Rewriting
 Part 3.1 Equational Problems. Deciding \approx_{E}

Temur Kutsia

RISC, JKU Linz

Validity and Satisfiability

Notation: $s \approx_{E} t$ iff $s \approx t$ belongs to the equational theory generated by E.

Validity and Satisfiability

Notation: $s \approx_{E} t$ iff $s \approx t$ belongs to the equational theory generated by E.
Validity problem:
Given: A set of identities E and terms s and t.
Decide: $s \approx_{E} t$.

Validity and Satisfiability

Notation: $s \approx_{E} t$ iff $s \approx t$ belongs to the equational theory generated by E.
Validity problem:
Given: A set of identities E and terms s and t.
Decide: $s \approx_{E} t$.
Satisfiability problem:
Given: A set of identities E and terms s and t.
Find: A substitution σ such that $\sigma(s) \approx_{E} \sigma(t)$.

Equational Problems

The following methods solve special cases:

- Term rewriting decides \approx_{E} if \rightarrow_{E} is convergent.
- Congruence closure decided \approx_{E} when E is variable-free.
- Syntactic unification computes σ such that $\sigma(s)=\sigma(t)$.

Equations Problems

Relating validity and satisfiability problems.

- Validity: $s \approx t$ is valid in E iff

$$
\forall \bar{x} . s \approx t
$$

holds in all models of E.

- Satisfiability: $s \approx t$ is satisfiable in E iff

$$
\exists \bar{x} . s \approx t
$$

holds in all nonempty models of E.

Deciding \approx_{E}

- By Birkhoffs theorem, $s \approx_{E} t$ iff $s \stackrel{*}{\longleftrightarrow}_{E} r$.
- Hence, deciding \approx_{E} is equivalent to deciding $\stackrel{*}{\longleftrightarrow}^{\bullet}$.

Deciding \approx_{E}

- By Birkhoffs theorem, $s \approx_{E} t$ iff $s \stackrel{*}{\longleftrightarrow}_{E} r$.
- Hence, deciding \approx_{E} is equivalent to deciding $\stackrel{*}{\longleftrightarrow}^{\bullet}$.
- Word problem:

Given: A set of identities E and terms s and t. Decide: $s \stackrel{*}{\hookrightarrow}_{E} t$.

Deciding \approx_{E} : Finite E, Convergent \rightarrow_{E}

Recall from abstract reduction systems:
If \rightarrow is confluent and terminating, then

- every element x has a unique normal form $x \downarrow$,
- $x \stackrel{*}{\longleftrightarrow} y$ iff $x \downarrow=y \downarrow$.

Deciding \approx_{E} : Finite E, Convergent \rightarrow_{E}

Recall from abstract reduction systems:
If \rightarrow is confluent and terminating, then

- every element x has a unique normal form $x \downarrow$,
- $x \stackrel{*}{\longleftrightarrow} y$ iff $x \downarrow=y \downarrow$.
- Hence, if \rightarrow_{E} is convergent, we can decide $x \stackrel{*}{\longleftrightarrow} y$.
- Provided that we are able to compute normal forms.

Deciding \approx_{E} : Finite E, Convergent \rightarrow_{E}

Recall from abstract reduction systems:
If \rightarrow is confluent and terminating, then

- every element x has a unique normal form $x \downarrow$,
- $x \stackrel{*}{\longleftrightarrow} y$ iff $x \downarrow=y \downarrow$.
- Hence, if \rightarrow_{E} is convergent, we can decide $x \stackrel{*}{\longleftrightarrow} y$.
- Provided that we are able to compute normal forms.
- This is possible if we can effectively
- decide whether a term is in normal form wrt \rightarrow_{E}, and
- compute some s^{\prime} such that $s \rightarrow_{E} s^{\prime}$ if s is not in normal form.

Deciding \approx_{E} : Finite E, Convergent \rightarrow_{E}

How to decide whether a term is in normal form wrt \rightarrow_{E} ?

Deciding \approx_{E} : Finite E, Convergent \rightarrow_{E}

How to decide whether a term is in normal form wrt \rightarrow_{E} ?

- Check whether it can be rewritten by \rightarrow_{E}.

