
Rewriting
Part 3.1 Equational Problems. Deciding ≈E

Temur Kutsia

RISC, JKU Linz

Validity and Satisfiability

Notation: s ≈E t iff s ≈ t belongs to the equational theory
generated by E.

Validity problem:

Given: A set of identities E and terms s and t.
Decide: s ≈E t.

Satisfiability problem:

Given: A set of identities E and terms s and t.
Find: A substitution σ such that σ(s) ≈E σ(t).

Validity and Satisfiability

Notation: s ≈E t iff s ≈ t belongs to the equational theory
generated by E.

Validity problem:

Given: A set of identities E and terms s and t.
Decide: s ≈E t.

Satisfiability problem:

Given: A set of identities E and terms s and t.
Find: A substitution σ such that σ(s) ≈E σ(t).

Validity and Satisfiability

Notation: s ≈E t iff s ≈ t belongs to the equational theory
generated by E.

Validity problem:

Given: A set of identities E and terms s and t.
Decide: s ≈E t.

Satisfiability problem:

Given: A set of identities E and terms s and t.
Find: A substitution σ such that σ(s) ≈E σ(t).

Equational Problems

The following methods solve special cases:

I Term rewriting decides ≈E if →E is convergent.

I Congruence closure decided ≈E when E is variable-free.

I Syntactic unification computes σ such that σ(s) = σ(t).

Equations Problems

Relating validity and satisfiability problems.

I Validity: s ≈ t is valid in E iff

∀x. s ≈ t

holds in all models of E.

I Satisfiability: s ≈ t is satisfiable in E iff

∃x. s ≈ t

holds in all nonempty models of E.

Deciding ≈E

I By Birkhoffs theorem, s ≈E t iff s
∗←→E r.

I Hence, deciding ≈E is equivalent to deciding
∗←→E .

I Word problem:

Given: A set of identities E and terms s and t.
Decide: s

∗←→E t.

Deciding ≈E

I By Birkhoffs theorem, s ≈E t iff s
∗←→E r.

I Hence, deciding ≈E is equivalent to deciding
∗←→E .

I Word problem:

Given: A set of identities E and terms s and t.
Decide: s

∗←→E t.

Deciding ≈E: Finite E, Convergent →E

Recall from abstract reduction systems:

If → is confluent and terminating, then
I every element x has a unique normal form x ↓,
I x

∗←→ y iff x ↓= y ↓.

I Hence, if →E is convergent, we can decide x
∗←→ y.

I Provided that we are able to compute normal forms.

I This is possible if we can effectively

I decide whether a term is in normal form wrt →E , and
I compute some s′ such that s→E s′ if s is not in normal form.

Deciding ≈E: Finite E, Convergent →E

Recall from abstract reduction systems:

If → is confluent and terminating, then
I every element x has a unique normal form x ↓,
I x

∗←→ y iff x ↓= y ↓.

I Hence, if →E is convergent, we can decide x
∗←→ y.

I Provided that we are able to compute normal forms.

I This is possible if we can effectively

I decide whether a term is in normal form wrt →E , and
I compute some s′ such that s→E s′ if s is not in normal form.

Deciding ≈E: Finite E, Convergent →E

Recall from abstract reduction systems:

If → is confluent and terminating, then
I every element x has a unique normal form x ↓,
I x

∗←→ y iff x ↓= y ↓.

I Hence, if →E is convergent, we can decide x
∗←→ y.

I Provided that we are able to compute normal forms.
I This is possible if we can effectively

I decide whether a term is in normal form wrt →E , and
I compute some s′ such that s→E s′ if s is not in normal form.

Deciding ≈E: Finite E, Convergent →E

How to decide whether a term is in normal form wrt →E?

I Check whether it can be rewritten by →E .

I That is, check whether any of its subterms is an instance of
the lhs of a rule in →E .

I Matching problem:

Given: Two terms s and t.
Find: A substitution σ such that σ(s) = t.

I Matching is decidable. (Details later, with unification.)

Deciding ≈E: Finite E, Convergent →E

How to decide whether a term is in normal form wrt →E?

I Check whether it can be rewritten by →E .

I That is, check whether any of its subterms is an instance of
the lhs of a rule in →E .

