Rewriting

Part 4. Termination of Term Rewriting Systems

Temur Kutsia

RISC, JKU Linz

Termination

Definition 4.1

A term rewriting system R is terminating iff \to_R is terminating, i.e., there is no infinite reduction chain

$$t_0 \to_R t_1 \to_R t_2 \to_R \cdots$$

Termination is Undecidable

The following problem is undecidable:

Given: A finite TRS R.

Question: Is R terminating or not?

Proof by reduction of the uniform halting problem for Turing Machines.

Definition 4.2

A TRS R is called right-ground iff for all $l \to r \in R$, we have $\mathcal{V}ar(r) = \emptyset$ (i.e., r is ground).

Lemma 4.1

Let R be a finite right-ground TRS. Then the following statements are equivalent:

- 1. R does not terminate.
- 2. There exists a rule $l \to r \in R$ and a term t such that $r \xrightarrow{+}_R t$ and t contains r as a subterm.

Proof.

 $(2 \Rightarrow 1)$ is obvious: 2 yields an infinite reduction

$$r \xrightarrow{+}_{R} t = t[r]_{p} \xrightarrow{+}_{R} t[t]_{p} = t[t[r]_{p}]_{p} \xrightarrow{+}_{R} \cdots$$

Lemma 4.1

Let R be a finite right-ground TRS. Then the following statements are equivalent:

- 1. R does not terminate.
- 2. There exists a rule $l \to r \in R$ and a term t such that $r \xrightarrow{+}_R t$ and t contains r as a subterm.

Proof (Cont.)

 $(1\Rightarrow 2)$: By induction on cardinality of R. If R is empty, 1 is false. Assume |R|>0 and consider an infinite reduction $t_1\to_R t_2\to_R\cdots$

Lemma 4.1

Let R be a finite right-ground TRS. Then the following statements are equivalent:

- 1. R does not terminate.
- 2. There exists a rule $l \to r \in R$ and a term t such that $r \xrightarrow{+}_{R} t$ and t contains r as a subterm.

Proof (Cont.)

- (i) Assume wlog that at least one of the reductions in $t_1 \to_R t_2 \to_R \cdots$ occurs at position ϵ .
- (ii) This means that there exist an index i, a rule $l \to r \in R$, and a substitution σ such that $t_i = \sigma(l)$ and $t_{i+1} = \sigma(r) = r$. Therefore, there exists an infinite reduction $r \to_R t_{i+2} \to_R t_{i+3} \to_R \cdots$ starting from r.

Lemma 4.1

Let R be a finite right-ground TRS. Then the following statements are equivalent:

- 1. R does not terminate.
- 2. There exists a rule $l \to r \in R$ and a term t such that $r \xrightarrow{+}_{R} t$ and t contains r as a subterm.

Proof (Cont.)

Two cases:

- (a) $l \to r$ is not used in this reduction. Then $R \setminus \{l \to r\}$ does not terminate and we can apply the induction hypothesis.
- (b) $l \to r$ is used in the reduction. Hence, there exists $j \ge 2$ such that r occurs in t_{i+j} and 2 holds.

Decision Procedure for Termination of Right-Ground TRSs

- ▶ Given a finite right-ground TRS $R = \{l_1 \rightarrow r_1, \dots, l_n \rightarrow r_n\}$.
- ▶ Take the right hand sides r_1, \ldots, r_n .
- Simultaneously generate all reduction sequences starting from r_1, \ldots, r_n :
 - First generate all sequences of length 1,
 - ▶ Then generate all sequences of length 2,
 - etc.
- ▶ Either one detects the cycle $r_i \xrightarrow{k}_R t$, $k \ge 1$, where t contains r_i as a subterm (R is not terminating),
- \triangleright or the process of generating these reductions terminates (R is terminating).

Decision Procedure for Termination of Right-Ground TRSs

- ▶ Given a finite right-ground TRS $R = \{l_1 \rightarrow r_1, \dots, l_n \rightarrow r_n\}$.
- ▶ Take the right hand sides r_1, \ldots, r_n .
- Simultaneously generate all reduction sequences starting from r_1, \ldots, r_n :
 - First generate all sequences of length 1,
 - ▶ Then generate all sequences of length 2,
 - etc.
- ▶ Either one detects the cycle $r_i \xrightarrow{k}_R t$, $k \ge 1$, where t contains r_i as a subterm (R is not terminating),
- \triangleright or the process of generating these reductions terminates (R is terminating).

Theorem 4.1

For finite right-ground TRSs, termination is decidable.

- ► Termination problem is undecidable. There can not be a general procedure that
 - ▶ given an arbitrary TRS
 - answers with "yes" if the system is terminating, and with "no" otherwise.

- ► Termination problem is undecidable. There can not be a general procedure that
 - given an arbitrary TRS
 - answers with "yes" if the system is terminating, and with "no" otherwise.
- ► However, often it is necessary to prove for a particular system that it terminates.

- ► Termination problem is undecidable. There can not be a general procedure that
 - given an arbitrary TRS
 - answers with "yes" if the system is terminating, and with "no" otherwise.
- ► However, often it is necessary to prove for a particular system that it terminates.
- ▶ It is possible to develop tools that facilitate this task. Ideally, it should be possible to automate them.

- Termination problem is undecidable. There can not be a general procedure that
 - ▶ given an arbitrary TRS
 - answers with "yes" if the system is terminating, and with "no" otherwise.
- ► However, often it is necessary to prove for a particular system that it terminates.
- It is possible to develop tools that facilitate this task. Ideally, it should be possible to automate them.
- ▶ Undecidability of termination implies that such methods can not succeed for all terminating rewrite systems.

▶ Idea: Define a class of strict orders > on terms such that

$$l>r \text{ for all } (l\to r)\in R$$

implies termination of R.

▶ Idea: Define a class of strict orders > on terms such that

$$l>r \text{ for all } (l\to r)\in R$$

implies termination of R.