Deciding \approx_{E} : Finite E, Convergent \rightarrow_{E}

How to decide whether a term is in normal form wrt \rightarrow_{E} ?

- Check whether it can be rewritten by \rightarrow_{E}.
- That is, check whether any of its subterms is an instance of the Ihs of a rule in \rightarrow_{E}.

Deciding \approx_{E} : Finite E, Convergent \rightarrow_{E}

How to decide whether a term is in normal form wrt \rightarrow_{E} ?

- Check whether it can be rewritten by \rightarrow_{E}.
- That is, check whether any of its subterms is an instance of the lhs of a rule in \rightarrow_{E}.
- Matching problem:

Given: Two terms s and t.
Find: A substitution σ such that $\sigma(s)=t$.

Deciding \approx_{E} : Finite E, Convergent \rightarrow_{E}

How to decide whether a term is in normal form wrt \rightarrow_{E} ?

- Check whether it can be rewritten by \rightarrow_{E}.
- That is, check whether any of its subterms is an instance of the lhs of a rule in \rightarrow_{E}.
- Matching problem:

Given: Two terms s and t.
Find: A substitution σ such that $\sigma(s)=t$.

- Matching is decidable. (Details later, with unification.)

Deciding \approx_{E} : Finite E, Convergent \rightarrow_{E}

Theorem 3.1
If E is finite and \rightarrow_{E} is convergent, then \approx_{E} is decidable.
Proof.

1. Decide whether a term s is in normal form wrt \rightarrow_{E} : Check all $l \approx r \in E$ and all positions $p \in \mathcal{P} o s(s)$ if there is σ such that $\left.s\right|_{p}=\sigma(l)$.
2. Compute some s^{\prime} such that $s \rightarrow_{E} s^{\prime}$ if s is not in normal form: Reduce s to $s[\sigma(r)]_{p}$ if the test above is positive.

Iterate the process to compute a normal form.
The iteration stops because \rightarrow_{E} is terminating.
The obtained normal form is unique because \rightarrow_{E} is confluent.
To decide $s \approx_{E} t$, compute $s \downarrow_{E}$ and $t \downarrow_{E}$ and compare.

Deciding \approx_{E} : Finite E, Convergent \rightarrow_{E}

- Convergence of \rightarrow_{E} is important for decidability of \approx_{E}.
- There exist finite sets E for which \approx_{E} is not decidable.
- Example: Combinatory logic.

Deciding \approx_{E} : Finite E, Convergent \rightarrow_{E}

Definition 3.1 (Term Rewriting System)

- Rewrite rule: An identity $l \approx r$ such that
- l is not a variable,
- $\mathcal{V} \operatorname{ar}(l) \supseteq \mathcal{V} \operatorname{ar}(r)$.
- Notation: $l \rightarrow r$ instead of $l \approx r$.
- A term rewriting system (TRS) is a set of rewrite rules.

Deciding \approx_{E} : Finite E, Convergent \rightarrow_{E}

Definition 3.1 (Term Rewriting System)

- Rewrite rule: An identity $l \approx r$ such that
- l is not a variable,
- $\mathcal{V} a r(l) \supseteq \mathcal{V} \operatorname{ar}(r)$.
- Notation: $l \rightarrow r$ instead of $l \approx r$.
- A term rewriting system (TRS) is a set of rewrite rules.

By definition, a TRS R is a set of identities.
Hence, \rightarrow_{R} and \approx_{R} are well-defined.
We say that R is terminating, confluent, etc. if \rightarrow_{R} is.

Deciding \approx_{E} : Finite E, Convergent \rightarrow_{E}

Definition 3.1 (Term Rewriting System)

- Rewrite rule: An identity $l \approx r$ such that
- l is not a variable,
- $\mathcal{V} a r(l) \supseteq \mathcal{V} \operatorname{ar}(r)$.
- Notation: $l \rightarrow r$ instead of $l \approx r$.
- A term rewriting system (TRS) is a set of rewrite rules.

By definition, a TRS R is a set of identities.
Hence, \rightarrow_{R} and \approx_{R} are well-defined.
We say that R is terminating, confluent, etc. if \rightarrow_{R} is.
Theorem 3.2
If R is a finite convergent $T R S$, then \approx_{R} is decidable.

