Rewriting Part 2. Terms, Substitutions, Identities, Semantics

Temur Kutsia

RISC, JKU Linz

Purpose of the Lecture

- Introduce syntactic notions:
 - Terms
 - Substitutions
 - Identities
- Define semantics.
- Establish connections between syntax and semantics.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Syntax

Semantics

▲□▶ ▲圖▶ ▲≧▶ ▲≣▶ = 目 - のへで

Syntax

Alphabet

Terms

Alphabet

A first-order alphabet consists of the following sets of symbols:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A countable set of variables \mathcal{V} .
- For each $n \ge 0$, a set of *n*-ary function symbols \mathcal{F}^n .
- Elements of \mathcal{F}^0 are called constants.

• Signature:
$$\mathcal{F} = \bigcup_{n \ge 0} \mathcal{F}^n$$
.

$$\blacktriangleright \mathcal{V} \cap \mathcal{F} = \emptyset.$$

Alphabet

A first-order alphabet consists of the following sets of symbols:

- A countable set of variables \mathcal{V} .
- For each $n \ge 0$, a set of *n*-ary function symbols \mathcal{F}^n .
- Elements of \mathcal{F}^0 are called constants.

• Signature:
$$\mathcal{F} = \bigcup_{n \ge 0} \mathcal{F}^n$$
.

 $\triangleright \ \mathcal{V} \cap \mathcal{F} = \emptyset.$

Notation:

- ► *x*, *y*, *z* for variables.
- ► *f*, *g* for function symbols.
- ▶ *a*, *b*, *c* for constants.

Terms

Definition 2.1

The set of terms $T(\mathcal{F}, \mathcal{V})$ over \mathcal{F} and \mathcal{V} :

- $\mathcal{V} \subseteq T(\mathcal{F}, \mathcal{V})$ (every variable is a term).
- ▶ For all $t_1, \ldots, t_n \in T(\mathcal{F}, \mathcal{V})$ and $f \in \mathcal{F}^n$ and $n \ge 0$, we have $f(t_1, \ldots, t_n) \in T(\mathcal{F}, \mathcal{V})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(application of function symbols to terms yields a term).

Terms

Definition 2.1

The set of terms $T(\mathcal{F}, \mathcal{V})$ over \mathcal{F} and \mathcal{V} :

- $\mathcal{V} \subseteq T(\mathcal{F}, \mathcal{V})$ (every variable is a term).
- ▶ For all $t_1, \ldots, t_n \in T(\mathcal{F}, \mathcal{V})$ and $f \in \mathcal{F}^n$ and $n \ge 0$, we have $f(t_1, \ldots, t_n) \in T(\mathcal{F}, \mathcal{V})$

(application of function symbols to terms yields a term).

Notation:

► *s*,*t*,*r* for terms.

Terms

Definition 2.1

The set of terms $T(\mathcal{F}, \mathcal{V})$ over \mathcal{F} and \mathcal{V} :

- $\mathcal{V} \subseteq T(\mathcal{F}, \mathcal{V})$ (every variable is a term).
- For all $t_1, \ldots, t_n \in T(\mathcal{F}, \mathcal{V})$ and $f \in \mathcal{F}^n$ and $n \ge 0$, we have $f(t_1, \ldots, t_n) \in T(\mathcal{F}, \mathcal{V})$

(application of function symbols to terms yields a term).

Notation:

► *s*,*t*,*r* for terms.

Example:

$$\bullet \ e \in \mathcal{F}^0, \ i \in \mathcal{F}^1, \ f \in \mathcal{F}^2.$$

•
$$f(e, f(x, i(x))) \in T(\mathcal{F}, \mathcal{V}).$$

Tree Representation of Terms

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Positions

Definition 2.2

Let $t \in T(\mathcal{F}, \mathcal{V})$. The set of positions of t, $\mathcal{P}os(t)$, is a set of strings of positive integers, defined as follows:

• If
$$t = x$$
, then $\mathcal{P}os(t) := \{\epsilon\}$,

• If
$$t = f(t_1, \ldots, t_n)$$
, then

$$\mathcal{P}os(t) := \{\epsilon\} \cup \{ip \mid 1 \le i \le n, \ p \in \mathcal{P}os(t_i)\}.$$

• Prefix ordering on positions: $p \leq q$ iff pp' = q for some p'.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Ground term: A term without occurrences of variables.

- Ground t: $\mathcal{V}ar(t) = \emptyset$.
- $T(\mathcal{F})$: The set of all ground terms over \mathcal{F} .

▶ A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma : \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\mathcal{D}om(\sigma) := \{ x \mid \sigma(x) \neq x \}$$

is finite.

► A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma : \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

$$\mathcal{D}om(\sigma) := \{ x \mid \sigma(x) \neq x \}$$

is finite.

