \{h(x,y) \rightarrow f(x), \ h(x,y) \rightarrow f(y), \ g(x,y) \rightarrow h(x,y) \\ g(x,y) \rightarrow a, \ h(x,y) \rightarrow a, \ f(x) \rightarrow a\} \end{split}$$

Hence, we manage to simplify and delete an unorientable identity.

Fairness

Definition 6.3 (Fairness)

A run of a completion procedure is called fair iff

$$CP(R_{\omega}) \subseteq \bigcup_{i \ge 0} E_i.$$

A completion procedure is fair iff every non-failing run is fair.

Theorem 6.1 Every fair completion procedure is correct.