Deciding \approx_{E} : Finite Ground E

- An identity $l \approx r$ is a ground identity if $\operatorname{Var}(l)=\operatorname{V} \operatorname{Var}(r)=\emptyset$.
- Ground word problem for E : Word problem for ground terms over the signature of E.

Deciding \approx_{E} : Finite Ground E

- An identity $l \approx r$ is a ground identity if $\operatorname{Var}(l)=\operatorname{V} \operatorname{Var}(r)=\emptyset$.
- Ground word problem for E : Word problem for ground terms over the signature of E.
- G : A set of ground identities.
- Congruence on terms: Equivalence relation closed under operations.
- Congruence closure of G : smallest congruence on terms which contains G.

Deciding \approx_{E} : Finite Ground E

Relating \approx_{G} and congruence closure of G :

- By Theorem 2.1, $\stackrel{*}{\longleftrightarrow}_{G}$ is the smallest equivalence relation closed under substitutions and operations.
- G is ground, substitutions are irrelevant.
- Hence, $\stackrel{*}{{ }^{*}} G$ is the congruence closure of G.
- By Birkhoffs Theorem, \approx_{G} is the congruence closure of G.

Deciding \approx_{E} : Finite Ground E

Operational description of congruence closure: A functional version of the rules of equational logic.

$$
\begin{aligned}
R(E) & :=\{(t, t) \mid t \in T(\mathcal{F}, \mathcal{V})\} . \\
S(E) & :=\{(s, t) \mid(t, s) \in E\} . \\
T(E) & :=\{(s, r) \mid \text { for some } t,(s, t) \in E \text { and }(t, r) \in E\} . \\
C(E) & :=\left\{\left(f\left(s_{1}, \ldots, s_{n}\right), f\left(t_{1}, \ldots, t_{n}\right)\right) \mid\right. \\
& \left.f \in \mathcal{F}^{n},\left(s_{i}, t_{i}\right) \in E \text { for all } 1 \leq i \leq n\right\} . \\
\operatorname{Cong}(E) & :=E \cup R(E) \cup S(E) \cup T(E) \cup C(E)
\end{aligned}
$$

Deciding \approx_{E} : Finite Ground E

Operational description of congruence closure: A functional version of the rules of equational logic.

$$
\begin{aligned}
R(E) & :=\{(t, t) \mid t \in T(\mathcal{F}, \mathcal{V})\} . \\
S(E) & :=\{(s, t) \mid(t, s) \in E\} . \\
T(E) & :=\{(s, r) \mid \text { for some } t,(s, t) \in E \text { and }(t, r) \in E\} . \\
C(E) & :=\left\{\left(f\left(s_{1}, \ldots, s_{n}\right), f\left(t_{1}, \ldots, t_{n}\right)\right) \mid\right. \\
& \left.f \in \mathcal{F}^{n},\left(s_{i}, t_{i}\right) \in E \text { for all } 1 \leq i \leq n\right\} . \\
\operatorname{Cong}(E) & :=E \cup R(E) \cup S(E) \cup T(E) \cup C(E)
\end{aligned}
$$

- E is congruence iff E is closed under Cong (i.e., $\operatorname{Cong}(E) \subseteq E)$.

Deciding \approx_{E} : Finite Ground E

Operational description of congruence closure: A functional version of the rules of equational logic.

$$
\begin{aligned}
R(E) & :=\{(t, t) \mid t \in T(\mathcal{F}, \mathcal{V})\} . \\
S(E) & :=\{(s, t) \mid(t, s) \in E\} . \\
T(E) & :=\{(s, r) \mid \text { for some } t,(s, t) \in E \text { and }(t, r) \in E\} . \\
C(E) & :=\left\{\left(f\left(s_{1}, \ldots, s_{n}\right), f\left(t_{1}, \ldots, t_{n}\right)\right) \mid\right. \\
& \left.f \in \mathcal{F}^{n},\left(s_{i}, t_{i}\right) \in E \text { for all } 1 \leq i \leq n\right\} . \\
\operatorname{Cong}(E) & :=E \cup R(E) \cup S(E) \cup T(E) \cup C(E)
\end{aligned}
$$

- E is congruence iff E is closed under Cong (i.e., $\operatorname{Cong}(E) \subseteq E)$.
- E is congruence iff $\operatorname{Cong}(E)=E$.