• Range of a substitution σ :

$$\mathcal{R}an(\sigma) := \{ \sigma(x) \mid x \in \mathcal{D}om(\sigma) \}.$$

► A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma : \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathcal{D}om(\sigma) := \{ x \mid \sigma(x) \neq x \}$$

is finite.

• Range of a substitution σ :

$$\mathcal{R}an(\sigma) := \{ \sigma(x) \mid x \in \mathcal{D}om(\sigma) \}.$$

• Variable range of a substitution σ :

 $\mathcal{VR}an(\sigma) := \mathcal{V}ar(\mathcal{R}an(\sigma)).$

► A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma : \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

$$\mathcal{D}om(\sigma) := \{ x \mid \sigma(x) \neq x \}$$

is finite.

Range of a substitution σ:

$$\mathcal{R}an(\sigma) := \{ \sigma(x) \mid x \in \mathcal{D}om(\sigma) \}.$$

• Variable range of a substitution σ :

$$\mathcal{VR}an(\sigma) := \mathcal{V}ar(\mathcal{R}an(\sigma)).$$

► Notation: lower case Greek letters σ, ϑ, φ, ψ, Identity substitution: ε.

▶ Notation: If $\mathcal{D}om(\sigma) = \{x_1, \dots, x_n\}$, then σ can be written as the set

$$\{x_1 \mapsto \sigma(x_1), \ldots, x_n \mapsto \sigma(x_n)\}.$$

$$\{x\mapsto i(y), y\mapsto e\}.$$

• The substitution σ can be extended to a mapping

$$\sigma: T(\mathcal{F}, \mathcal{V}) \to T(\mathcal{F}, \mathcal{V})$$

by induction:

$$\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n)).$$

• The substitution σ can be extended to a mapping

 $\sigma: T(\mathcal{F}, \mathcal{V}) \to T(\mathcal{F}, \mathcal{V})$

by induction:

$$\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example:

$$\sigma = \{x \mapsto i(y), y \mapsto e\}.$$
$$t = f(y, f(x, y))$$
$$\sigma(t) = f(e, f(i(y), e))$$

• The substitution σ can be extended to a mapping

 $\sigma: T(\mathcal{F}, \mathcal{V}) \to T(\mathcal{F}, \mathcal{V})$

by induction:

$$\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example:

$$\sigma = \{x \mapsto i(y), y \mapsto e\}.$$
$$t = f(y, f(x, y))$$
$$\sigma(t) = f(e, f(i(y), e))$$

Sub : The set of substitutions.

• Composition of ϑ and σ :

 $\sigma\vartheta(x):=\sigma(\vartheta(x)).$

Composition of two substitutions is again a substitution.

Composition is associative but not commutative.

Algorithm for obtaining a set representation of a composition of two substitutions in a set form.

► Given:

$$\theta = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$$

$$\sigma = \{y_1 \mapsto s_1, \dots, y_m \mapsto s_m\},\$$

the set representation of their composition $\sigma\theta$ is obtained from the set

$$\{x_1 \mapsto \sigma(t_1), \dots, x_n \mapsto \sigma(t_n), y_1 \mapsto s_1, \dots, y_m \mapsto s_m\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

by deleting

- all $y_i \mapsto s_i$'s with $y_i \in \{x_1, \ldots, x_n\}$,
- all $x_i \mapsto \sigma(t_i)$'s with $x_i = \sigma(t_i)$.

Example 2.1 (Composition)

$$\begin{aligned} \theta &= \{ x \mapsto f(y), y \mapsto z \}. \\ \sigma &= \{ x \mapsto a, y \mapsto b, z \mapsto y \}. \\ \sigma \theta &= \{ x \mapsto f(b), z \mapsto y \}. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• t is an instance of s iff there exists a σ such that

$$\sigma(s) = t.$$

- Notation: $t \gtrsim s$ (or $s \leq t$).
- Reads: t is more specific than s, or s is more general than t.

- \blacktriangleright \gtrsim is a quasi-order.
- Strict part: >.

• t is an instance of s iff there exists a σ such that

$$\sigma(s) = t.$$

- Notation: $t \gtrsim s$ (or $s \lesssim t$).
- Reads: t is more specific than s, or s is more general than t.

- \blacktriangleright \gtrsim is a quasi-order.
- Strict part: >.
- ► Example: $f(e, f(i(y), e)) \gtrsim f(y, f(x, y))$, because

$$\sigma(f(y, f(x, y))) = f(e, f(i(y), e)$$

for $\sigma = \{x \mapsto i(y), y \mapsto e\}$

• An identity over $T(\mathcal{F}, \mathcal{V})$: a pair $(s, t) \in T(\mathcal{F}, \mathcal{V}) \times T(\mathcal{F}, \mathcal{V})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Written: $s \approx t$.
- s left hand side, t right hand side.

