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Confluence Is Undecidable

The following problem is undecidable:

Given: A finite TRS R.

Question: Is R confluent or not?



Confluence Is Undecidable

The following problem is undecidable:

Given: A finite TRS R.

Question: Is R confluent or not?

Proof.
Idea:

I Given a set of identities E such that Var(l) ≈ Var(l) for all
l ≈ r ∈ E, l and r not being variables.

I Construct a TRS whose confluence problem is equivalent to
the ground word problem for E.

I Undecidability of the ground word problem for E (see e.g.
Example 4.1.4 from the book of Baader and Nipkow) will
imply undecidability of the confluence problem.



Confluence Is Undecidable

The following problem is undecidable:

Given: A finite TRS R.

Question: Is R confluent or not?

Proof.
Construction of a TRS:

1. R := E ∪ E−1 is a confluent TRS.

2. Rst := R ∪ {a→ s, a→ t}, where s and t are given ground
terms and a is a new constant.

3. Rst is confluent iff s ≈E t.

Hence, the ground word problem for E reduces to the confluence
problem for Rs,t.



A Decidable Subcase

Theorem 5.1
For terminating TRSs, confluence is decidable.

Proof idea:

I By Newman’s lemma, if a TRS is terminating and locally
confluent, then it is confluent.

I To prove the theorem, we need to prove that local confluence
is decidable for terminating TRSs.



How to Test Local Confluence?

Local confluence:

x y1

y2 z
∗

∗



How to Test Local Confluence?

To test for local confluence of →R, consider reductions:

s

t1 t2

l1 → r1 l2 → r2

That means, there are rules l1 → r1, l2 → r2 ∈ R, positions
p1, p2 ∈ Pos(s), and substitutions σ1, σ2 such that

I s|p1 = σ1(l1) and t1 = s[σ1(r1)]p1 .

I s|p2 = σ2(l2) and t2 = s[σ2(r2)]p2 .

Consider several cases, depending on the relative positions of p1
and p2.



How to Test Local Confluence?

Case 1: p1 and p2 are parallel positions.

Example: R := {f(a, g(x))→ f(x, x), g(b)→ c}
Peak:

f(g(b), g(b))

f(c, g(b)) f(g(b), c)

p1 = 1 p2 = 2



How to Test Local Confluence?

Case 1: p1 and p2 are parallel positions.

Outcome: The reducts are joinable.



How to Test Local Confluence?

Case 1: p1 and p2 are parallel positions.

Outcome: The reducts are joinable.

Example: R := {f(a, g(x))→ f(x, x), g(b)→ c}
Peak:

f(g(b), g(b))

f(c, g(b)) f(g(b), c)

p1 = 1 p2 = 2

Joinability:

f(c, g(b))→ f(c, c)

f(g(b), c)→ f(c, c)



How to Test Local Confluence?

Case 2: One position is a prefix of another.
Say, p1 is a prefix of p2: p2 = p1p for some p.

We restrict our attention to σ1(l1), because

σ1(l1)

σ1(r1) σ1(l1)[σ2(r2)]p

t
∗ ∗

implies s[σ1(r1)]p1
∗−→ s[t]

∗←− s[σ1(l1)[σ2(r2)]p]p1 = s[σ2(r2)]p2 .
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How to Test Local Confluence?

Case 2.1: The redex σ2(l2) does not overlap with l1 itself, but
is contained in σ1.
p = q1q2 such that q1 is a variable position in l1.

σ1(l1) has the form:

Non-critical overlap.



How to Test Local Confluence?

Case 2.1: The redex σ2(l2) does not overlap with l1 itself, but
is contained in σ1.
p = q1q2 such that q1 is a variable position in l1.

Example: R := {f(a, g(x))→ f(x, x), g(b)→ c}
Peak:

f(a, g(g(g(b))))

f(g(g(b)), g(g(b))) f(a, g(g(c)))

p1 = ε p2 = 211

l1 = f(a, g(x)), σ1 = {x 7→ g(g(b))}, l2 = g(b),
σ2 = ε.

p = 211, q1 = 21, q2 = 1.



How to Test Local Confluence?

Case 2.1: The redex σ2(l2) does not overlap with l1 itself, but
is contained in σ1.
p = q1q2 such that q1 is a variable position in l1.

Outcome: The reducts are joinable.

The analysis is complicated by the fact that x = l1|q1
may occur repeatedly both in l1 and r1.



How to Test Local Confluence?

Case 2.1: Instance: x appears three times in l1 and twice in r1.



How to Test Local Confluence?