Deciding \approx_{E} : Finite Ground E

The process of closing G under Cong:

$$
\begin{aligned}
G_{0} & :=G . \\
G_{i+1} & :=\operatorname{Cong}\left(G_{i}\right) . \\
C C(G) & :=\bigcup_{i \geq 0} G_{i}
\end{aligned}
$$

Deciding \approx_{E} : Finite Ground E

Lemma 3.1
$C C(G)=\approx_{G}$.

Deciding \approx_{E} : Finite Ground E

Lemma 3.1
$C C(G)=\approx_{G}$.
Proof.
(\subseteq) Use monotonicity of Cong: If $E_{1} \subseteq E_{2}$, then
$\operatorname{Cong}\left(E_{1}\right) \subseteq \operatorname{Cong}\left(E_{2}\right)$.
Proof by induction on $i . G_{0}=G \subseteq \approx_{G}$. Assume $G_{i} \subseteq \approx_{G}$ and show $G_{i+1} \subseteq \approx_{G} . G_{i+1}=\operatorname{Cong}\left(G_{i}\right) \subseteq \operatorname{Cong}\left(\approx_{G}\right)=\approx_{G}$.

Deciding \approx_{E} : Finite Ground E

Lemma 3.1
$C C(G)=\approx_{G}$.
Proof.
(\subseteq) Use monotonicity of $C o n g$: If $E_{1} \subseteq E_{2}$, then
$\operatorname{Cong}\left(E_{1}\right) \subseteq \operatorname{Cong}\left(E_{2}\right)$.
Proof by induction on $i . G_{0}=G \subseteq \approx_{G}$. Assume $G_{i} \subseteq \approx_{G}$ and show $G_{i+1} \subseteq \approx_{G} . G_{i+1}=\operatorname{Cong}\left(G_{i}\right) \subseteq \operatorname{Cong}\left(\approx_{G}\right)=\approx_{G}$.
$(\supseteq) C C(G)$ is a congruence containing G (because $C C(G)$ is closed under Cong. Check!). \approx_{G} is the least congruence containing G. Hence, $\approx_{G} \subseteq C C(G)$.

Deciding \approx_{E} : Finite Ground E

- $C C(G)$ may be infinite. If the signature consists of a, b, and a unary function symbol f :

$$
C C(\{a \approx b\}) \supseteq\left\{\left(f^{i}(a), f^{i}(b)\right) \mid i \geq 0\right\}
$$

- Check whether $f^{2}(a) \approx_{G} f^{2}(b)$ is easy: $\left(f^{2}(a), f^{2}(b)\right) \in \approx_{G}$.
- But how to conclude that $f^{3}(a) \not \nsim_{G} f^{2}(b)$?
- Shall we examine all G_{i} 's?

Deciding \approx_{E} : Finite Ground E

- $C C(G)$ may be infinite. If the signature consists of a, b, and a unary function symbol f :

$$
C C(\{a \approx b\}) \supseteq\left\{\left(f^{i}(a), f^{i}(b)\right) \mid i \geq 0\right\}
$$

- Check whether $f^{2}(a) \approx_{G} f^{2}(b)$ is easy: $\left(f^{2}(a), f^{2}(b)\right) \in \approx_{G}$.
- But how to conclude that $f^{3}(a) \not \nsim_{G} f^{2}(b)$?
- Shall we examine all G_{i} 's?
- It turns out that since G is ground, the search space is finite.
- We need to test only terms occurring in G or in the input terms.

Deciding \approx_{E} : Finite Ground E

Subterms $(t):=\left\{\left.t\right|_{p} \mid p \in \mathcal{P o s}(t)\right\}$
$\operatorname{Subterms}(E):=\bigcup_{(l, r) \in E}(\operatorname{Subterms}(l) \cup \operatorname{Subterms}(r))$

Deciding \approx_{E} : Finite Ground E

$$
\begin{aligned}
\operatorname{Subterms}(t) & :=\left\{\left.t\right|_{p} \mid p \in \mathcal{P o s}(t)\right\} \\
\operatorname{Subterms}(E) & :=\bigcup_{(l, r) \in E}(\operatorname{Subterms}(l) \cup \operatorname{Subterms}(r))
\end{aligned}
$$