Reduction orders.

Definition 4.3

A strict order > on $T(\mathcal{F},\mathcal{V})$ is called a reduction order iff it is

1. compatible with \mathcal{F} -operations: If $s_1 > s_2$, then

$$f(t_1,\ldots,t_{i-1},s_1,t_{i+1},\ldots,t_n) > f(t_1,\ldots,t_{i-1},s_2,t_{i+1},\ldots,t_n)$$

for all
$$t_1, \ldots, t_{i-1}, s_1, s_2, t_{i+1}, \ldots, t_n \in T(\mathcal{F}, \mathcal{V})$$
 and $f \in \mathcal{F}^n$,

- 2. closed under substitutions: If $s_1 > s_2$, then $\sigma(s_1) > \sigma(s_2)$ for all $s_1, s_2 \in T(\mathcal{F}, \mathcal{V})$ and a $T(\mathcal{F}, \mathcal{V})$ -substitution σ ,
- 3. well-founded.

Example 4.1

- \blacktriangleright |t|: The size of the term t.
- ▶ The order > on $T(\mathcal{F}, \mathcal{V})$: s > t iff |s| > |t|.

Example 4.1

- ▶ |t|: The size of the term t.
- ▶ The order > on $T(\mathcal{F}, \mathcal{V})$: s > t iff |s| > |t|.
- ightharpoonup > is compatible with \mathcal{F} -operations and well-founded.

Example 4.1

- ▶ |t|: The size of the term t.
- ▶ The order > on $T(\mathcal{F}, \mathcal{V})$: s > t iff |s| > |t|.
- ightharpoonup > is compatible with \mathcal{F} -operations and well-founded.
- ► However, > is not a reduction order because it is not closed under substitutions:

$$\begin{split} |f(f(x,x),y)| &= 5 > 3 = |f(y,y)| \\ \text{For } \sigma &= \{y \mapsto f(x,x)\} : \\ |\sigma(f(f(x,x),y))| &= |f(f(x,x),f(x,x))| = 7, \\ |\sigma(f(y,y)| &= |f(f(x,x),f(x,x))| = 7. \end{split}$$

Example 4.1 (Cont.)

- ▶ $|t|_x$: The number of occurrences of x in t.
- ▶ The order > on $T(\mathcal{F}, \mathcal{V})$: s > t iff |s| > |t| and $|s|_x \ge |t|_x$ for all $x \in \mathcal{V}$.

Example 4.1 (Cont.)

- ▶ $|t|_x$: The number of occurrences of x in t.
- ▶ The order > on $T(\mathcal{F}, \mathcal{V})$: s > t iff |s| > |t| and $|s|_x \ge |t|_x$ for all $x \in \mathcal{V}$.
- > is a reduction order.

Why Are Reduction Orders Interesting?

Theorem 4.2

A TRS R terminates iff there exists a reduction order > that satisfies l > r for all $l \rightarrow r \in R$.

Why Are Reduction Orders Interesting?

Theorem 4.2

A TRS R terminates iff there exists a reduction order > that satisfies l > r for all $l \rightarrow r \in R$.

Proof.

 (\Rightarrow) : Assume R terminates. Then $\xrightarrow{+}_R n$ is a reduction order, satisfying $l \xrightarrow{+}_R r$ for all $l \to r \in R$.

 (\Leftarrow) : l>r implies $t[\sigma(l)]_p>t[\sigma(r)]_p$ for all terms t, substitutions σ , and positions p. Thus, l>r for all $l\to r\in R$ implies $s_1>s_2$ for all s_1,s_2 with $s_1\to_R s_2$. Since > is well-founded, there can not be infinite reduction $s_1\to_R s_2\to_R s_2\to_R \cdots$.

Reduction Orders: An Example

Example 4.2

The TRS

$$R := \{ f(x, f(y, x)) \rightarrow f(x, y), \ f(x, x) \rightarrow x \}$$

is terminating. For the reduction order defined as

$$s>t$$
 iff $|s|>|t|$ and $|s|_x\geq |t|_x$ for all $x\in\mathcal{V}$

we have

Reduction Orders: Example

Example 4.2 (Cont.)

The TRS

$$R \cup \{f(f(x,y),z) \to f(x,f(y,z))\}\$$

is also terminating. But this can not be shown by the previous reduction order because

$$f(f(x,y),z) \not> f(x,f(y,z)).$$

Methods for Construction Reduction Orders

- Polynomial orders
- Simplification orders:
 - ► Recursive path orders
 - Knuth-Bendix orders

Methods for Construction Reduction Orders

- Polynomial orders
- Simplification orders:
 - Recursive path orders
 - Knuth-Bendix orders

Goal: Provide a variety of different reduction orders that can be used to show termination; not only by hand, but also automatically.

Polynomial Orders

Interpretation method. The idea:

- ► Interpret terms in an F-algebra that is equipped with a well-founded order.
- ▶ Compare terms with respect to their interpretations: A term *s* is larger than a term *t* iff the interpretation of *s* is larger than the interpretation of *t*.

One has to make sure that the ordering on interpretation induces a reduction order on terms.

Polynomial Orders. Interpreting Terms

Definition 4.4

A polynomial interpretation $\mathcal P$ of a signature $\mathcal F$ is an $\mathcal F$ -algebra $\mathcal P=(A,\{P_f\}_{f\in\mathcal F})$ such that

- ▶ the carrier set A is a nonempty set of positive integers: $A \subseteq \mathbb{N} \setminus \{0\}$,
- every n-ary function symbol f is associated with a polynomial $P_f(X_1,\ldots,X_n)\in \mathbb{N}[X_1,\ldots,X_n]$ such that for all $a_1,\ldots,a_n\in A,\ f_{\mathcal{P}}(a_1,\ldots,a_n):=P_f(a_1,\ldots,a_n)\in A.$

A well-founded order > on A is the usual order on natural numbers.