Case 2.1: The redex σ2(l2) does not overlap with l1 itself, but
is contained in σ1.
p = q1q2 such that q1 is a variable position in l1.

Example: R := {f(a, g(x))→ f(x, x), g(b)→ c}
Peak:

f(a, g(g(g(b))))

f(g(g(b)), g(g(b))) f(a, g(g(c)))

p1 = ε p2 = 211

The reducts are joinable.

f(g(g(b)), g(g(b))
2−→ f(g(c), g(c)).

f(a, g(g(c)))→ f(g(c), g(c)).



How to Test Local Confluence?

Case 2.2: Two left-hand sides l1 and l2 overlap.
p ∈ Pos(l1), l1|p is not a variable, and
σ1(l1|p) = σ2(l2).

σ1(l1) has the form:

Critical overlap.



How to Test Local Confluence?

Case 2.2: Two left-hand sides l1 and l2 overlap.
p ∈ Pos(l1), l1|p is not a variable, and
σ1(l1|p) = σ2(l2).

In the case of critical overlap, local confluence need
not hold.

Example: R := {f(a, g(x))→ f(x, x), g(b)→ c}

f(a, g(b))

f(b, b) f(a, c)

p1 = ε p2 = 2

l1 = f(a, g(x)), σ1 = {x 7→ b}, l2 = g(b), σ2 = ε.

p = 2.



How to Test Local Confluence?

Case 2.2: Two left-hand sides l1 and l2 overlap.
p ∈ Pos(l1), l1|p is not a variable, and
σ1(l1|p) = σ2(l2).

Problem: Critical overlaps must be checked for local
confluence. How to do that?

Answer: It is enough to check finitely many critical pairs.



How to Test Local Confluence?

Definition 5.1
Let

I l1 → r1 and l2 → r2 be two rules which do not share variables,

I p ∈ Pos(l1) be a position such that l1|p is not a variable, and

I ϑ be an mgu of l1|p and l2

Then the pair 〈ϑ(r1), ϑ(l1)[ϑ(r2)]p〉 is called a critical pair.

ϑ(l1)

ϑ(r1) ϑ(l1)[ϑ(r2)]p



How to Test Local Confluence?

I The critical pairs of a TRS R are the critical pairs between
any of two of its renamed rules and are denoted by CP(R).

I Includes overlaps of a rule with a renamed copy of itself.



How to Test Local Confluence?

Example 5.1

I Let R := {f(f(x))→ g(x)}.
I Take a critical pair between the rule and its renamed copy,
f(f(x))→ g(x) and f(f(y))→ g(y)

f(f(f(x)))

g(f(x)) f(g(x))

I The terms in the critical pair, g(f(x)) and f(g(x)), are not
joinable.

I R is not locally confluent.



How to Test Local Confluence?

I Hence, local confluence test reduces to checking joinability of
critical pairs.

I The analysis of the cases on the previous slides leads to the
Critical Pair Lemma.



How to Test Local Confluence?

Lemma 5.1 (Critical Pair Lemma)

If R is a TRS and

s

t1 t2

l1 → r1 ∈ R l2 → r2 ∈ R

then t1 ↓R t2, or t1 = s[u1]p1 and t2 = s[u2]p2 for some p1, p2,
where 〈u1, u2〉 or 〈u2, u1〉 is an instance of a critical pair of R.

Proof.

I When there is no overlap or a non-critical overlap, then
t1 ↓R t2.

I When there is a critical overlap, then s|p1 = σ(l1) and
σ(l1|p) = σ(l2).



How to Test Local Confluence?

Lemma 5.1 (Critical Pair Lemma)

If R is a TRS and

s

t1 t2

l1 → r1 ∈ R l2 → r2 ∈ R

then t1 ↓R t2, or t1 = s[u1]p1 and t2 = s[u2]p2 for some p1, p2,
where 〈u1, u2〉 or 〈u2, u1〉 is an instance of a critical pair of R.

Proof (cont.)

I Hence, σ unifies l1|p and l2 and, therefore, is an instance of
their mgu ϑ.

I Therefore, 〈σ(r1), σ(l1)[σ(r2)]p〉 is an instance of the critical
pair 〈ϑ(r1), ϑ(l1)[ϑ(r2)]p〉



How to Test Local Confluence?

Lemma 5.1 (Critical Pair Lemma)

If R is a TRS and

s

t1 t2

l1 → r1 ∈ R l2 → r2 ∈ R

then t1 ↓R t2, or t1 = s[u1]p1 and t2 = s[u2]p2 for some p1, p2,
where 〈u1, u2〉 or 〈u2, u1〉 is an instance of a critical pair of R.

Proof (cont.)