Fix a finite set of ground identities G and two terms s and t.

$$
S:=\operatorname{Subterms}(G) \cup \operatorname{Subterms}(s) \cup \operatorname{Subterms}(t)
$$

Deciding \approx_{E} : Finite Ground E

$$
\begin{aligned}
\operatorname{Subterms}(t) & :=\left\{\left.t\right|_{p} \mid p \in \mathcal{P o s}(t)\right\} \\
\operatorname{Subterms}(E) & :=\bigcup_{(l, r) \in E}(\operatorname{Subterms}(l) \cup \operatorname{Subterms}(r))
\end{aligned}
$$

Fix a finite set of ground identities G and two terms s and t.

$$
S:=\operatorname{Subterms}(G) \cup \operatorname{Subterms}(s) \cup \operatorname{Subterms}(t)
$$

S is finite. It will be used to decide $s \approx_{G} t$.

Deciding \approx_{E} : Finite Ground E

Define the sequence:

$$
\begin{aligned}
H_{0} & :=G \\
H_{i+1} & :=\operatorname{Cong}\left(H_{i}\right) \cap(S \times S)
\end{aligned}
$$

Deciding \approx_{E} : Finite Ground E

Define the sequence:

$$
\begin{aligned}
H_{0} & :=G \\
H_{i+1} & :=\operatorname{Cong}\left(H_{i}\right) \cap(S \times S)
\end{aligned}
$$

Lemma 3.2
There is some m such that $H_{m+1}=H_{m}$.
Proof.
By definition, $H_{i} \subseteq S \times S$. Moreover, $H_{i} \subseteq \operatorname{Cong}\left(H_{i}\right)$. Hence, $H_{i} \subseteq H_{i+1}$. Therefore, $H_{0} \subseteq H_{1} \subseteq H_{2} \subseteq \cdots \subseteq S \times S$ and S is finite.

Deciding \approx_{E} : Finite Ground E

Define the sequence:

$$
\begin{aligned}
H_{0} & :=G \\
H_{i+1} & :=\operatorname{Cong}\left(H_{i}\right) \cap(S \times S)
\end{aligned}
$$

Lemma 3.2
There is some m such that $H_{m+1}=H_{m}$.
Proof.
By definition, $H_{i} \subseteq S \times S$. Moreover, $H_{i} \subseteq \operatorname{Cong}\left(H_{i}\right)$. Hence, $H_{i} \subseteq H_{i+1}$. Therefore, $H_{0} \subseteq H_{1} \subseteq H_{2} \subseteq \cdots \subseteq S \times S$ and S is finite.
The limit H_{m} is denoted by $C C_{S}(G)$.

$C C_{S}(G)$ Is Not a Congruence

- $C C_{S}(G)$ is not a congruence, in general.
- It is symmetric and transitive, not reflexive.
- It is reflexive only for terms from $S \times S$.

Example 1
Assume $G=\{a \approx b\}, s=f(a), t=b$. Then $S=\{a, b, f(a)\}$. We have:

$$
\begin{aligned}
& H_{0}=G \\
& H_{1}=G \cup\{a \approx a, b \approx b, f(a) \approx f(a), b \approx a\} \\
& H_{2}=H_{1}=C C_{S}(G)
\end{aligned}
$$

$C C_{S}(G)$ Is Not a Congruence

- $C C_{S}(G)$ is not a congruence, in general.
- It is symmetric and transitive, not reflexive.
- It is reflexive only for terms from $S \times S$.

Example 1
Assume $G=\{a \approx b\}, s=f(a), t=b$. Then $S=\{a, b, f(a)\}$. We have:

$$
\begin{aligned}
& H_{0}=G \\
& H_{1}=G \cup\{a \approx a, b \approx b, f(a) \approx f(a), b \approx a\} \\
& H_{2}=H_{1}=C C_{S}(G)
\end{aligned}
$$

Nevertheless, $C C_{S}(G)$ is what we need. See the next slide.

Deciding \approx_{E} : Finite Ground E

Theorem 3.3
$C C_{S}(G)=\approx_{G} \cap(S \times S)$.
Proof.