Polynomial Orders. Interpreting Terms

Example 4.3

Let $\mathcal{F}=\{\oplus,\odot\}$ consists of two binary function symbols and let $A:=\mathbb{N}\setminus\{0,1\}$. Define

$$P_{\oplus}(x,y) := 2x + y + 1$$
$$P_{\odot}(x,y) := xy$$

The mapping from function symbols to polynomial functions can be extended to terms, mapping variables (x, y, z, \ldots) to indeterminates (X, Y, Z, \ldots) . For example:

$$t = x \odot (x \oplus y)$$

$$P_t = P_{\odot}(X, P_{\oplus}(X, Y)) = X(2X + Y + 1) = 2X^2 + XY + X.$$

Polynomial Orders. Guaranteeing Compatibility

- ▶ If in the previous example we had defined $P_{\odot}(x,y) := x^2$, the interpretation would not be compatible with \mathcal{F} -operations.
- ▶ 3 > 2, but $\bigcirc_{\mathcal{P}}(2,3) = P_{\bigcirc}(2,3) = 4 = P_{\bigcirc}(2,2) = \bigcirc_{\mathcal{P}}(2,2)$.

Polynomial Orders. Guaranteeing Compatibility

- ▶ If in the previous example we had defined $P_{\odot}(x,y) := x^2$, the interpretation would not be compatible with \mathcal{F} -operations.
- ▶ 3 > 2, but $\bigcirc_{\mathcal{P}}(2,3) = P_{\bigcirc}(2,3) = 4 = P_{\bigcirc}(2,2) = \bigcirc_{\mathcal{P}}(2,2)$.

Definition 4.5 (Monotony)

- A polynomial $P(X_1, \ldots, X_n) \in \mathbb{N}[X_1, \ldots, X_n]$ is a monotone polynomial iff it depends on all its indeterminates.
- ► A monotone polynomial interpretation is a polynomial interpretation in which all function symbols are associated with monotone polynomials.

Polynomial Orders. Guaranteeing Compatibility

- ▶ If in the previous example we had defined $P_{\odot}(x,y) := x^2$, the interpretation would not be compatible with \mathcal{F} -operations.
- ▶ 3 > 2, but $\odot_{\mathcal{P}}(2,3) = P_{\odot}(2,3) = 4 = P_{\odot}(2,2) = \odot_{\mathcal{P}}(2,2)$.

Definition 4.5 (Monotony)

- A polynomial $P(X_1, \ldots, X_n) \in \mathbb{N}[X_1, \ldots, X_n]$ is a monotone polynomial iff it depends on all its indeterminates.
- A monotone polynomial interpretation is a polynomial interpretation in which all function symbols are associated with monotone polynomials.

 X^2 is not a monotone polynomial in $\mathbb{N}[X,Y]$.

Polynomial Orders. Inducing Reduction Order

▶ Why are monotone polynomial interpretations interesting?

Polynomial Orders. Inducing Reduction Order

- ▶ Why are monotone polynomial interpretations interesting?
- ▶ They help to define an ordering on terms which is compatible with *F*-operations (in fact, to define a reduction order).

Theorem 4.3

Let $\mathcal{P} = (A, \{f_{\mathcal{P}}\}_{f \in \mathcal{F}})$ be a monotone polynomial interpretation of \mathcal{F} with the well-founded ordering > on A. Then a > b implies

$$f_{\mathcal{P}}(a_1,\ldots,a_{i-1},a,a_{i+1},\ldots,a_n) > f_{\mathcal{P}}(a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n)$$

for all $f_{\mathcal{P}}$ and $a, b, a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n \in A$.

Proof.

We can write $P_f \in \mathbb{N}[X_1,\ldots,X_n] = (\mathbb{N}[X_1,\ldots,X_{i-1},X_{i+1},\ldots,X_n])[X_i]$ as a polynomial in X_i with coefficients $Q_j \in \mathbb{N}[X_1,\ldots,X_{i-1},X_{i+1},\ldots,X_n]$:

$$f_{\mathcal{P}} = P_f = Q_k(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n) X_i^k + \dots + Q_1(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n) X_i + Q_0(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n).$$

Theorem 4.3

Let $\mathcal{P} = (A, \{f_{\mathcal{P}}\}_{f \in \mathcal{F}})$ be a monotone polynomial interpretation of \mathcal{F} with the well-founded ordering > on A. Then a > b implies

$$f_{\mathcal{P}}(a_1,\ldots,a_{i-1},a,a_{i+1},\ldots,a_n) > f_{\mathcal{P}}(a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n)$$

for all $f_{\mathcal{P}}$ and $a, b, a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n \in A$.

Proof (cont.)

Since P_f is monotone, it depends on X_i . So, we can assume k>0 and Q_k is not a zero polynomial.

Theorem 4.3

Let $\mathcal{P} = (A, \{f_{\mathcal{P}}\}_{f \in \mathcal{F}})$ be a monotone polynomial interpretation of \mathcal{F} with the well-founded ordering > on A. Then a > b implies

$$f_{\mathcal{P}}(a_1,\ldots,a_{i-1},a,a_{i+1},\ldots,a_n) > f_{\mathcal{P}}(a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n)$$

for all $f_{\mathcal{P}}$ and $a, b, a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n \in A$.

Proof (cont.)

Since P_f is monotone, it depends on X_i . So, we can assume k>0 and Q_k is not a zero polynomial.

Hence, for all $a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n\in A\subseteq\mathbb{N}\setminus\{0\}$,

 $P_f(a_1, \ldots, a_{i-1}, X_i, a_{i+1}, \ldots, a_n)$ is a polynomial of degree k > 0 in X_i with coefficients in \mathbb{N} .