I Matching problem:

Given: Two terms s and t.
Find: A substitution σ such that σ(s) = t.

I Matching is decidable. (Details later, with unification.)

Deciding ≈E: Finite E, Convergent →E

How to decide whether a term is in normal form wrt →E?

I Check whether it can be rewritten by →E .

I That is, check whether any of its subterms is an instance of
the lhs of a rule in →E .

I Matching problem:

Given: Two terms s and t.
Find: A substitution σ such that σ(s) = t.

I Matching is decidable. (Details later, with unification.)

Deciding ≈E: Finite E, Convergent →E

How to decide whether a term is in normal form wrt →E?

I Check whether it can be rewritten by →E .

I That is, check whether any of its subterms is an instance of
the lhs of a rule in →E .

I Matching problem:

Given: Two terms s and t.
Find: A substitution σ such that σ(s) = t.

I Matching is decidable. (Details later, with unification.)

Deciding ≈E: Finite E, Convergent →E

How to decide whether a term is in normal form wrt →E?

I Check whether it can be rewritten by →E .

I That is, check whether any of its subterms is an instance of
the lhs of a rule in →E .

I Matching problem:

Given: Two terms s and t.
Find: A substitution σ such that σ(s) = t.

I Matching is decidable. (Details later, with unification.)

Deciding ≈E: Finite E, Convergent →E

Theorem 3.1
If E is finite and →E is convergent, then ≈E is decidable.

Proof.

1. Decide whether a term s is in normal form wrt →E :
Check all l ≈ r ∈ E and all positions p ∈ Pos(s)
if there is σ such that s|p = σ(l).

2. Compute some s′ such that s→E s′ if s is not in normal form:
Reduce s to s[σ(r)]p if the test above is positive.

Iterate the process to compute a normal form.
The iteration stops because →E is terminating.
The obtained normal form is unique because →E is confluent.
To decide s ≈E t, compute s ↓E and t ↓E and compare.

Deciding ≈E: Finite E, Convergent →E

I Convergence of →E is important for decidability of ≈E .

I There exist finite sets E for which ≈E is not decidable.

I Example: Combinatory logic.

Deciding ≈E: Finite E, Convergent →E

Definition 3.1 (Term Rewriting System)

I Rewrite rule: An identity l ≈ r such that
I l is not a variable,
I Var(l) ⊇ Var(r).

I Notation: l→ r instead of l ≈ r.

I A term rewriting system (TRS) is a set of rewrite rules.

By definition, a TRS R is a set of identities.

Hence, →R and ≈R are well-defined.

We say that R is terminating, confluent, etc. if →R is.

Theorem 3.2
If R is a finite convergent TRS, then ≈R is decidable.

Deciding ≈E: Finite E, Convergent →E

Definition 3.1 (Term Rewriting System)

I Rewrite rule: An identity l ≈ r such that
I l is not a variable,
I Var(l) ⊇ Var(r).

I Notation: l→ r instead of l ≈ r.

I A term rewriting system (TRS) is a set of rewrite rules.

By definition, a TRS R is a set of identities.

Hence, →R and ≈R are well-defined.

We say that R is terminating, confluent, etc. if →R is.

Theorem 3.2
If R is a finite convergent TRS, then ≈R is decidable.

Deciding ≈E: Finite E, Convergent →E

Definition 3.1 (Term Rewriting System)

I Rewrite rule: An identity l ≈ r such that
I l is not a variable,
I Var(l) ⊇ Var(r).

I Notation: l→ r instead of l ≈ r.

I A term rewriting system (TRS) is a set of rewrite rules.

By definition, a TRS R is a set of identities.

Hence, →R and ≈R are well-defined.

We say that R is terminating, confluent, etc. if →R is.

Theorem 3.2
If R is a finite convergent TRS, then ≈R is decidable.

Deciding ≈E: Finite Ground E

I An identity l ≈ r is a ground identity if Var(l) = Var(r) = ∅.
I Ground word problem for E: Word problem for ground terms

over the signature of E.

I G: A set of ground identities.

I Congruence on terms: Equivalence relation closed under
operations.

I Congruence closure of G: smallest congruence on terms which
contains G.