Deciding \approx_{E} : Finite Ground E

Theorem 3.3
$C C_{S}(G)=\approx_{G} \cap(S \times S)$.
Proof.
(\subseteq) By definition, $H_{i} \subseteq G_{i} \cap(S \times S)$. Therefore, $C C_{S}(G) \subseteq C C(G) \cap(S \times S)$.

Deciding \approx_{E} : Finite Ground E

Theorem 3.3
$C C_{S}(G)=\approx_{G} \cap(S \times S)$.
Proof.
(\subseteq) By definition, $H_{i} \subseteq G_{i} \cap(S \times S)$. Therefore, $C C_{S}(G) \subseteq C C(G) \cap(S \times S)$.
(\supseteq) Let $u, v \in S$ and $u \not \leftrightarrow_{G}^{n} v$. Prove $(u, v) \in H_{m}$ (the limit of H_{i}) by well-founded induction on the lexicographically ordered pair $(n,|u|)$:

- $n=0$. Then $u=v$. Hence, $(u, v) \in H_{1} \subseteq H_{m}$.
- $u \leftrightarrow_{G}^{n+1} v$. Two cases:

1. There is a rewrite step at the root.
2. There is no rewrite step at the root.

Deciding \approx_{E} : Finite Ground E

Theorem 3.3
$C C_{S}(G)=\approx_{G} \cap(S \times S)$.
Proof (Cont.)

1. There is a rewrite step at the root.

$$
u \leftrightarrow_{G}^{n_{1}} l \leftrightarrow_{G} r \leftrightarrow_{G}^{n_{2}} v
$$

for some $l \approx r \in G \cup G^{-1}$. (G is ground: No substitutions). $n_{1}, n_{2}<n$. By induction hypothesis,

$$
(u, l) \in H_{m} \text { and }(r, v) \in H_{m}
$$

If $(l, r) \in G$, then $(l, r) \in H_{0} \subseteq H_{m}$. If $(l, r) \in G^{-1}$, then
$(l, r) \in H_{1} \subseteq H_{m}$. By transitivity of $H_{m},(u, v) \in H_{m}$.

Deciding \approx_{E} : Finite Ground E

Theorem 3.3
$C C_{S}(G)=\approx_{G} \cap(S \times S)$.
Proof (Cont.)
2. There is no rewrite step at the root.

$$
u=f\left(u_{1}, \ldots, u_{k}\right), v=f\left(v_{1}, \ldots, v_{k}\right)
$$

and $u_{i} \leftrightarrow_{G}^{n_{i}} v_{i}$ for all $1 \leq i \leq k$.
Since $n_{i} \leq n+1,\left|u_{i}\right|<|u|$, and $u_{i}, v_{i} \in S$, by the induction hypothesis, $\left(u_{i}, v_{i}\right) \in H_{m}$ for all $1 \leq i \leq k$.
By congruence, $(u, v) \in H_{m+1}=H_{m}$.

Deciding \approx_{E} : Finite Ground E

Example 3.1
Let $\mathcal{F}=\{a, f\}, G:=\left\{f^{2}(a) \approx a, f^{3}(a) \approx a\right\}, s=f(a), t=a$.
Then $S:=\left\{a, f(a), f^{2}(a), f^{3}(a)\right\}$.

Deciding \approx_{E} : Finite Ground E

Example 3.1
Let $\mathcal{F}=\{a, f\}, G:=\left\{f^{2}(a) \approx a, f^{3}(a) \approx a\right\}, s=f(a), t=a$.
Then $S:=\left\{a, f(a), f^{2}(a), f^{3}(a)\right\}$.
Constructing $C C_{S}(G)$:

$$
S \times S:
$$

$$
\begin{array}{rlrlrl}
a & \approx a & a & \approx f(a) & a & \approx f^{2}(a) \\
f(a) & \approx a & f(a) & \approx f(a) & f(a) & \approx f^{2}(a) \\
& \approx(a) & \approx f^{3}(a) \\
f^{2}(a) & \approx a & f^{2}(a) & \approx f(a) & f^{2}(a) & \approx f^{2}(a) \\
f^{3}(a) & \approx a & f^{3}(a) & \approx f^{3}(a) \\
& \approx f(a) & f^{3}(a) & \approx f^{2}(a) & f^{3}(a) & \approx f^{3}(a)
\end{array}
$$

