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Purpose of the Lecture

I Introduce syntactic notions:
I Terms
I Substitutions
I Identities

I Define semantics.

I Establish connections between syntax and semantics.



Syntax

Semantics



Syntax

I Alphabet

I Terms



Alphabet

A first-order alphabet consists of the following sets of symbols:

I A countable set of variables V.

I For each n ≥ 0, a set of n-ary function symbols Fn.

I Elements of F0 are called constants.

I Signature: F = ∪n≥0Fn.

I V ∩ F = ∅.

Notation:

I x, y, z for variables.

I f, g for function symbols.

I a, b, c for constants.
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I For each n ≥ 0, a set of n-ary function symbols Fn.
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Terms

Definition 2.1
The set of terms T (F ,V) over F and V:

I V ⊆ T (F ,V) (every variable is a term).

I For all t1, . . . , tn ∈ T (F ,V) and f ∈ Fn and n ≥ 0, we have
f(t1, . . . , tn) ∈ T (F ,V)
(application of function symbols to terms yields a term).

Notation:

I s, t, r for terms.

Example:

I e ∈ F0, i ∈ F1, f ∈ F2.

I f(e, f(x, i(x))) ∈ T (F ,V).
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Tree Representation of Terms

Term: f(e, f(x, i(x))) Tree:

Positions: ε, 1, 2, 21, 22, 221
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Positions

Definition 2.2
Let t ∈ T (F ,V). The set of positions of t, Pos(t), is a set of
strings of positive integers, defined as follows:

I If t = x, then Pos(t) := {ε},
I If t = f(t1, . . . , tn), then

Pos(t) := {ε} ∪ {ip | 1 ≤ i ≤ n, p ∈ Pos(ti)}.

I Prefix ordering on positions: p ≤ q iff pp′ = q for some p′.



More Notions about Terms

Term: t = f(e, f(x, i(x))) Tree:

Subterm of t at position p: t|p
t|2 = f(x, i(x))
t|21 = x
t|22 = i(x)
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More Notions about Terms

Term: t = f(e, f(x, i(x))) Tree:

Replacing a subterm
at position p by s: t[s]p

t[a]ε = a
t[g(a, a)]21 = f(e, f(g(a, a), i(x)))
t[i(y)]22 = f(e, f(x, i(y)))
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More Notions about Terms

Term: t = f(e, f(x, i(x))) Tree:

A set of variables occurring in t: Var(t)
Var(t) = {x}
Var(t[a]2) = ∅
Var(t|22) = {x}
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More Notions about Terms

Term: t = f(e, f(x, i(x))) Tree:

A size of t: |t| = card(Pos(t))
|t| = 6
|t[a]2| = 3
|t|22| = 2
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More Notions about Terms

I Ground term: A term without occurrences of variables.

I Ground t: Var(t) = ∅.
I T (F): The set of all ground terms over F .



Substitutions

I A T (F ,V)-substitution: A function σ : V → T (F ,V), whose
domain

Dom(σ) := {x | σ(x) 6= x}

is finite.

I Range of a substitution σ:

Ran(σ) := {σ(x) | x ∈ Dom(σ)}.

I Variable range of a substitution σ:

VRan(σ) := Var(Ran(σ)).

I Notation: lower case Greek letters σ, ϑ, ϕ, ψ, . . ..
Identity substitution: ε.
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Substitutions

I Notation: If Dom(σ) = {x1, . . . , xn}, then σ can be written
as the set

{x1 7→ σ(x1), . . . , xn 7→ σ(xn)}.

I Example:

{x 7→ i(y), y 7→ e}.



Substitutions

I The substitution σ can be extended to a mapping

σ : T (F ,V)→ T (F ,V)

by induction:

σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

I Example:

σ = {x 7→ i(y), y 7→ e}.
t = f(y, f(x, y))

σ(t) = f(e, f(i(y), e))

I Sub : The set of substitutions.
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More Notions about Substitutions

I Composition of ϑ and σ:

σϑ(x) := σ(ϑ(x)).