Theorem 4.3

Let $\mathcal{P} = (A, \{f_{\mathcal{P}}\}_{f \in \mathcal{F}})$ be a monotone polynomial interpretation of \mathcal{F} with the well-founded ordering > on A. Then a > b implies

$$f_{\mathcal{P}}(a_1,\ldots,a_{i-1},a,a_{i+1},\ldots,a_n) > f_{\mathcal{P}}(a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n)$$

for all $f_{\mathcal{P}}$ and $a, b, a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \in A$.

Proof (cont.)

Since P_f is monotone, it depends on X_i . So, we can assume k>0 and Q_k is not a zero polynomial.

Hence, for all $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \in A \subseteq \mathbb{N} \setminus \{0\}$,

 $P_f(a_1,\ldots,a_{i-1},X_i,a_{i+1},\ldots,a_n)$ is a polynomial of degree k>0 in X_i with coefficients in \mathbb{N} .

Therefore, a > b implies $P_f(a_1, ..., a_{i-1}, a, a_{i+1}, ..., a_n) > P_f(a_1, ..., a_{i-1}, b, a_{i+1}, ..., a_n)$.

Definition 4.6 (Polynomial Order)

The polynomial interpretation \mathcal{P} of a signature \mathcal{F} induces the following polynomial order $>_{\mathcal{P}}$ on $T(\mathcal{F}, \mathcal{V})$:

$$s >_{\mathcal{P}} t$$
 iff $P_s(a_1, \dots, a_n) > P_t(a_1, \dots, a_n)$

for all a_1, \ldots, a_n in the carrier set of \mathcal{P} .

Theorem 4.4

The polynomial order $>_{\mathcal{P}}$ induced by a monotone polynomial interpretation \mathcal{P} is a reduction order.

Proof.

 $>_{\mathcal{P}}$ is a strict order on $T(\mathcal{F}, \mathcal{V})$.

- $ightharpoonup >_{\mathcal{P}}$ is well-founded on the carrier set of \mathcal{P} .
- \triangleright > $_{\mathcal{P}}$ is closed with respect to substitutions because in the definition of polynomial orders we consider all a_1, \ldots, a_n in the carrier set.
- \triangleright >_P is compatible to F-operations due to Theorem 4.3.

Example 4.4

- ▶ TRS: $R = \{x \odot (y \oplus z) \rightarrow (x \odot y) \oplus (x \odot z)\}.$
- Polynomial order induced by

$$A := \mathbb{N} \setminus \{0, 1\}, \ P_{\oplus} = 2X + Y + 1, \ P_{\odot} = XY.$$

▶ The polynomial associated to $l = x \odot (y \oplus z)$:

$$P_l = X(2Y + Z + 1) = 2XY + XZ + X.$$

▶ The polynomial associated to $r = (x \odot y) \oplus (x \odot z)$:

$$P_r = 2XY + XZ + 1.$$

▶ Since all elements of A are greater than 1, we have $l >_{\mathcal{P}} r$.

- ► For a given polynomial order, in general, it is not possible to decide whether it is suitable for showing termination of a given TRS.
- ▶ It is a consequence of Hilbert's 10th problem.
- ▶ There are automated methods that can (sometimes) show $P >_{\mathcal{A}} Q$ for polynomials $P, Q \in \mathbb{N}[X_1, \dots, X_n]$.

Questions:

- How to find suitable polynomials?
- ▶ How to show that P > 0 for a polynomial $P \in \mathbb{Z}[x_1, \dots, x_n]$?

Questions:

- How to find suitable polynomials?
- ▶ How to show that P > 0 for a polynomial $P \in \mathbb{Z}[x_1, \dots, x_n]$?

Modern approach:

1. Choose abstract polynomial interpretations (linear, quadratic, . . .).

Questions:

- How to find suitable polynomials?
- ▶ How to show that P > 0 for a polynomial $P \in \mathbb{Z}[x_1, \dots, x_n]$?

- 1. Choose abstract polynomial interpretations (linear, quadratic, . . .).
- 2. Transform rewrite rules into polynomial ordering constraints.

Questions:

- How to find suitable polynomials?
- ▶ How to show that P > 0 for a polynomial $P \in \mathbb{Z}[x_1, \dots, x_n]$?

- 1. Choose abstract polynomial interpretations (linear, quadratic, . . .).
- 2. Transform rewrite rules into polynomial ordering constraints.
- 3. Add monotonicity and well-definedness constraints.

Questions:

- How to find suitable polynomials?
- ▶ How to show that P > 0 for a polynomial $P \in \mathbb{Z}[x_1, \dots, x_n]$?

- 1. Choose abstract polynomial interpretations (linear, quadratic, . . .).
- 2. Transform rewrite rules into polynomial ordering constraints.
- 3. Add monotonicity and well-definedness constraints.
- Eliminate universally quantified variables requiring their coefficients to be nonnegative and the constant to be positive (sufficient condition).

Questions:

- How to find suitable polynomials?
- ▶ How to show that P > 0 for a polynomial $P \in \mathbb{Z}[x_1, \dots, x_n]$?

- 1. Choose abstract polynomial interpretations (linear, quadratic, ...).
- 2. Transform rewrite rules into polynomial ordering constraints.
- 3. Add monotonicity and well-definedness constraints.
- Eliminate universally quantified variables requiring their coefficients to be nonnegative and the constant to be positive (sufficient condition).
- 5. Translate resulting diophantine constraints to SAT or SMT problem.