Deciding \approx_{E} : Finite Ground E

Example 3.1
Let $\mathcal{F}=\{a, f\}, G:=\left\{f^{2}(a) \approx a, f^{3}(a) \approx a\right\}, s:=f(a), t:=a$.
Then $S:=\left\{a, f(a), f^{2}(a), f^{3}(a)\right\}$.
Constructing $C C_{S}(G)$:
H_{0} :

$$
\begin{array}{rlrlrl}
a & \approx a & a & \approx f(a) & a & \approx f^{2}(a) \\
f(a) & \approx a & f(a) & \approx f(a) & f(a) & \approx f^{2}(a) \\
& \approx f(a) & \approx f^{3}(a) \\
f^{2}(a) & \approx a & f^{2}(a) & \approx f(a) & f^{2}(a) & \approx f^{2}(a) \\
f^{3}(a) & \approx a & f^{3}(a) & \approx f^{3}(a)(a) \\
& \approx f(a) & f^{3}(a) & \approx f^{2}(a) & f^{3}(a) & \approx f^{3}(a)
\end{array}
$$

Deciding \approx_{E} : Finite Ground E

Example 3.1
Let $\mathcal{F}=\{a, f\}, G:=\left\{f^{2}(a) \approx a, f^{3}(a) \approx a\right\}, s:=f(a), t:=a$.
Then $S:=\left\{a, f(a), f^{2}(a), f^{3}(a)\right\}$.
Constructing $C C_{S}(G)$:
H_{1} :

$$
\begin{array}{rlrlrl}
a & \approx a & a & \approx f(a) & a & \approx f^{2}(a) \\
f(a) & \approx a & f(a) & \approx f(a) & f(a) & \approx f^{2}(a) \\
& \approx(a) & f(a) & \approx f^{3}(a) \\
f^{2}(a) & \approx a & f^{2}(a) & \approx f(a) & f^{2}(a) & \approx f^{2}(a) \\
f^{3}(a) & \approx a & f^{3}(a) & \approx f^{3}(a) \\
& \approx f(a) & f^{3}(a) & \approx f^{2}(a) & f^{3}(a) & \approx f^{3}(a)
\end{array}
$$

Deciding \approx_{E} : Finite Ground E

Example 3.1
Let $\mathcal{F}=\{a, f\}, G:=\left\{f^{2}(a) \approx a, f^{3}(a) \approx a\right\}, s:=f(a), t:=a$.
Then $S:=\left\{a, f(a), f^{2}(a), f^{3}(a)\right\}$.
Constructing $C C_{S}(G)$:
H_{2} :

$$
\left.\begin{array}{rlrlrl}
a & \approx a & a & \approx f(a) & a & \approx f^{2}(a) \\
f(a) & \approx a & f(a) & \approx f(a) & f(a) & \approx f^{2}(a) \\
f^{2}(a) & \approx a & f(a) & \approx f^{3}(a) \\
f^{3}(a) & \approx f(a) & f^{2}(a) & \approx f^{2}(a) & f^{2}(a) & \approx f^{3}(a) \\
f^{3}(a) & f^{3}(a) & \approx f(a) & f^{3}(a) & \approx f^{2}(a) & f^{3}(a)
\end{array}\right) \approx f^{3}(a)
$$

Deciding \approx_{E} : Finite Ground E

Example 3.1
Let $\mathcal{F}=\{a, f\}, G:=\left\{f^{2}(a) \approx a, f^{3}(a) \approx a\right\}, s:=f(a), t:=a$.
Then $S:=\left\{a, f(a), f^{2}(a), f^{3}(a)\right\}$.
Constructing $C C_{S}(G)$:
H_{3} :

$$
\begin{array}{rlrlrl}
a & \approx a & a & \approx f(a) & a & \approx f^{2}(a) \\
f(a) & \approx a & f(a) & \approx f(a) & f(a) & \approx f^{3}(a) \\
f^{2}(a) & \approx a & f^{2}(a) & \approx f(a) & f^{2}(a) & \approx f^{2}(a) \\
f^{3}(a) & \approx a) \\
f^{3}(a) & \approx f^{3}(a) \\
f^{3}(a) & \approx f(a) & f^{3}(a) & \approx f^{2}(a) & f^{3}(a) & \approx f^{3}(a)
\end{array}
$$