Deciding ≈E: Finite Ground E

I An identity l ≈ r is a ground identity if Var(l) = Var(r) = ∅.
I Ground word problem for E: Word problem for ground terms

over the signature of E.

I G: A set of ground identities.

I Congruence on terms: Equivalence relation closed under
operations.

I Congruence closure of G: smallest congruence on terms which
contains G.

Deciding ≈E: Finite Ground E

Relating ≈G and congruence closure of G:

I By Theorem 2.1,
∗←→G is the smallest equivalence relation

closed under substitutions and operations.

I G is ground, substitutions are irrelevant.

I Hence,
∗←→G is the congruence closure of G.

I By Birkhoffs Theorem, ≈G is the congruence closure of G.

Deciding ≈E: Finite Ground E

Operational description of congruence closure: A functional version
of the rules of equational logic.

R(E) := {(t, t) | t ∈ T (F ,V)}.
S(E) := {(s, t) | (t, s) ∈ E}.
T (E) := {(s, r) | for some t, (s, t) ∈ E and (t, r) ∈ E}.
C(E) := {(f(s1, . . . , sn), f(t1, . . . , tn)) |

f ∈ Fn, (si, ti) ∈ E for all 1 ≤ i ≤ n}.

Cong(E) := E ∪R(E) ∪ S(E) ∪ T (E) ∪ C(E)

I E is congruence iff E is closed under Cong (i.e.,
Cong(E) ⊆ E).

I E is congruence iff Cong(E) = E.

Deciding ≈E: Finite Ground E

Operational description of congruence closure: A functional version
of the rules of equational logic.

R(E) := {(t, t) | t ∈ T (F ,V)}.
S(E) := {(s, t) | (t, s) ∈ E}.
T (E) := {(s, r) | for some t, (s, t) ∈ E and (t, r) ∈ E}.
C(E) := {(f(s1, . . . , sn), f(t1, . . . , tn)) |

f ∈ Fn, (si, ti) ∈ E for all 1 ≤ i ≤ n}.

Cong(E) := E ∪R(E) ∪ S(E) ∪ T (E) ∪ C(E)

I E is congruence iff E is closed under Cong (i.e.,
Cong(E) ⊆ E).

I E is congruence iff Cong(E) = E.

Deciding ≈E: Finite Ground E

Operational description of congruence closure: A functional version
of the rules of equational logic.

R(E) := {(t, t) | t ∈ T (F ,V)}.
S(E) := {(s, t) | (t, s) ∈ E}.
T (E) := {(s, r) | for some t, (s, t) ∈ E and (t, r) ∈ E}.
C(E) := {(f(s1, . . . , sn), f(t1, . . . , tn)) |

f ∈ Fn, (si, ti) ∈ E for all 1 ≤ i ≤ n}.

Cong(E) := E ∪R(E) ∪ S(E) ∪ T (E) ∪ C(E)

I E is congruence iff E is closed under Cong (i.e.,
Cong(E) ⊆ E).

I E is congruence iff Cong(E) = E.

Deciding ≈E: Finite Ground E

The process of closing G under Cong :

G0 := G.

Gi+1 := Cong(Gi).

CC(G) :=
⋃
i≥0

Gi

Deciding ≈E: Finite Ground E

Lemma 3.1
CC(G) = ≈G.

Proof.

(⊆) Use monotonicity of Cong : If E1 ⊆ E2, then
Cong(E1) ⊆ Cong(E2).
Proof by induction on i. G0 = G ⊆≈G. Assume Gi ⊆≈G

and show Gi+1 ⊆≈G. Gi+1 = Cong(Gi) ⊆ Cong(≈G) =≈G.

(⊇) CC(G) is a congruence containing G (because CC(G) is
closed under Cong . Check!). ≈G is the least congruence
containing G. Hence, ≈G⊆ CC(G).

Deciding ≈E: Finite Ground E

Lemma 3.1
CC(G) = ≈G.

Proof.

(⊆) Use monotonicity of Cong : If E1 ⊆ E2, then
Cong(E1) ⊆ Cong(E2).
Proof by induction on i. G0 = G ⊆≈G. Assume Gi ⊆≈G

and show Gi+1 ⊆≈G. Gi+1 = Cong(Gi) ⊆ Cong(≈G) =≈G.