- ▶ Given a set *E* of identities.
- The reduction relation $\rightarrow_E \subseteq T(\mathcal{F}, \mathcal{V}) \times T(\mathcal{F}, \mathcal{V})$:

$$\begin{split} s \to_E t \text{ iff} \\ \text{there exist } (l,r) \in E, \, p \in \mathcal{P}os(s), \, \sigma \in \mathcal{S}ub \\ \text{such that } s|_p = \sigma(l) \text{ and } t = s[\sigma(r)]_p \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Sometimes written $s \rightarrow_E^p t$.

- ▶ Given a set *E* of identities.
- The reduction relation $\rightarrow_E \subseteq T(\mathcal{F}, \mathcal{V}) \times T(\mathcal{F}, \mathcal{V})$:

$$\begin{split} s \to_E t \text{ iff} \\ \text{there exist } (l,r) \in E, \ p \in \mathcal{P}os(s), \ \sigma \in \mathcal{S}ub \\ \text{such that } s|_p = \sigma(l) \text{ and } t = s[\sigma(r)]_p \end{split}$$

• Sometimes written $s \rightarrow_E^p t$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Example 2.2

 \blacktriangleright Let G be the set of identities consisting of

(1)
$$f(x, f(y, z)) \approx f(f(x, y), z)$$

(2) $f(e, x) \approx x$
(3) $f(i(x), x) \approx e$

Example 2.2

• Let G be the set of identities consisting of

(1)
$$f(x, f(y, z)) \approx f(f(x, y), z)$$

(2) $f(e, x) \approx x$
(3) $f(i(x), x) \approx e$

Then

f(i(e),f(e,e))

Example 2.2

 \blacktriangleright Let G be the set of identities consisting of

(1)
$$f(x, f(y, z)) \approx f(f(x, y), z)$$

(2) $f(e, x) \approx x$
(3) $f(i(x), x) \approx e$

Then

$$f(i(e), f(e, e))$$

$$\rightarrow^{\epsilon}_{G} \quad f(f(i(e), e), e) \quad [(1), \ \sigma_1 = \{x \mapsto i(e), y \mapsto e, z \mapsto e\}]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example 2.2

 \blacktriangleright Let G be the set of identities consisting of

(1)
$$f(x, f(y, z)) \approx f(f(x, y), z)$$

(2) $f(e, x) \approx x$
(3) $f(i(x), x) \approx e$

Then

$$f(i(e), f(e, e))$$

$$\rightarrow^{\epsilon}_{G} \quad f(f(i(e), e), e) \quad [(1), \ \sigma_{1} = \{x \mapsto i(e), y \mapsto e, z \mapsto e\}]$$

$$\rightarrow^{1}_{G} \quad f(e, e) \qquad [(3), \ \sigma_{2} = \{x \mapsto e\}]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ
Identities

Example 2.2

• Let G be the set of identities consisting of

(1)
$$f(x, f(y, z)) \approx f(f(x, y), z)$$

(2) $f(e, x) \approx x$
(3) $f(i(x), x) \approx e$

Then

$$f(i(e), f(e, e))$$

$$\rightarrow_{G}^{\epsilon} f(f(i(e), e), e) \quad [(1), \ \sigma_{1} = \{x \mapsto i(e), y \mapsto e, z \mapsto e\}]$$

$$\rightarrow_{G}^{1} f(e, e) \quad [(3), \ \sigma_{2} = \{x \mapsto e\}]$$

$$\rightarrow_{G}^{\epsilon} e \quad [(2), \ \sigma_{3} = \{x \mapsto e\}]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Identities

- $\xrightarrow{*}_{E}$: Reflexive transitive closure of \rightarrow_{E} .
- $\stackrel{*}{\leftrightarrow}_E$: Reflexive transitive symmetric closure of \rightarrow_E .

► An important problem of equational reasoning: Design decision procedures for ^{*}→_E.

Characterizations of $\stackrel{*}{\longleftrightarrow}_{E}$

- Syntactic characterization
- Semantic characterization.

(ロ)、(型)、(E)、(E)、 E) の(の)

 $\equiv: \mathsf{A} \text{ binary relation on } T(\mathcal{F}, \mathcal{V}).$

• \equiv is closed under substitutions iff $s \equiv t$ implies $\sigma(s) \equiv \sigma(t)$ for all s, t, σ .

 \equiv : A binary relation on $T(\mathcal{F}, \mathcal{V})$.

- ► ≡ is closed under substitutions iff $s \equiv t$ implies $\sigma(s) \equiv \sigma(t)$ for all s, t, σ .
- \equiv is closed under \mathcal{F} -operations iff

$$s_1 \equiv t_1, \dots, s_n \equiv t_n \text{ imply } f(s_1, \dots, s_n) \equiv f(t_1, \dots, t_n)$$

for all $s_1, \dots, s_n, t_1, \dots, s_n, n \ge 0, f \in \mathcal{F}^n$.

 $\equiv: A \text{ binary relation on } T(\mathcal{F}, \mathcal{V}).$

 ■ is closed under substitutions iff
 s ≡ t implies σ(s) ≡ σ(t) for all s, t, σ.