I t1 = s[σ(r1)]p1 , t2 = s[σ(l1)[σ(r2)]p]p1 , p2 = p1p.



How to Test Local Confluence?

Theorem 5.2 (Critical Pair Theorem)

A TRS is locally confluent iff all its critical pairs are joinable.

Proof.

(⇐) Using the Critical Pair Lemma: Given ti = s[ui]p, i = 1, 2,
where 〈u1, u2〉 (wlog) is an instance of some critical pair

〈v1, v2〉 under a substitution ϕ, then vi
∗−→ t for some term t

implies ui
∗−→ ϕ(t) and, hence, ti

∗−→ s[ϕ(t)]p, i = 1, 2.

(⇒) Every critical pair is the product of a fork
ϑ(r1)← ϑ(l1)→ ϑ(l1)[ϑ(r2)]p. Joinability follows from local
confluence.
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How to Test Local Confluence?

Theorem 5.2 (Critical Pair Theorem)

A TRS is locally confluent iff all its critical pairs are joinable.

Corollary 5.1

A terminating TRS is confluent iff all its critical pairs are joinable.



How to Test Local Confluence?

I The problem of testing local confluence reduces to critical pair
joinability test.

I For terminating TRSs, the problem whether two terms are
joinable can be decided.

I For finite TRSs, the number of critical pairs is finite.

I Hence, for terminating and finite TRSs local confluence is
decidable.

I Therefore, for terminating and finite TRSs confluence is
decidable.



Deciding (Local) Confluence for Terminating Finite TRSs

Let R be a terminating finite TRS.

Decision procedure:

I For each pair of rules l1 → r1 and l2 → r2 (there are |R|2 of
them) and for every p ∈ Pos(l1) with a nonvariable l1|p (there
are at most |l1| of them) try to generate critical pairs.

I It involves unification of l1|p and l2 (decidable, unitary).

I Result: finitely many critical pairs.

I For each critical pair 〈u1, u2〉, reduce ui, to some R-normal
form ûi, i = 1, 2.

I If û1 = û2 for all such pairs, R is confluent (Corollary 5.1).

I If û1 6= û2 for such a pair, we have a non-confluent situation:
û1

∗←− u1 ← u→ u2
∗−→ û2.
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Deciding (Local) Confluence for Terminating Finite TRSs

Let R be a terminating finite TRS.

Decision procedure:

I For each pair of rules l1 → r1 and l2 → r2 (there are |R|2 of
them) and for every p ∈ Pos(l1) with a nonvariable l1|p (there
are at most |l1| of them) try to generate critical pairs.

I It involves unification of l1|p and l2 (decidable, unitary).

I Result: finitely many critical pairs.

I For each critical pair 〈u1, u2〉, reduce ui, to some R-normal
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Deciding (Local) Confluence for Terminating Finite TRSs

Example 5.2

Recall the TRS {f(f(x))→ g(x)}, which is not locally confluent.
The only critical pair 〈g(f(x)), f(g(x))〉 is not joinable.

f(f(f(x)))

g(f(x)) f(g(x))



Deciding (Local) Confluence for Terminating Finite TRSs

Example 5.2

Recall the TRS {f(f(x))→ g(x)}, which is not locally confluent.
The only critical pair 〈g(f(x)), f(g(x))〉 is not joinable.

This example illustrates that the two conditions in the definition of
the critical pairs are necessary:

I Rules are to be renamed. Otherwise f(f(x)) and f(x) are not
unifiable.

I The critical pair of a rule and (a renamed copy of) itself has
to be taken into account. Otherwise all one-rule systems
would appear to be locally-confluent.

I Critical pairs can be helpful lemmas: g(f(x)) ≈R f(g(x)) is
an interesting consequence of f(f(x))→R g(x) which may
not be apparent at first sight.
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Deciding (Local) Confluence for Terminating Finite TRSs

Example 5.3

The TRS {f(f(x))→ g(x), f(g(x))→ g(f(x))} is locally
confluent. Both critical pairs are joinable:

f(f(f(x)))

g(f(x)) f(g(x))

f(f(g(x)))

g(g(x))

f(g(f(x)))

g(f(f(x)))

Since the TRS is also terminating (use LPO with f > g), it is also
confluent.



Deciding (Local) Confluence for Terminating Finite TRSs

I Because critical pairs are equational consequences, adding a
critical pair as a new rewrite rule does not change the induced
equality.

I If R is a TRS and R′ is obtained from R by adding a critical
pair as a new rule, then ≈R =≈R′ .

I The idea of adding a critical pair as a new rule is called
“completion”.
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