Deciding \approx_{E} : Finite Ground E

Example 3.1
Let $\mathcal{F}=\{a, f\}, G:=\left\{f^{2}(a) \approx a, f^{3}(a) \approx a\right\}, s:=f(a), t:=a$.
Then $S:=\left\{a, f(a), f^{2}(a), f^{3}(a)\right\}$.
Constructing $C C_{S}(G)$:
H_{3} :

$$
\begin{array}{rlrlrl}
a & \approx a & a & \approx f(a) & a & \approx f^{2}(a) \\
f(a) & \approx a & f(a) & \approx f(a) & f(a) & \approx f^{2}(a) \\
f^{2}(a) & \approx a & f^{2}(a) & \approx f(a) & f^{2}(a) & \approx f^{2}(a) \\
f^{3}(a) \\
f^{3}(a) & \approx a & f^{3}(a) & \approx f(a) & f^{3}(a) & \approx f^{2}(a) \\
f^{3}(a) \\
f^{3}(a) & \approx f^{3}(a)
\end{array}
$$

Hence, $(f(a), a) \in C C_{S}(G)$, showing $f(a) \approx_{G} a$.

Deciding \approx_{E} : Finite Ground E

Example 3.1
$s:=f(a), t:=a$.
$S:=\left\{a, f(a), f^{2}(a), f^{3}(a)\right\}$.
$C C_{S}(G):$

$$
\begin{array}{rlrlrl}
a & \approx a & a & \approx f(a) & a & \approx f^{2}(a) \\
f(a) & \approx a & f(a) & \approx f(a) & f(a) & \approx f^{2}(a) \\
f^{2}(a) & \approx a & \approx a) & \approx f^{3}(a) \\
f^{3}(a) & \approx a & f^{2}(a) & \approx f(a) & f^{2}(a) & \approx f^{2}(a) \\
& \approx f(a) & f^{2}(a) & \approx f^{2}(a)(a) & f^{3}(a) & \approx f^{3}(a)
\end{array}
$$

Deciding \approx_{E} : Finite Ground E

Example 3.1
$s:=f(a), t:=a$.
$S:=\left\{a, f(a), f^{2}(a), f^{3}(a)\right\}$.
$C C_{S}(G):$

$$
\begin{array}{rlrlrl}
a & \approx a & a & \approx f(a) & a & \approx f^{2}(a) \\
f(a) & \approx a & f(a) & \approx f(a) & f(a) & \approx f^{2}(a) \\
f^{2}(a) & \approx a(a) & \approx f^{3}(a) \\
f^{3}(a) & \approx a & f^{2}(a) & \approx f(a) & f^{2}(a) & \approx f^{2}(a) \\
f^{2}(a) & \approx f(a) & f^{3}(a) & \approx f^{2}(a) & \approx f^{3}(a) & \approx f^{3}(a)
\end{array}
$$

Hence, $(f(a), a) \in C C_{S}(G)$, showing $f(a) \approx_{G} a$.

Deciding \approx_{E} : Finite Ground E

Example 3.1
$s:=f(a), t:=a$.
$S:=\left\{a, f(a), f^{2}(a), f^{3}(a)\right\}$.
$C C_{S}(G):$

$$
\begin{array}{rlrlrl}
a & \approx a & a & \approx f(a) & a & \approx f^{2}(a) \\
f(a) & \approx a & f(a) & \approx f(a) & f(a) & \approx f^{2}(a) \\
f^{2}(a) & f(a) & \approx f^{3}(a) \\
f^{2}(a) & \approx a & f^{2}(a) & \approx f(a) & f^{2}(a) & \approx f^{2}(a) \\
f^{3}(a) & \approx a & f^{2}(a) & \approx f^{3}(a) \\
& \approx f(a) & f^{3}(a) & \approx f^{2}(a) & f^{3}(a) & \approx f^{3}(a)
\end{array}
$$

Hence, $(f(a), a) \in C C_{S}(G)$, showing $f(a) \approx_{G} a$.
Note that $C C_{S}(G)=S \times S$. In general the iteration may stop before $S \times S$ is reached.