(⊇) CC(G) is a congruence containing G (because CC(G) is
closed under Cong . Check!). ≈G is the least congruence
containing G. Hence, ≈G⊆ CC(G).

Deciding ≈E: Finite Ground E

Lemma 3.1
CC(G) = ≈G.

Proof.

(⊆) Use monotonicity of Cong : If E1 ⊆ E2, then
Cong(E1) ⊆ Cong(E2).
Proof by induction on i. G0 = G ⊆≈G. Assume Gi ⊆≈G

and show Gi+1 ⊆≈G. Gi+1 = Cong(Gi) ⊆ Cong(≈G) =≈G.

(⊇) CC(G) is a congruence containing G (because CC(G) is
closed under Cong . Check!). ≈G is the least congruence
containing G. Hence, ≈G⊆ CC(G).

Deciding ≈E: Finite Ground E

I CC(G) may be infinite. If the signature consists of a, b, and
a unary function symbol f :

CC({a ≈ b}) ⊇ {(f i(a), f i(b)) | i ≥ 0}

I Check whether f2(a) ≈G f2(b) is easy: (f2(a), f2(b)) ∈≈G.

I But how to conclude that f3(a) 6≈G f2(b)?

I Shall we examine all Gi’s?

I It turns out that since G is ground, the search space is finite.

I We need to test only terms occurring in G or in the input
terms.

Deciding ≈E: Finite Ground E

I CC(G) may be infinite. If the signature consists of a, b, and
a unary function symbol f :

CC({a ≈ b}) ⊇ {(f i(a), f i(b)) | i ≥ 0}

I Check whether f2(a) ≈G f2(b) is easy: (f2(a), f2(b)) ∈≈G.

I But how to conclude that f3(a) 6≈G f2(b)?

I Shall we examine all Gi’s?

I It turns out that since G is ground, the search space is finite.

I We need to test only terms occurring in G or in the input
terms.

Deciding ≈E: Finite Ground E

Subterms(t) := {t|p | p ∈ Pos(t)}

Subterms(E) :=
⋃

(l,r)∈E

(
Subterms(l) ∪ Subterms(r)

)

Fix a finite set of ground identities G and two terms s and t.

S := Subterms(G) ∪ Subterms(s) ∪ Subterms(t)

S is finite. It will be used to decide s ≈G t.

Deciding ≈E: Finite Ground E

Subterms(t) := {t|p | p ∈ Pos(t)}

Subterms(E) :=
⋃

(l,r)∈E

(
Subterms(l) ∪ Subterms(r)

)

Fix a finite set of ground identities G and two terms s and t.

S := Subterms(G) ∪ Subterms(s) ∪ Subterms(t)

S is finite. It will be used to decide s ≈G t.

Deciding ≈E: Finite Ground E

Subterms(t) := {t|p | p ∈ Pos(t)}

Subterms(E) :=
⋃

(l,r)∈E

(
Subterms(l) ∪ Subterms(r)

)

Fix a finite set of ground identities G and two terms s and t.

S := Subterms(G) ∪ Subterms(s) ∪ Subterms(t)

S is finite. It will be used to decide s ≈G t.

Deciding ≈E: Finite Ground E

Define the sequence:

H0 := G

Hi+1 := Cong(Hi) ∩ (S × S)

Lemma 3.2
There is some m such that Hm+1 = Hm.

Proof.
By definition, Hi ⊆ S × S. Moreover, Hi ⊆ Cong(Hi). Hence,
Hi ⊆ Hi+1. Therefore, H0 ⊆ H1 ⊆ H2 ⊆ · · · ⊆ S × S and S is
finite.

The limit Hm is denoted by CCS(G).

Deciding ≈E: Finite Ground E

Define the sequence:

H0 := G

Hi+1 := Cong(Hi) ∩ (S × S)

Lemma 3.2
There is some m such that Hm+1 = Hm.

Proof.
By definition, Hi ⊆ S × S. Moreover, Hi ⊆ Cong(Hi). Hence,
Hi ⊆ Hi+1. Therefore, H0 ⊆ H1 ⊆ H2 ⊆ · · · ⊆ S × S and S is
finite.

The limit Hm is denoted by CCS(G).