I Composition of two substitutions is again a substitution.

I Composition is associative but not commutative.



More Notions about Substitutions

Algorithm for obtaining a set representation of a composition of
two substitutions in a set form.

I Given:

θ = {x1 7→ t1, . . . , xn 7→ tn}
σ = {y1 7→ s1, . . . , ym 7→ sm},

the set representation of their composition σθ is obtained
from the set

{x1 7→ σ(t1), . . . , xn 7→ σ(tn), y1 7→ s1, . . . , ym 7→ sm}

by deleting
I all yi 7→ si’s with yi ∈ {x1, . . . , xn},
I all xi 7→ σ(ti)’s with xi = σ(ti).



More Notions about Substitutions

Example 2.1 (Composition)

θ = {x 7→ f(y), y 7→ z}.
σ = {x 7→ a, y 7→ b, z 7→ y}.
σθ = {x 7→ f(b), z 7→ y}.



More Notions about Substitutions

I t is an instance of s iff there exists a σ such that

σ(s) = t.

I Notation: t & s (or s . t).

I Reads: t is more specific than s, or s is more general than t.

I & is a quasi-order.

I Strict part: >.

I Example: f(e, f(i(y), e)) & f(y, f(x, y)), because

σ(f(y, f(x, y))) = f(e, f(i(y), e)

for σ = {x 7→ i(y), y 7→ e}
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Identities

I An identity over T (F ,V): a pair (s, t) ∈ T (F ,V)× T (F ,V).
I Written: s ≈ t.
I s – left hand side, t – right hand side.



Identities

I Given a set E of identities.

I The reduction relation →E ⊆ T (F ,V)× T (F ,V):

s→E t iff

there exist (l, r) ∈ E, p ∈ Pos(s), σ ∈ Sub
such that s|p = σ(l) and t = s[σ(r)]p

I Sometimes written s→p
E t.
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Identities

Example 2.2

I Let G be the set of identities consisting of

(1) f(x, f(y, z)) ≈ f(f(x, y), z)
(2) f(e, x) ≈ x
(3) f(i(x), x) ≈ e

I Then

f(i(e), f(e, e))

→ε
G f(f(i(e), e), e) [(1), σ1 = {x 7→ i(e), y 7→ e, z 7→ e}]
→1
G f(e, e) [(3), σ2 = {x 7→ e}]
→ε
G e [(2), σ3 = {x 7→ e}]
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Identities

I
∗−→E : Reflexive transitive closure of →E .

I
∗←→E : Reflexive transitive symmetric closure of →E .

I An important problem of equational reasoning:
Design decision procedures for

∗←→E .



Characterizations of
∗←→E

I Syntactic characterization

I Semantic characterization.



Syntactic characterization of
∗←→E

≡: A binary relation on T (F ,V).
I ≡ is closed under substitutions iff

s ≡ t implies σ(s) ≡ σ(t) for all s, t, σ.

I ≡ is closed under F-operations iff
s1 ≡ t1, . . . , sn ≡ tn imply f(s1, . . . , sn) ≡ f(t1, . . . , tn)
for all s1, . . . , sn, t1, . . . , sn, n ≥ 0, f ∈ Fn.

I ≡ is compatible with F-operations iff s ≡ t implies
f(s1, . . . , si−1, s, si+1, . . . , sn) ≡
f(s1, . . . , si−1, t, si+1, . . . , sn) for all
s1, . . . , si−1, s, t, si+1, . . . , sn ∈ T (F ,V), n ≥ 0, f ∈ Fn.

I ≡ is compatible with F-contexts iff s ≡ t implies r[s]p ≡ r[t]p
for all F-terms r and positions p ∈ Pos(r).
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Syntactic characterization of
∗←→E

Lemma 2.1
Let E be a set of F-identities. Then →E is closed under
substitutions and compatible with F-operations.

Proof.
Follows from the definition of →E .

Lemma 2.2
Let ≡ be a binary relation on T (F ,V). Then ≡ is compatible with
F-operations iff it is compatible with F-contexts.