Example 4.5

► Rewrite system:

$$\{0+y\to y,\quad s(x)+y\to s(x+y)\}$$

Example 4.5

► Rewrite system:

$$\{0+y\to y,\quad s(x)+y\to s(x+y)\}$$

► Interpretations:

$$0_{\mathcal{A}} = \mathbf{a}$$
 $s_{\mathcal{A}}(x) = \mathbf{b}x + \mathbf{c}$ $+_{\mathcal{A}}(x, y) = \mathbf{d}x + \mathbf{e}y + \mathbf{f}$

Example 4.5

► Rewrite system:

$$\{0+y\to y,\quad s(x)+y\to s(x+y)\}$$

► Interpretations:

$$0_{\mathcal{A}} = \frac{\mathbf{a}}{\mathbf{a}}$$
 $s_{\mathcal{A}}(x) = \frac{\mathbf{b}}{x} + \frac{\mathbf{c}}{\mathbf{c}}$ $+_{\mathcal{A}}(x, y) = \frac{\mathbf{d}}{x} + \frac{\mathbf{e}}{y} + \frac{\mathbf{f}}{\mathbf{c}}$

▶ Polynomial constraints: $\forall X, Y \in \mathbb{N}$

$$\begin{aligned} & \frac{da + eY + f > Y}{d(bX + c) + eY + f > b(dX + eY + f) + c} \end{aligned}$$

Example 4.5

► Rewrite system:

$$\{0+y\to y,\quad s(x)+y\to s(x+y)\}$$

► Interpretations:

$$0_{\mathcal{A}} = \frac{\mathbf{a}}{\mathbf{a}}$$
 $s_{\mathcal{A}}(x) = \frac{\mathbf{b}}{x} + \frac{\mathbf{c}}{\mathbf{c}}$ $+_{\mathcal{A}}(x, y) = \frac{\mathbf{d}}{x} + \frac{\mathbf{e}}{y} + \frac{\mathbf{f}}{\mathbf{c}}$

▶ Polynomial constraints: $\forall X, Y \in \mathbb{N}$

$$\begin{aligned} & da + eY + f > Y \\ & d(bX + c) + eY + f > b(dX + eY + f) + c \\ & a \ge 0 \quad b \ge 1 \quad c \ge 0 \quad d \ge 1 \quad e \ge 1 \quad f \ge 0 \end{aligned}$$

Example 4.5

► Rewrite system:

$$\{0+y\to y,\quad s(x)+y\to s(x+y)\}$$

► Interpretations:

$$0_{\mathcal{A}} = \frac{\mathbf{a}}{\mathbf{a}}$$
 $s_{\mathcal{A}}(x) = \frac{\mathbf{b}}{x} + \frac{\mathbf{c}}{\mathbf{c}}$ $+_{\mathcal{A}}(x, y) = \frac{\mathbf{d}}{x} + \frac{\mathbf{e}}{y} + \frac{\mathbf{f}}{\mathbf{c}}$

▶ Polynomial constraints: $\forall X, Y \in \mathbb{N}$

$$\begin{aligned} &(e-1)Y+da+f>0\\ &(e-be)Y+dc+f-bf-c>0\\ &a\geq 0\quad b\geq 1\quad c\geq 0\quad d\geq 1\quad e\geq 1\quad f\geq 0 \end{aligned}$$

Example 4.5

► Rewrite system:

$$\{0+y\to y,\quad s(x)+y\to s(x+y)\}$$

► Interpretations:

$$0_{\mathcal{A}} = \frac{\mathbf{a}}{\mathbf{a}}$$
 $s_{\mathcal{A}}(x) = \frac{\mathbf{b}}{x} + \frac{\mathbf{c}}{\mathbf{c}}$ $+_{\mathcal{A}}(x, y) = \frac{\mathbf{d}}{x} + \frac{\mathbf{e}}{y} + \frac{\mathbf{f}}{\mathbf{c}}$

Diophantine constraints:

$$\begin{aligned} & e-1 \geq 0 \quad da+f > 0 \\ & (e-be) \geq 0 \quad dc+f-bf-c > 0 \\ & a \geq 0 \quad b \geq 1 \quad c \geq 0 \quad d \geq 1 \quad e \geq 1 \quad f \geq 0 \end{aligned}$$

Example 4.5

► Rewrite system:

$$\{0+y\to y, \quad s(x)+y\to s(x+y)\}$$

► Interpretations:

$$0_{\mathcal{A}} = \frac{\mathbf{a}}{\mathbf{a}}$$
 $s_{\mathcal{A}}(x) = \frac{\mathbf{b}}{x} + \frac{\mathbf{c}}{\mathbf{c}}$ $+_{\mathcal{A}}(x, y) = \frac{\mathbf{d}}{x} + \frac{\mathbf{e}}{y} + \frac{\mathbf{f}}{\mathbf{c}}$

► Diophantine constraints:

$$\begin{aligned} & e-1 \geq 0 \quad da+f > 0 \\ & (e-be) \geq 0 \quad dc+f-bf-c > 0 \\ & a \geq 0 \quad b \geq 1 \quad c \geq 0 \quad d \geq 1 \quad e \geq 1 \quad f \geq 0 \end{aligned}$$

▶ Possible solution: $\mathbf{a} = 0$ $\mathbf{b} = 1$ $\mathbf{c} = 1$ $\mathbf{d} = 2$ $\mathbf{e} = 1$ $\mathbf{f} = 1$

Example 4.5

► Rewrite system:

$$\{0+y\to y, \quad s(x)+y\to s(x+y)\}$$

Interpretations:

$$0_{\mathcal{A}} = 0$$
 $s_{\mathcal{A}}(x) = \mathbf{b}x + \mathbf{c}$ $+_{\mathcal{A}}(x, y) = \mathbf{d}x + \mathbf{e}y + \mathbf{f}$

► Diophantine constraints:

$$\begin{aligned} & e-1 \geq 0 \quad da+f > 0 \\ & (e-be) \geq 0 \quad dc+f-bf-c > 0 \\ & a \geq 0 \quad b \geq 1 \quad c \geq 0 \quad d \geq 1 \quad e \geq 1 \quad f \geq 0 \end{aligned}$$

▶ Possible solution: $\mathbf{a} = 0$ $\mathbf{b} = 1$ $\mathbf{c} = 1$ $\mathbf{d} = 2$ $\mathbf{e} = 1$ $\mathbf{f} = 1$

Simplification Orders

Motivation: construct reduction orders > for which $s>^?t$ is decidable.