Deciding ≈E: Finite Ground E

Define the sequence:

H0 := G

Hi+1 := Cong(Hi) ∩ (S × S)

Lemma 3.2
There is some m such that Hm+1 = Hm.

Proof.
By definition, Hi ⊆ S × S. Moreover, Hi ⊆ Cong(Hi). Hence,
Hi ⊆ Hi+1. Therefore, H0 ⊆ H1 ⊆ H2 ⊆ · · · ⊆ S × S and S is
finite.

The limit Hm is denoted by CCS(G).

CCS(G) Is Not a Congruence

I CCS(G) is not a congruence, in general.

I It is symmetric and transitive, not reflexive.

I It is reflexive only for terms from S × S.

Example 1

Assume G = {a ≈ b}, s = f(a), t = b. Then S = {a, b, f(a)}.
We have:

H0 = G

H1 = G ∪ {a ≈ a, b ≈ b, f(a) ≈ f(a), b ≈ a}
H2 = H1 = CCS(G)

Nevertheless, CCS(G) is what we need. See the next slide.

CCS(G) Is Not a Congruence

I CCS(G) is not a congruence, in general.

I It is symmetric and transitive, not reflexive.

I It is reflexive only for terms from S × S.

Example 1

Assume G = {a ≈ b}, s = f(a), t = b. Then S = {a, b, f(a)}.
We have:

H0 = G

H1 = G ∪ {a ≈ a, b ≈ b, f(a) ≈ f(a), b ≈ a}
H2 = H1 = CCS(G)

Nevertheless, CCS(G) is what we need. See the next slide.

Deciding ≈E: Finite Ground E

Theorem 3.3
CCS(G) =≈G ∩(S × S).

Proof.

(⊆) By definition, Hi ⊆ Gi ∩ (S × S). Therefore,
CCS(G) ⊆ CC(G) ∩ (S × S).

(⊇) Let u, v ∈ S and u↔n
G v. Prove (u, v) ∈ Hm (the limit of

Hi) by well-founded induction on the lexicographically ordered
pair (n, |u|):

I n = 0. Then u = v. Hence, (u, v) ∈ H1 ⊆ Hm.
I u↔n+1

G v. Two cases:

1. There is a rewrite step at the root.
2. There is no rewrite step at the root.

Deciding ≈E: Finite Ground E

Theorem 3.3
CCS(G) =≈G ∩(S × S).

Proof.

(⊆) By definition, Hi ⊆ Gi ∩ (S × S). Therefore,
CCS(G) ⊆ CC(G) ∩ (S × S).

(⊇) Let u, v ∈ S and u↔n
G v. Prove (u, v) ∈ Hm (the limit of

Hi) by well-founded induction on the lexicographically ordered
pair (n, |u|):

I n = 0. Then u = v. Hence, (u, v) ∈ H1 ⊆ Hm.
I u↔n+1

G v. Two cases:

1. There is a rewrite step at the root.
2. There is no rewrite step at the root.

Deciding ≈E: Finite Ground E

Theorem 3.3
CCS(G) =≈G ∩(S × S).

Proof.

(⊆) By definition, Hi ⊆ Gi ∩ (S × S). Therefore,
CCS(G) ⊆ CC(G) ∩ (S × S).

(⊇) Let u, v ∈ S and u↔n
G v. Prove (u, v) ∈ Hm (the limit of

Hi) by well-founded induction on the lexicographically ordered
pair (n, |u|):

I n = 0. Then u = v. Hence, (u, v) ∈ H1 ⊆ Hm.
I u↔n+1

G v. Two cases:

1. There is a rewrite step at the root.
2. There is no rewrite step at the root.

Deciding ≈E: Finite Ground E

Theorem 3.3
CCS(G) =≈G ∩(S × S).

Proof (Cont.)

1. There is a rewrite step at the root.

u↔n1
G l↔G r ↔n2

G v

for some l ≈ r ∈ G ∪G−1. (G is ground: No substitutions).
n1, n2 < n. By induction hypothesis,

(u, l) ∈ Hm and (r, v) ∈ Hm.

If (l, r) ∈ G, then (l, r) ∈ H0 ⊆ Hm. If (l, r) ∈ G−1, then
(l, r) ∈ H1 ⊆ Hm. By transitivity of Hm, (u, v) ∈ Hm.