Proof.
The (⇒) direction can be proved by induction on the length of the
position p in the context. The (⇐) direction is obvious.
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Syntactic characterization of
∗←→E

Exercise: Which of the following relations is closed under
substitutions, closed under F-operations, or compatible with
F-operations?

I s ≡ t iff t is a subterm of s.

I s ≡ t iff t is an instance of s.

I s ≡ t iff Var(s) ⊆ Var(t).



Syntactic characterization of
∗←→E

Lemma 2.3
Let ≡ be a binary relation on T (F ,V). If ≡ is reflexive and
transitive, then it is compatible with F-operations iff it is closed
under F-operations.

Proof.

(⇒) Assume si ≡ ti for all 1 ≤ i ≤ n. By compatibility we have

f(s1, s2, . . . , sn) ≡ f(t1, s2, . . . , sn)
f(t1, s2, . . . , sn) ≡ f(t1, t2, . . . , sn)

. . .

f(t1, t2, . . . , sn) ≡ f(t1, t2, . . . , tn)

Transitivity of ≡ implies f(s1, . . . , sn) ≡ f(t1, . . . , tn).
(⇐) Using reflexivity of ≡.
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Syntactic characterization of
∗←→E

Theorem 2.1
Let E be a set of identities.

∗←→E is the smallest equivalence
relation on T (F ,V) that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof.
∗←→E is an equivalence relation by definition.

(a) Obvious.
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∗←→E is the smallest equivalence
relation on T (F ,V) that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

(b) Assume s
∗←→E t. Prove σ(s)

∗←→E σ(t) for a σ by induction on

the length of
∗←→E chain.

IB s = t: Obvious. IH for s
∗←→E t.

IS: Let s
∗←→E t↔E t

′. By case distinction on ↔E .
I t→E t′: By IH: σ(s)

∗←→E σ(t).

t→E t′ ⇒ σ(t)→E σ(t′)⇒ σ(t)
∗←→E σ(t′).

By transitivity of
∗←→E : σ(s)

∗←→E σ(t′).
I t′ →E t. Similar to the previous item.
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Syntactic characterization of
∗←→E

Theorem 2.1 says that
∗←→E can be obtained by starting with the

binary relation E and closing it under

I reflexivity,

I symmetry,

I transitivity,

I substitutions, and

I F-operations.

describing the closing process leads to equational logic.



Equational Logic

Inference rules:

s ≈ t ∈ E
E ` s ≈ t

E ` s ≈ s
E ` s ≈ t
E ` t ≈ s

E ` s ≈ t E ` t ≈ r
E ` s ≈ r

E ` s ≈ t
E ` σ(s) ≈ σ(t)

E ` s1 ≈ t1 · · · E ` sn ≈ tn
E ` f(s1, . . . , sn) ≈ f(t1, . . . , tn)

E ` s ≈ t: s ≈ t is a syntactic consequence of E, or s ≈ t is
provable from E.



Equational Logic

Example 2.3

I Let E = {a ≈ b, f(x) ≈ g(x)}.
I Prove E ` g(b) ≈ f(a).

Proof:

E ` a ≈ b
(Func. closure)

E ` f(a) ≈ f(b)
E ` f(x) ≈ g(x)

(Subst. inst.)
E ` f(b) ≈ g(b)

(Transitivity)
E ` f(a) ≈ g(b)

(Symmetry)
E ` g(b) ≈ f(a)

Compare with the derivation of g(b)
∗←→E f(a):

g(b)↔E g(a)↔E f(a)
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Convertibility and Provability

Theorem 2.2 (Logicality)

For all E, s, t,

s
∗←→E t iff E ` s ≈ t.

Proof.
Follows from Theorem 2.1.



Convertibility and Provability

Differences in behavior:

1. The rewriting approach
∗←→E allows the replacement of a

subterm at an arbitrary position in a single step; The inference
rule approach E ` needs to simulate this with a sequence of
small steps.

2. The inference rule approach allows the simultaneous
replacement in each argument of an operation; The rewriting
approach needs to simulate this by a number of replacement
steps in sequence.