Simplification Orders

Motivation: construct reduction orders > for which $s>^? t$ is decidable.

Definition 4.7

A strict order > on $T(\mathcal{F},\mathcal{V})$ is called a simplification order iff it is

1. compatible with \mathcal{F} -operations: If $s_1 > s_2$, then

$$f(t_1, \dots, t_{i-1}, s_1, t_{i+1}, \dots, t_n) > f(t_1, \dots, t_{i-1}, s_2, t_{i+1}, \dots, t_n)$$

for all
$$t_1, \ldots, t_{i-1}, s_1, s_2, t_{i+1}, \ldots, t_n \in T(\mathcal{F}, \mathcal{V})$$
 and $f \in \mathcal{F}^n$,

- 2. closed under substitutions: If $s_1 > s_2$, then $\sigma(s_1) > \sigma(s_2)$ for all $s_1, s_2 \in T(\mathcal{F}, \mathcal{V})$ and a $T(\mathcal{F}, \mathcal{V})$ -substitution σ ,
- 3. satisfies subterm property: $t > t|_p$ for all terms $t \in T(\mathcal{F}, \mathcal{V})$ and all positions $p \in \mathcal{P}os(t) \setminus \{\epsilon\}$.

Simplification Orders

- Our goal is to show that simplification orders are reduction orders (and, thus, can be used to prove termination)
- First we introduce some notions.

Definition 4.8

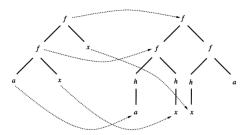
The homeomorphic embedding \trianglerighteq_{emb} is defined as the reduction relation $\overset{*}{\rightarrow}_{R_{emb}}$ induced by the rewrite system

$$R_{emb} := \{ f(x_1, \dots, x_n) \to x_i \mid n \ge 1, f \in \mathcal{F}^n, 1 \le i \le n \}.$$

Definition 4.8

The homeomorphic embedding \trianglerighteq_{emb} is defined as the reduction relation $\overset{*}{\rightarrow}_{R_{emb}}$ induced by the rewrite system

$$R_{emb} := \{ f(x_1, \dots, x_n) \to x_i \mid n \ge 1, f \in \mathcal{F}^n, 1 \le i \le n \}.$$

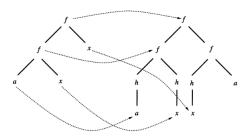


$$f(f(a,x),x) \leq_{emb} f(f(h(a),h(x)),f(h(x),a))$$

Definition 4.8

The homeomorphic embedding \trianglerighteq_{emb} is defined as the reduction relation $\overset{*}{\to}_{R_{emb}}$ induced by the rewrite system

$$R_{emb} := \{ f(x_1, \dots, x_n) \to x_i \mid n \ge 1, f \in \mathcal{F}^n, 1 \le i \le n \}.$$



$$f(f(a,x),x) \leq_{emb} f(f(h(a),h(x)),f(h(x),a))$$

Since R_{emb} is terminating, \trianglerighteq_{emb} is a well-founded partial order.

Well-Partial-Orders, Kruskal's Theorem

Definition 4.9

A partial order \leq on a set A is a well-partial-order (wpo) iff for every infinite sequence a_1, a_2, \ldots of elements of A there exist indices i < j such that $a_i \leq a_j$.

Well-Partial-Orders, Kruskal's Theorem

Definition 4.9

A partial order \leq on a set A is a well-partial-order (wpo) iff for every infinite sequence a_1, a_2, \ldots of elements of A there exist indices i < j such that $a_i \leq a_j$.

Wpos forbid

- infinite descending chains, and
- infinite anti-chains (infinite sets of incomparable elements).

Well-Partial-Orders, Kruskal's Theorem

Definition 4.9

A partial order \leq on a set A is a well-partial-order (wpo) iff for every infinite sequence a_1, a_2, \ldots of elements of A there exist indices i < j such that $a_i \leq a_j$.

Wpos forbid

- infinite descending chains, and
- infinite anti-chains (infinite sets of incomparable elements).

Theorem 4.5 (Kruskal)

For finite \mathcal{F} and \mathcal{V} , the relation \succeq_{emb} is a wpo on $T(\mathcal{F}, \mathcal{V})$.

Lemma 4.2

Let > be a simplification order on $T(\mathcal{F}, \mathcal{V})$ and let $s, t \in T(\mathcal{F}, \mathcal{V})$. Then $s \succeq_{emb} t$ implies $s \succeq t$.

Proof.

Since > satisfies the subterm property, we have

$$f(x_1,\ldots,x_i,\ldots,x_n)>x_i$$
 for all $n\geq 1$, $f\in\mathcal{F}^n$, $1\leq i\leq n$.

Therefore, $R_{emb} \subseteq >$.

Since \geq is reflexive, transitive, closed under substitutions and compatible with \mathcal{F} -operations, this implies

$$\trianglerighteq_{emb} = \xrightarrow{*}_{R_{emb}} \subseteq \ge .$$

Theorem 4.6

Let $\mathcal F$ be a finite signature. Then every simplification order on $T(\mathcal F,\mathcal V)$ is a reduction order.

Theorem 4.6

Let $\mathcal F$ be a finite signature. Then every simplification order on $T(\mathcal F,\mathcal V)$ is a reduction order.

Proof.

We just need to show that every simplification order is well-founded. Assume the opposite: Let $t_1 > t_2 > \cdots$ be an infinite descending chain in $T(\mathcal{F},\mathcal{V})$, where > is a simplification ordering.

Theorem 4.6

Let $\mathcal F$ be a finite signature. Then every simplification order on $T(\mathcal F,\mathcal V)$ is a reduction order.