Deciding ≈E: Finite Ground E

Theorem 3.3
CCS(G) =≈G ∩(S × S).

Proof (Cont.)

2. There is no rewrite step at the root.

u = f(u1, . . . , uk), v = f(v1, . . . , vk)

and ui ↔ni
G vi for all 1 ≤ i ≤ k.

Since ni ≤ n+ 1, |ui| < |u|, and ui, vi ∈ S, by the induction
hypothesis, (ui, vi) ∈ Hm for all 1 ≤ i ≤ k.
By congruence, (u, v) ∈ Hm+1 = Hm.

Deciding ≈E: Finite Ground E

Example 3.1

Let F = {a, f}, G := {f2(a) ≈ a, f3(a) ≈ a}, s = f(a), t = a.

Then S := {a, f(a), f2(a), f3(a)}.

Constructing CCS(G):

S × S :

a ≈ a a ≈ f(a) a ≈ f2(a) a ≈ f3(a)
f(a) ≈ a f(a) ≈ f(a) f(a) ≈ f2(a) f(a) ≈ f3(a)
f2(a) ≈ a f2(a) ≈ f(a) f2(a) ≈ f2(a) f2(a) ≈ f3(a)
f3(a) ≈ a f3(a) ≈ f(a) f3(a) ≈ f2(a) f3(a) ≈ f3(a)

Deciding ≈E: Finite Ground E

Example 3.1

Let F = {a, f}, G := {f2(a) ≈ a, f3(a) ≈ a}, s = f(a), t = a.

Then S := {a, f(a), f2(a), f3(a)}.

Constructing CCS(G):

S × S :

a ≈ a a ≈ f(a) a ≈ f2(a) a ≈ f3(a)
f(a) ≈ a f(a) ≈ f(a) f(a) ≈ f2(a) f(a) ≈ f3(a)
f2(a) ≈ a f2(a) ≈ f(a) f2(a) ≈ f2(a) f2(a) ≈ f3(a)
f3(a) ≈ a f3(a) ≈ f(a) f3(a) ≈ f2(a) f3(a) ≈ f3(a)

Deciding ≈E: Finite Ground E

Example 3.1

Let F = {a, f}, G := {f2(a) ≈ a, f3(a) ≈ a}, s := f(a), t := a.

Then S := {a, f(a), f2(a), f3(a)}.

Constructing CCS(G):

H0 :

a ≈ a a ≈ f(a) a ≈ f2(a) a ≈ f3(a)
f(a) ≈ a f(a) ≈ f(a) f(a) ≈ f2(a) f(a) ≈ f3(a)
f2(a) ≈ a f2(a) ≈ f(a) f2(a) ≈ f2(a) f2(a) ≈ f3(a)
f3(a) ≈ a f3(a) ≈ f(a) f3(a) ≈ f2(a) f3(a) ≈ f3(a)

Deciding ≈E: Finite Ground E

Example 3.1

Let F = {a, f}, G := {f2(a) ≈ a, f3(a) ≈ a}, s := f(a), t := a.

Then S := {a, f(a), f2(a), f3(a)}.

Constructing CCS(G):

H1 :

a ≈ a a ≈ f(a) a ≈ f2(a) a ≈ f3(a)
f(a) ≈ a f(a) ≈ f(a) f(a) ≈ f2(a) f(a) ≈ f3(a)
f2(a) ≈ a f2(a) ≈ f(a) f2(a) ≈ f2(a) f2(a) ≈ f3(a)
f3(a) ≈ a f3(a) ≈ f(a) f3(a) ≈ f2(a) f3(a) ≈ f3(a)

Deciding ≈E: Finite Ground E

Example 3.1

Let F = {a, f}, G := {f2(a) ≈ a, f3(a) ≈ a}, s := f(a), t := a.

Then S := {a, f(a), f2(a), f3(a)}.

Constructing CCS(G):

H2 :

a ≈ a a ≈ f(a) a ≈f2(a) a ≈f3(a)
f(a) ≈ a f(a) ≈ f(a) f(a) ≈ f2(a) f(a) ≈ f3(a)
f2(a) ≈ a f2(a) ≈ f(a) f2(a) ≈ f2(a) f2(a) ≈ f3(a)
f3(a) ≈ a f3(a) ≈ f(a) f3(a) ≈ f2(a) f3(a) ≈ f3(a)

Deciding ≈E: Finite Ground E

Example 3.1

Let F = {a, f}, G := {f2(a) ≈ a, f3(a) ≈ a}, s := f(a), t := a.