 ■ is closed under *F*-operations iff

$$s_1 \equiv t_1, \dots, s_n \equiv t_n \text{ imply } f(s_1, \dots, s_n) \equiv f(t_1, \dots, t_n)$$

for all $s_1, \dots, s_n, t_1, \dots, s_n, n \ge 0, f \in \mathcal{F}^n$.

▶ ≡ is compatible with
$$\mathcal{F}$$
-operations iff $s \equiv t$ implies
 $f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n) \equiv$
 $f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)$ for all
 $s_1, \ldots, s_{i-1}, s, t, s_{i+1}, \ldots, s_n \in T(\mathcal{F}, \mathcal{V}), n \ge 0, f \in \mathcal{F}^n.$

 \equiv : A binary relation on $T(\mathcal{F}, \mathcal{V})$.

- ► \equiv is closed under substitutions iff $s \equiv t$ implies $\sigma(s) \equiv \sigma(t)$ for all s, t, σ .
- \equiv is closed under \mathcal{F} -operations iff

$$s_1 \equiv t_1, \dots, s_n \equiv t_n \text{ imply } f(s_1, \dots, s_n) \equiv f(t_1, \dots, t_n)$$

for all $s_1, \dots, s_n, t_1, \dots, s_n, n \ge 0, f \in \mathcal{F}^n$.

- ► ≡ is compatible with \mathcal{F} -operations iff $s \equiv t$ implies $f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n) \equiv$ $f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)$ for all $s_1, \ldots, s_{i-1}, s, t, s_{i+1}, \ldots, s_n \in T(\mathcal{F}, \mathcal{V}), n \ge 0, f \in \mathcal{F}^n.$
- ▶ ≡ is compatible with \mathcal{F} -contexts iff $s \equiv t$ implies $r[s]_p \equiv r[t]_p$ for all \mathcal{F} -terms r and positions $p \in \mathcal{P}os(r)$.

Lemma 2.1

Let *E* be a set of \mathcal{F} -identities. Then \rightarrow_E is closed under substitutions and compatible with \mathcal{F} -operations.

Proof.

Follows from the definition of \rightarrow_E .

Lemma 2.1

Let *E* be a set of \mathcal{F} -identities. Then \rightarrow_E is closed under substitutions and compatible with \mathcal{F} -operations.

Proof.

Follows from the definition of \rightarrow_E .

Lemma 2.2

Let \equiv be a binary relation on $T(\mathcal{F}, \mathcal{V})$. Then \equiv is compatible with \mathcal{F} -operations iff it is compatible with \mathcal{F} -contexts.

Proof.

The (\Rightarrow) direction can be proved by induction on the length of the position p in the context. The (\Leftarrow) direction is obvious.

Exercise: Which of the following relations is closed under substitutions, closed under \mathcal{F} -operations, or compatible with \mathcal{F} -operations?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $s \equiv t$ iff t is a subterm of s.
- $s \equiv t$ iff t is an instance of s.

•
$$s \equiv t$$
 iff $\mathcal{V}ar(s) \subseteq \mathcal{V}ar(t)$.

Lemma 2.3

Let \equiv be a binary relation on $T(\mathcal{F}, \mathcal{V})$. If \equiv is reflexive and transitive, then it is compatible with \mathcal{F} -operations iff it is closed under \mathcal{F} -operations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma 2.3

Let \equiv be a binary relation on $T(\mathcal{F}, \mathcal{V})$. If \equiv is reflexive and transitive, then it is compatible with \mathcal{F} -operations iff it is closed under \mathcal{F} -operations.

Proof.

 (\Rightarrow) Assume $s_i \equiv t_i$ for all $1 \leq i \leq n$. By compatibility we have

$$f(s_1, s_2, \dots, s_n) \equiv f(t_1, s_2, \dots, s_n)$$

$$f(t_1, s_2, \dots, s_n) \equiv f(t_1, t_2, \dots, s_n)$$

$$\dots$$
$$f(t_1, t_2, \dots, s_n) \equiv f(t_1, t_2, \dots, t_n)$$

Transitivity of \equiv implies $f(s_1, \ldots, s_n) \equiv f(t_1, \ldots, t_n)$. (\Leftarrow) Using reflexivity of \equiv .

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Proof.

 $\stackrel{*}{\longleftrightarrow}_{E}$ is an equivalence relation by definition.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Proof.

 $\stackrel{*}{\longleftrightarrow}_{E}$ is an equivalence relation by definition.

(a) Obvious.

Theorem 2.1 Let *E* be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

- (a) contains *E*,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Theorem 2.1 Let *E* be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

- (a) contains *E*,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(b) Assume $s \stackrel{*}{\longleftrightarrow}_{E} t$. Prove $\sigma(s) \stackrel{*}{\longleftrightarrow}_{E} \sigma(t)$ for a σ by induction on the length of $\stackrel{*}{\longleftrightarrow}_{E}$ chain.