Syntax

Semantics



Semantic Algebras

I F-algebra A = (A, {fA}f∈F ).
I A is a nonempty set, the carrier.

I fA : An → A is an interpretation for f ∈ Fn.

Example 2.4
Two {0, s,+}-algebras:

A = (N, {0A, sA,+A}) with 0A = 0, sA(x) = x+ 1, +A(x, y) = x+ y.

B = (N, {0B, sB,+B}) with 0B = 1, sB(x) = x+ 1, +B(x, y) = 2x+ y.
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Variable Assignment, Interpretation Function

I Variable assignment: α : V → A

I Interpretation function: [α]A(·) : T (F ,V)→ A

[α]A(t) =

{
α(t) if t ∈ V
fA([α]A(t1), . . . , [α]A(tn)) if t = f(t1, . . . , tn)

Example 2.5

A = (N, {0A, sA,+A}) with 0A = 0, sA(x) = x+ 1,
+A(x, y) = x+ y.

B = (N, {0B, sB,+B}) with 0B = 1, sB(x) = x+ 1,
+B(x, y) = 2x+ y.

t = s(s(x)) + s(x+ y), α(x) = 2, α(y) = 3, β(x) = 1, β(y) = 4.

[α]A(t) = 10 [β]A(t) = 9

[α]B(t) = 16 [β]B(t)= 13
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Validity, Models

I An equation s ≈ t is valid in algebra A, written A � s ≈ t, iff

[α]A(s) = [α]A(t)

for all assignments α.

I An F-algebra A is a model of the set of identities E over
T (F ,V) iff A � s ≈ t for all s ≈ t ∈ E.

Example 2.6
A = (N, {0A, sA,+A}) with 0A = 0, sA(x) = x+ 1, +A(x, y) = x+ y.

B = (N, {0B, sB,+B}) with 0B = 1, sB(x) = x+ 1, +B(x, y) = 2x+ y.

E = {0 + y ≈ y, s(x) + y ≈ s(x+ y)}.

A is a model of E, while B is not.



Validity, Models

I An equation s ≈ t is valid in algebra A, written A � s ≈ t, iff

[α]A(s) = [α]A(t)

for all assignments α.

I An F-algebra A is a model of the set of identities E over
T (F ,V) iff A � s ≈ t for all s ≈ t ∈ E.

Example 2.6
A = (N, {0A, sA,+A}) with 0A = 0, sA(x) = x+ 1, +A(x, y) = x+ y.

B = (N, {0B, sB,+B}) with 0B = 1, sB(x) = x+ 1, +B(x, y) = 2x+ y.

E = {0 + y ≈ y, s(x) + y ≈ s(x+ y)}.

A is a model of E, while B is not.



Validity, Models, Equational Theory

I E � s ≈ t iff s ≈ t is valid in all models of E.

I E � s ≈ t: s ≈ t is a semantic consequence of E.

I Equational theory of E:

≈E := {(s, t) | s, t ∈ T (F ,V), E � s ≈ t}

I Notation: s ≈E t iff (s, t) ∈ ≈E .

Example 2.7

I E = {0 + y ≈ y, s(x) + y ≈ s(x+ y)}.

I E � s(s(0) + s(0)) ≈ s(s(s(0))).
I E 6� x+ y ≈ y + x.

I Model C = (N, {0C , sC ,+C}) with 0C = 0, sC(x) = x,
+C(x, y) = y.
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Relating Syntax and Semantics

Theorem 2.3 (Birkhoff)

Equational logic is sound and complete:

For all E, s, t, E ` s ≈ t iff E � s ≈ t.

Corollary 2.1

For all E, s, t,

s
∗←→E t iff E ` s ≈ t iff E � s ≈ t.
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Validity and Satisfiability

Validity problem:

Given: A set of identities E and terms s and t.
Decide: s ≈E t.

Satisfiability problem:

Given: A set of identities E and terms s and t.
Find: A substitution σ such that σ(s) ≈E σ(t).
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