Proof (cont.)

1. Prove by contradiction that $\mathcal{V}ar(t_1) \supseteq \mathcal{V}ar(t_2) \supseteq \cdots$. Assume $x \in \mathcal{V}ar(t_{i+1}) \setminus \mathcal{V}ar(t_i)$ and let $\sigma := \{x \mapsto t_i\}$. Then

$$\begin{split} \sigma(t_i) &> \sigma(t_{i+1}) & \text{(> is closed under substitutions)} \\ \sigma(t_{i+1}) &\geq t_i & \text{(t_i is a subterm of $\sigma(t_{i+1})$)} \\ t_i &= \sigma(t_i) & \text{($x \notin \mathcal{V}ar(t_i)$)} \end{split}$$

Hence, $\sigma(t_i) > \sigma(t_i)$: a contradiction. We get $t_1, t_2, \ldots \in T(\mathcal{F}, \mathcal{X})$ for a finite $\mathcal{X} = \mathcal{V}ar(t_1)$.

Theorem 4.6

Let $\mathcal F$ be a finite signature. Then every simplification order on $T(\mathcal F,\mathcal V)$ is a reduction order.

Proof (cont.)

2. We got $t_1, t_2, \ldots \in T(\mathcal{F}, \mathcal{X})$ for a finite $\mathcal{X} = \mathcal{V}ar(t_1)$. Kruskal's Theorem implies that there exist i < j such that $t_j \trianglerighteq_{emb} t_i$. Lemma 4.2 implies $t_i \le t_j$, which is a contradiction since we know that $t_i > t_{i+1} > \cdots > t_j$.

The obtained contradiction shows that > is well-founded.

Not All Reduction Orders Are Simplification Orders

Example 4.6

Let $\mathcal{F} = \{f,g\}$, where f and g are unary. Consider the TRS

$$R := \{ f(f(x)) \to f(g(f(x))) \}.$$

- ▶ R terminates (why?). Therefore, $\xrightarrow{+}_R$ is a reduction order.
- ▶ Show that $\xrightarrow{+}_R$ is not a simplification order.
- ▶ Assume the opposite. Then from $f(g(f(x))) \trianglerighteq_{emb} f(f(x))$, by Lemma 4.2, we have $f(g(f(x))) \stackrel{*}{\to}_R f(f(x))$.
- ▶ $f(g(f(x))) \stackrel{*}{\to}_R f(f(x))$ and $f(f(x)) \to f(g(f(x)))$ imply that R is non-terminating: a contradiction.

Hence, $\xrightarrow{+}_R$ is a reduction order, which is not a simplification order.

- Two terms are compared by first comparing their root symbols.
- ► Then recursively comparing the collections of their immediate subterms.

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.
- Collections seen as multisets yields the multiset path order.
 (Not considered in this course.)

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.
- Collections seen as multisets yields the multiset path order.
 (Not considered in this course.)
- ► Collections seen as tuples yields the lexicographic path order.

- ➤ Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.
- Collections seen as multisets yields the multiset path order.
 (Not considered in this course.)
- Collections seen as tuples yields the lexicographic path order.
- Combination of multisets and tuples yields the recursive path order with status. (Not considered in this course.)

Definition 4.10

Let $\mathcal F$ be a finite signature and > be a strict order on $\mathcal F$ (called the precedence). The lexicographic path order $>_{lpo}$ on $T(\mathcal F,\mathcal V)$ induced by > is defined as follows:

```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in \mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and} \\ s_i>_{lpo}t_i. \end{split}
```

 \geq_{lpo} stands for the reflexive closure of $>_{lpo}$.

```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in \mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i, \ 1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j, \ 1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j, \ 1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and} \\ s_i>_{lpo}t_i. \end{split}
```

Example 4.7

```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in \mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and} \\ s_i>_{lpo}t_i. \end{split}
```

Example 4.7

 $\mathcal{F} = \{f, i, e\}, \ f \ \text{is binary,} \ i \ \text{is unary,} \ e \ \text{is constant, with} \ i > f > e.$

• $f(x,e) >_{lpo} x$ by (LPO1)

```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in \mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and} \\ s_i>_{lpo}t_i. \end{split}
```

Example 4.7

 $\mathcal{F} = \{f, i, e\}, \ f \ \text{is binary,} \ i \ \text{is unary,} \ e \ \text{is constant, with} \ i > f > e.$

- $f(x,e) >_{lpo} x$ by (LPO1)
- $i(e) >_{lpo} e$ by (LPO2), because $e \ge_{lpo} e$.

```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in \mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i, \ 1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j, \ 1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j, \ 1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and} \\ s_i>_{lpo}t_i. \end{split}
```

Example 4.7 (Cont.)

 $\mathcal{F} = \{f, i, e\}$, f is binary, i is unary, e is constant, with i > f > e.

```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in\mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and} \\ s_i>_{lpo}t_i. \end{split}
```

Example 4.7 (Cont.)

$$ightharpoonup i(f(x,y)) >_{lpo}^? f(i(x),i(y))$$
:

```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in \mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and} \\ s_i>_{lpo}t_i. \end{split}
```

Example 4.7 (Cont.)

- $i(f(x,y)) >_{lpo}^{?} f(i(x),i(y))$:
 - ▶ Since i > f, (LPO2b) reduces it to the problems: $i(f(x,y)) >_{lpo}^? i(x)$ and $i(f(x,y)) >_{lpo}^? i(y)$.

```
\begin{split} s>_{lpo}t \text{ iff}\\ \text{(LPO1)}\ \ t\in\mathcal{V}ar(s) \text{ and } t\neq s\text{, or}\\ \text{(LPO2)}\ \ s=f(s_1,\ldots,s_m),\ t=g(t_1,\ldots,t_n)\text{, and}\\ \text{(LPO2a)}\ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m\text{, or}\\ \text{(LPO2b)}\ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n\text{, or}\\ \text{(LPO2c)}\ \ f=g,\ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n\text{, and there exists } i,\\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and}\\ s_i>_{lpo}t_i. \end{split}
```

Example 4.7 (Cont.)