Theorem 2.1 Let *E* be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains *E*,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(b) Assume $s \stackrel{*}{\longleftrightarrow}_{E} t$. Prove $\sigma(s) \stackrel{*}{\longleftrightarrow}_{E} \sigma(t)$ for a σ by induction on the length of $\stackrel{*}{\longleftrightarrow}_{E}$ chain. IB s = t: Obvious.

Theorem 2.1 Let *E* be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

- (a) contains *E*,
- (b) is closed under substitutions, and
- (c) is closed under *F*-operations.

Proof (Cont.)

(b) Assume $s \stackrel{*}{\longleftrightarrow}_{E} t$. Prove $\sigma(s) \stackrel{*}{\longleftrightarrow}_{E} \sigma(t)$ for a σ by induction on the length of $\stackrel{*}{\longleftrightarrow}_{E}$ chain. IB s = t: Obvious. IH for $s \stackrel{*}{\longleftrightarrow}_{E} t$.

(日)、(四)、(日)、(日)、(日)

Theorem 2.1 Let *E* be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

- (a) contains *E*,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(b) Assume $s \stackrel{*}{\longleftrightarrow}_E t$. Prove $\sigma(s) \stackrel{*}{\longleftrightarrow}_E \sigma(t)$ for a σ by induction on the length of $\stackrel{*}{\longleftrightarrow}_E$ chain. IB s = t: Obvious. IH for $s \stackrel{*}{\longleftrightarrow}_E t$. IS: Let $s \stackrel{*}{\longleftrightarrow}_E t \leftrightarrow_E t'$. By case distinction on \leftrightarrow_E .

Theorem 2.1 Let *E* be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains *E*,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(b) Assume $s \stackrel{*}{\longleftrightarrow}_{E} t$. Prove $\sigma(s) \stackrel{*}{\longleftrightarrow}_{E} \sigma(t)$ for a σ by induction on the length of $\stackrel{*}{\longleftrightarrow}_{E}$ chain. IB s = t: Obvious. IH for $s \stackrel{*}{\longleftrightarrow}_{E} t$. IS: Let $s \stackrel{*}{\longleftrightarrow}_{E} t \leftrightarrow_{E} t'$. By case distinction on \leftrightarrow_{E} .

►
$$t \to_E t'$$
: By IH: $\sigma(s) \stackrel{*}{\leftrightarrow}_E \sigma(t)$.
 $t \to_E t' \Rightarrow \sigma(t) \to_E \sigma(t') \Rightarrow \sigma(t) \stackrel{*}{\leftrightarrow}_E \sigma(t')$.
By transitivity of $\stackrel{*}{\leftrightarrow}_E : \sigma(s) \stackrel{*}{\leftrightarrow}_E \sigma(t')$.

Theorem 2.1 Let *E* be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains *E*,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(b) Assume $s \stackrel{*}{\longleftrightarrow}_{E} t$. Prove $\sigma(s) \stackrel{*}{\longleftrightarrow}_{E} \sigma(t)$ for a σ by induction on the length of $\stackrel{*}{\longleftrightarrow}_{E}$ chain. IB s = t: Obvious. IH for $s \stackrel{*}{\longleftrightarrow}_{E} t$. IS: Let $s \stackrel{*}{\longleftrightarrow}_{E} t \leftrightarrow_{E} t'$. By case distinction on \leftrightarrow_{E} .

►
$$t \to_E t'$$
: By IH: $\sigma(s) \stackrel{*}{\to}_E \sigma(t)$.
 $t \to_E t' \Rightarrow \sigma(t) \to_E \sigma(t') \Rightarrow \sigma(t) \stackrel{*}{\leftrightarrow}_E \sigma(t')$.
By transitivity of $\stackrel{*}{\leftrightarrow}_E$: $\sigma(s) \stackrel{*}{\leftrightarrow}_E \sigma(t')$.

• $t' \rightarrow_E t$. Similar to the previous item.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(c) $\blacktriangleright \stackrel{*}{\leftrightarrow}_{E}$ is reflexive and transitive and compatible with \mathcal{F} -operations (because \rightarrow_{E} is).

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

- (c) $\blacktriangleright \stackrel{*}{\leftrightarrow}_{E}$ is reflexive and transitive and compatible with \mathcal{F} -operations (because \rightarrow_{E} is).
 - ▶ By Lemma 2.3, $\stackrel{*}{\leftrightarrow}_E$ is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. \Leftrightarrow_E^* is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Proof (Cont.)

Prove that $\stackrel{*}{\leftrightarrow}_E$ is the smallest such relation. Take another equivalence relation \equiv on $T(\mathcal{F}, \mathcal{V})$ which satisfies (a), (b), (c). Prove that $\stackrel{*}{\leftrightarrow}_E \subseteq \equiv$.