Then S := {a, f(a), f2(a), f3(a)}.

Constructing CCS(G):

H3 :

a ≈ a a ≈ f(a) a ≈f2(a) a ≈f3(a)
f(a) ≈ a f(a) ≈ f(a) f(a) ≈ f2(a) f(a) ≈ f3(a)
f2(a) ≈ a f2(a) ≈ f(a) f2(a) ≈ f2(a) f2(a) ≈ f3(a)
f3(a) ≈ a f3(a) ≈ f(a) f3(a) ≈ f2(a) f3(a) ≈ f3(a)

Hence, (f(a), a) ∈ CCS(G), showing f(a) ≈G a.

Deciding ≈E: Finite Ground E

Example 3.1

Let F = {a, f}, G := {f2(a) ≈ a, f3(a) ≈ a}, s := f(a), t := a.

Then S := {a, f(a), f2(a), f3(a)}.

Constructing CCS(G):

H3 :

a ≈ a a ≈ f(a) a ≈f2(a) a ≈f3(a)
f(a) ≈ a f(a) ≈ f(a) f(a) ≈ f2(a) f(a) ≈ f3(a)
f2(a) ≈ a f2(a) ≈ f(a) f2(a) ≈ f2(a) f2(a) ≈ f3(a)
f3(a) ≈ a f3(a) ≈ f(a) f3(a) ≈ f2(a) f3(a) ≈ f3(a)

Hence, (f(a), a) ∈ CCS(G), showing f(a) ≈G a.

Deciding ≈E: Finite Ground E

Example 3.1

s := f(a), t := a.

S := {a, f(a), f2(a), f3(a)}.

CCS(G) :

a ≈ a a ≈ f(a) a ≈f2(a) a ≈f3(a)
f(a) ≈ a f(a) ≈ f(a) f(a) ≈ f2(a) f(a) ≈ f3(a)
f2(a) ≈ a f2(a) ≈ f(a) f2(a) ≈ f2(a) f2(a) ≈ f3(a)
f3(a) ≈ a f3(a) ≈ f(a) f3(a) ≈ f2(a) f3(a) ≈ f3(a)

Hence, (f(a), a) ∈ CCS(G), showing f(a) ≈G a.
Note that CCS(G) = S × S. In general the iteration may stop
before S × S is reached.

Deciding ≈E: Finite Ground E

Example 3.1

s := f(a), t := a.

S := {a, f(a), f2(a), f3(a)}.

CCS(G) :

a ≈ a a ≈ f(a) a ≈f2(a) a ≈f3(a)
f(a) ≈ a f(a) ≈ f(a) f(a) ≈ f2(a) f(a) ≈ f3(a)
f2(a) ≈ a f2(a) ≈ f(a) f2(a) ≈ f2(a) f2(a) ≈ f3(a)
f3(a) ≈ a f3(a) ≈ f(a) f3(a) ≈ f2(a) f3(a) ≈ f3(a)

Hence, (f(a), a) ∈ CCS(G), showing f(a) ≈G a.

Note that CCS(G) = S × S. In general the iteration may stop
before S × S is reached.

Deciding ≈E: Finite Ground E

Example 3.1

s := f(a), t := a.

S := {a, f(a), f2(a), f3(a)}.

CCS(G) :

a ≈ a a ≈ f(a) a ≈f2(a) a ≈f3(a)
f(a) ≈ a f(a) ≈ f(a) f(a) ≈ f2(a) f(a) ≈ f3(a)
f2(a) ≈ a f2(a) ≈ f(a) f2(a) ≈ f2(a) f2(a) ≈ f3(a)
f3(a) ≈ a f3(a) ≈ f(a) f3(a) ≈ f2(a) f3(a) ≈ f3(a)

Hence, (f(a), a) ∈ CCS(G), showing f(a) ≈G a.
Note that CCS(G) = S × S. In general the iteration may stop
before S × S is reached.

	*