- $i(f(x,y)) >_{lpo}^{?} f(i(x),i(y))$:
 - ▶ Since i > f, (LPO2b) reduces it to the problems: $i(f(x,y)) >_{lpo}^? i(x)$ and $i(f(x,y)) >_{lpo}^? i(y)$.
 - $i(f(x,y))>_{lpo}^? i(x)$ is reduced by (LPO2c) to $i(f(x,y))>_{lpo}^? x$ and $f(x,y)>_{lpo}^? x$, which hold by (LPO1).

```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in \mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and} \\ s_i>_{lpo}t_i. \end{split}
```

Example 4.7 (Cont.)

- $i(f(x,y)) >_{lpo}^{?} f(i(x),i(y))$:
 - ► Since i > f, (LPO2b) reduces it to the problems: $i(f(x,y)) >_{lno}^{?} i(x)$ and $i(f(x,y)) >_{lno}^{?} i(y)$.
 - $i(f(x,y))>_{lpo}^? i(x)$ is reduced by (LPO2c) to $i(f(x,y))>_{lpo}^? x$ and $f(x,y)>_{lpo}^? x$, which hold by (LPO1).
 - $i(f(x,y)) >_{lpo}^{r} i(y)$ is shown similarly.

```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in\mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and} \\ s_i>_{lpo}t_i. \end{split}
```

Example 4.7 (Cont.)

 $\mathcal{F} = \{f, i, e\}$, f is binary, i is unary, e is constant, with i > f > e.

```
\begin{split} s>_{lpo}t \text{ iff}\\ \text{(LPO1)}\ \ t\in\mathcal{V}ar(s) \text{ and } t\neq s\text{, or}\\ \text{(LPO2)}\ \ s=f(s_1,\ldots,s_m),\ t=g(t_1,\ldots,t_n)\text{, and}\\ \text{(LPO2a)}\ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m\text{, or}\\ \text{(LPO2b)}\ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n\text{, or}\\ \text{(LPO2c)}\ \ f=g,\ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n\text{, and there exists } i,\\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and}\\ s_i>_{lpo}t_i. \end{split}
```

Example 4.7 (Cont.)

•
$$f(f(x,y),z) >_{lpo}^{?} f(x,f(y,z))$$
). By (LPO2c) with $i=1$:

```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in \mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and} \\ s_i>_{lpo}t_i. \end{split}
```

Example 4.7 (Cont.)

- ► $f(f(x,y),z) >_{lpo}^{?} f(x,f(y,z))$). By (LPO2c) with i=1:
 - $f(f(x,y),z) >_{lpo} x$ because of (LPO1).

```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in \mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i, \ 1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j, \ 1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j, \ 1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and} \\ s_i>_{lpo}t_i. \end{split}
```

Example 4.7 (Cont.)

- ► $f(f(x,y),z) >_{lpo}^{?} f(x,f(y,z))$). By (LPO2c) with i=1:
 - $f(f(x,y),z) >_{lpo} x$ because of (LPO1).
 - $f(f(x,y),z) >_{lpo}^{?} f(y,z)$: By (LPO2c) with i=1:
 - $f(f(x,y),z)>_{lpo}y$ and $f(f(x,y),z)>_{lpo}z$ by (LPO1).
 - $f(x,y) >_{lpo} y$ by (LPO1).

```
\begin{split} s>_{lpo}t \text{ iff} \\ \text{(LPO1)} \ \ t\in\mathcal{V}ar(s) \text{ and } t\neq s, \text{ or} \\ \text{(LPO2)} \ \ s=f(s_1,\ldots,s_m), \ t=g(t_1,\ldots,t_n), \text{ and} \\ \text{(LPO2a)} \ \ s_i\geq_{lpo}t \text{ for some } i,1\leq i\leq m, \text{ or} \\ \text{(LPO2b)} \ \ f>g \text{ and } s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ or} \\ \text{(LPO2c)} \ \ f=g, \ s>_{lpo}t_j \text{ for all } j,1\leq j\leq n, \text{ and there exists } i, \\ 1\leq i\leq m \text{ such that } s_1=t_1,\ldots s_{i-1}=t_{i-1} \text{ and} \\ s_i>_{lpo}t_i. \end{split}
```

Example 4.7 (Cont.)

- ► $f(f(x,y),z) >_{lpo}^{?} f(x,f(y,z))$). By (LPO2c) with i=1:
 - $f(f(x,y),z) >_{lpo} x$ because of (LPO1).
 - $f(f(x,y),z) >_{lpo}^{?} f(y,z)$: By (LPO2c) with i=1:
 - $f(f(x,y),z)>_{lpo}y$ and $f(f(x,y),z)>_{lpo}z$ by (LPO1).
 - $f(x,y) >_{lpo} y$ by (LPO1).
 - $f(x,y) >_{lpo} x$ by (LPO1).

LPO Is a Simplification Order

Theorem 4.7

For any strict order > on \mathcal{F} , the induced lexicographic path order $>_{lpo}$ is a simplification order on $T(\mathcal{F}, \mathcal{V})$.

Proof.

See Baader and Nipkow, pp. 119-120.

Properties of LPO

For a finite signature \mathcal{F} , terms $s,t\in T(\mathcal{F},\mathcal{V})$, finite TRS R over $T(\mathcal{F},\mathcal{V})$:

- ▶ For a given Ipo $>_{lpo}$, the question whether $s>_{lpo} t$ can be decided in time polynomial in the size s and t.
- ▶ The question whether termination of R can be shown by some lpo $T(\mathcal{F}, \mathcal{V})$ is an NP-complete problem.

LPO and Polynomial Interpretations Are Not Comparable