Theorem 2.1

Let E be a set of identities. \Leftrightarrow_E^* is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Proof (Cont.)

Prove that $\stackrel{*}{\leftrightarrow}_E$ is the smallest such relation. Take another equivalence relation \equiv on $T(\mathcal{F}, \mathcal{V})$ which satisfies (a), (b), (c). Prove that $\stackrel{*}{\leftrightarrow}_E \subseteq \equiv$.

First, prove $\rightarrow_E \subseteq \equiv$.

Theorem 2.1

Let E be a set of identities. \Leftrightarrow_E^* is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Proof (Cont.)

Prove that $\stackrel{*}{\leftrightarrow}_E$ is the smallest such relation. Take another equivalence relation \equiv on $T(\mathcal{F}, \mathcal{V})$ which satisfies (a), (b), (c). Prove that $\stackrel{*}{\leftrightarrow}_E \subseteq \equiv$.

- First, prove $\rightarrow_E \subseteq \equiv$.
- ▶ Let $s \to_E t$. It implies that there exist $(l, r) \in E$, $p \in \mathcal{P}os(s)$, and σ such that $s|_p = \sigma(l)$, $t = s[\sigma(r)]_p$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. \Leftrightarrow_E^* is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Proof (Cont.)

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Proof (Cont.)

$$\blacktriangleright E \subseteq \equiv \Rightarrow l \equiv r \Rightarrow \sigma(l) \equiv \sigma(r).$$

Theorem 2.1

Let E be a set of identities. \Leftrightarrow_E^* is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

- $\blacktriangleright E \subseteq \equiv \Rightarrow l \equiv r \Rightarrow \sigma(l) \equiv \sigma(r).$
- ► ≡ is reflexive and transitive and closed under *F*-operations. By Lemma 2.3, ≡ is compatible with *F*-operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. \Leftrightarrow_E^* is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Proof (Cont.)

Theorem 2.1

Let E be a set of identities. \Leftrightarrow_E^* is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

▶ By Lemma 2.2, \equiv is compatible with contexts: $\sigma(l) \equiv \sigma(r)$ implies $u[\sigma(l)]_{pos} \equiv u[\sigma(r)]_{pos}$ for all $u, pos \in \mathcal{P}os(u), \sigma$.

(日) (同) (三) (三) (三) (○) (○)

Theorem 2.1

Let E be a set of identities. \Leftrightarrow_E^* is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

▶ By Lemma 2.2, \equiv is compatible with contexts: $\sigma(l) \equiv \sigma(r)$ implies $u[\sigma(l)]_{pos} \equiv u[\sigma(r)]_{pos}$ for all $u, pos \in \mathcal{P}os(u), \sigma$.

• In particular, $s = s[\sigma(l)]_p \equiv s[\sigma(r)]_p = t$.
Syntactic characterization of $\stackrel{*}{\leftrightarrow}_E$

Theorem 2.1

Let E be a set of identities. \Leftrightarrow_E^* is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

- ▶ By Lemma 2.2, \equiv is compatible with contexts: $\sigma(l) \equiv \sigma(r)$ implies $u[\sigma(l)]_{pos} \equiv u[\sigma(r)]_{pos}$ for all $u, pos \in \mathcal{P}os(u), \sigma$.
- In particular, $s = s[\sigma(l)]_p \equiv s[\sigma(r)]_p = t$.
- Hence, $s \equiv t$ and $\rightarrow_E \subseteq \equiv$.

Syntactic characterization of $\stackrel{*}{\leftrightarrow}_E$

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Syntactic characterization of $\stackrel{*}{\leftrightarrow}_E$

Theorem 2.1

Let E be a set of identities. \Leftrightarrow_E is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under \mathcal{F} -operations.

Proof (Finished).

▶ $\rightarrow_E \subseteq \equiv$ implies $\stackrel{*}{\leftrightarrow} \subseteq \equiv$, because, by definition, $\stackrel{*}{\leftrightarrow}$ is the smallest equivalence relation containing \rightarrow_E .

Syntactic characterization of $\stackrel{*}{\leftrightarrow}_{E}$

Theorem 2.1 says that $\stackrel{*}{\longleftrightarrow}_E$ can be obtained by starting with the binary relation E and closing it under

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- reflexivity,
- symmetry,
- transitivity,
- substitutions, and
- *F*-operations.

describing the closing process leads to equational logic.

Equational Logic

Inference rules:

$\frac{s \approx t \in E}{E \vdash s \approx t}$					
	$E \vdash s$	$\approx t$	$E \vdash s$	$s \approx t$	$E \vdash t \approx r$
$\overline{E \vdash s \approx s}$	$\overline{E \vdash t}$	$\approx s$		$E \vdash s$	$s \approx r$
$E \vdash s \approx t$		$E \vdash s_1$	$\approx t_1$	•••	$E \vdash s_n \approx t_n$
$\overline{E \vdash \sigma(s) \approx \sigma}$	$\overline{(t)}$	$\overline{E \vdash f(s)}$	$\beta_1,\ldots,$	$(s_n) \approx$	$f(t_1,\ldots,t_n)$

 $E \vdash s \approx t$: $s \approx t$ is a syntactic consequence of E, or $s \approx t$ is provable from E.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Equational Logic

Example 2.3

- Let $E = \{a \approx b, f(x) \approx g(x)\}.$
- Prove $E \vdash g(b) \approx f(a)$.

Proof:

$$\begin{array}{c} \underline{E \vdash a \approx b} \\ \hline \underline{E \vdash f(a) \approx f(b)} \end{array} \text{(Func. closure)} & \begin{array}{c} \underline{E \vdash f(x) \approx g(x)} \\ \hline E \vdash f(b) \approx g(b) \end{array} \text{(Subst. inst.)} \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ E \vdash g(b) \approx f(a) \end{array} \text{(Symmetry)} \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Equational Logic

Example 2.3

- Let $E = \{a \approx b, f(x) \approx g(x)\}.$
- Prove $E \vdash g(b) \approx f(a)$.

Proof:

$$\begin{array}{c} \underline{E \vdash a \approx b} \\ \hline E \vdash f(a) \approx f(b) \end{array} \text{(Func. closure)} & \begin{array}{c} \underline{E \vdash f(x) \approx g(x)} \\ \hline E \vdash f(b) \approx g(b) \end{array} \text{(Subst. inst.)} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ E \vdash g(b) \approx f(a) \end{array} \text{(Symmetry)} \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Compare with the derivation of $g(b) \stackrel{*}{\leftrightarrow}_E f(a)$:

$$g(b) \leftrightarrow_E g(a) \leftrightarrow_E f(a)$$

Convertibility and Provability

```
Theorem 2.2 (Logicality) For all E, s, t,
```

$$s \stackrel{*}{\longleftrightarrow}_E t$$
 iff $E \vdash s \approx t$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof. Follows from Theorem 2.1.

Convertibility and Provability

Differences in behavior:

- 1. The rewriting approach $\stackrel{*}{\leftrightarrow}_{E}$ allows the replacement of a subterm at an arbitrary position in a single step; The inference rule approach $E \vdash$ needs to simulate this with a sequence of small steps.
- 2. The inference rule approach allows the simultaneous replacement in each argument of an operation; The rewriting approach needs to simulate this by a number of replacement steps in sequence.

Syntax

Semantics

<□▶ < @▶ < @▶ < @▶ < @▶ < @ > @ < の < @</p>

Semantic Algebras

- \mathcal{F} -algebra $\mathcal{A} = (A, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}}).$
- ► A is a nonempty set, the carrier.
- $f_{\mathcal{A}}: A^n \to A$ is an interpretation for $f \in \mathcal{F}^n$.

Semantic Algebras

•
$$\mathcal{F}$$
-algebra $\mathcal{A} = (A, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}}).$

- A is a nonempty set, the carrier.
- $f_{\mathcal{A}}: A^n \to A$ is an interpretation for $f \in \mathcal{F}^n$.

Example 2.4

Two $\{0, s, +\}$ -algebras:

$$\mathcal{A} = (\mathbb{N}, \{\mathbf{0}_{\mathcal{A}}, s_{\mathcal{A}}, +_{\mathcal{A}}\}) \text{ with } \mathbf{0}_{\mathcal{A}} = 0, \ s_{\mathcal{A}}(x) = x + 1, \ +_{\mathcal{A}}(x, y) = x + y.$$

 $\mathcal{B} = (\mathbb{N}, \{\mathbf{0}_{\mathcal{B}}, s_{\mathcal{B}}, +_{\mathcal{B}}\}) \text{ with } \mathbf{0}_{\mathcal{B}} = 1, \ s_{\mathcal{B}}(x) = x + 1, \ +_{\mathcal{B}}(x, y) = 2x + y.$

Variable Assignment, Interpretation Function

- Variable assignment: $\alpha : \mathcal{V} \to A$
- Interpretation function: $[\alpha]_{\mathcal{A}}(\cdot): T(\mathcal{F}, \mathcal{V}) \to A$

$$[\alpha]_{\mathcal{A}}(t) = \begin{cases} \alpha(t) & \text{if } t \in \mathcal{V} \\ f_{\mathcal{A}}([\alpha]_{\mathcal{A}}(t_1), \dots, [\alpha]_{\mathcal{A}}(t_n)) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Variable Assignment, Interpretation Function

- Variable assignment: $\alpha : \mathcal{V} \to A$
- Interpretation function: $[\alpha]_{\mathcal{A}}(\cdot): T(\mathcal{F}, \mathcal{V}) \to A$

$$[\alpha]_{\mathcal{A}}(t) = \begin{cases} \alpha(t) & \text{if } t \in \mathcal{V} \\ f_{\mathcal{A}}([\alpha]_{\mathcal{A}}(t_1), \dots, [\alpha]_{\mathcal{A}}(t_n)) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

Example 2.5 $\mathcal{A} = (\mathbb{N}, \{0_{\mathcal{A}}, s_{\mathcal{A}}, +_{\mathcal{A}}\})$ with $0_{\mathcal{A}} = 0$, $s_{\mathcal{A}}(x) = x + 1$, $+_{\mathcal{A}}(x, y) = x + y$.

$$\mathcal{B} = (\mathbb{N}, \{0_{\mathcal{B}}, s_{\mathcal{B}}, +_{\mathcal{B}}\}) \text{ with } 0_{\mathcal{B}} = 1, \ s_{\mathcal{B}}(x) = x + 1, \\ +_{\mathcal{B}}(x, y) = 2x + y.$$

 $t = s(s(x)) + s(x + y), \ \alpha(x) = 2, \ \alpha(y) = 3, \ \beta(x) = 1, \ \beta(y) = 4.$

$$\begin{aligned} & [\alpha]_{\mathcal{A}}(t) = 10 \qquad [\beta]_{\mathcal{A}}(t) = 9 \\ & [\alpha]_{\mathcal{B}}(t) = 16 \qquad [\beta]_{\mathcal{B}}(t) = 13 \end{aligned}$$

Validity, Models

• An equation $s \approx t$ is valid in algebra \mathcal{A} , written $\mathcal{A} \vDash s \approx t$, iff

 $[\alpha]_{\mathcal{A}}(s) = [\alpha]_{\mathcal{A}}(t)$

for all assignments α .

▶ An \mathcal{F} -algebra \mathcal{A} is a model of the set of identities E over $T(\mathcal{F}, \mathcal{V})$ iff $\mathcal{A} \vDash s \approx t$ for all $s \approx t \in E$.

Validity, Models

• An equation $s \approx t$ is valid in algebra \mathcal{A} , written $\mathcal{A} \vDash s \approx t$, iff

 $[\alpha]_{\mathcal{A}}(s) = [\alpha]_{\mathcal{A}}(t)$

for all assignments α .

▶ An \mathcal{F} -algebra \mathcal{A} is a model of the set of identities E over $T(\mathcal{F}, \mathcal{V})$ iff $\mathcal{A} \vDash s \approx t$ for all $s \approx t \in E$.

Example 2.6 $\mathcal{A} = (\mathbb{N}, \{0_{\mathcal{A}}, s_{\mathcal{A}}, +_{\mathcal{A}}\}) \text{ with } 0_{\mathcal{A}} = 0, \ s_{\mathcal{A}}(x) = x + 1, \ +_{\mathcal{A}}(x, y) = x + y.$ $\mathcal{B} = (\mathbb{N}, \{0_{\mathcal{B}}, s_{\mathcal{B}}, +_{\mathcal{B}}\}) \text{ with } 0_{\mathcal{B}} = 1, \ s_{\mathcal{B}}(x) = x + 1, \ +_{\mathcal{B}}(x, y) = 2x + y.$ $E = \{0 + y \approx y, \ s(x) + y \approx s(x + y)\}.$

 \mathcal{A} is a model of E, while \mathcal{B} is not.

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of E.
- $E \vDash s \approx t$: $s \approx t$ is a semantic consequence of E.
- Equational theory of *E*:

$$\approx_E := \{ (s,t) \mid s,t \in T(\mathcal{F},\mathcal{V}), \ E \vDash s \approx t \}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of E.
- $E \vDash s \approx t$: $s \approx t$ is a semantic consequence of E.
- Equational theory of *E*:

$$\approx_E := \{ (s,t) \mid s,t \in T(\mathcal{F},\mathcal{V}), \ E \vDash s \approx t \}$$

• Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

Example 2.7

 $\blacktriangleright E = \{0 + y \approx y, \ s(x) + y \approx s(x + y)\}.$

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of E.
- $E \vDash s \approx t$: $s \approx t$ is a semantic consequence of E.
- Equational theory of *E*:

$$\approx_E := \{ (s,t) \mid s,t \in T(\mathcal{F},\mathcal{V}), \ E \vDash s \approx t \}$$

• Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

Example 2.7

- $\blacktriangleright E = \{0 + y \approx y, \ s(x) + y \approx s(x + y)\}.$
- $\blacktriangleright E \vDash s(s(0) + s(0)) \approx s(s(s(0))).$

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of E.
- $E \vDash s \approx t$: $s \approx t$ is a semantic consequence of E.
- Equational theory of *E*:

$$\approx_E := \{ (s,t) \mid s, t \in T(\mathcal{F}, \mathcal{V}), \ E \vDash s \approx t \}$$

• Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

Example 2.7

- $\blacktriangleright E = \{0 + y \approx y, \ s(x) + y \approx s(x + y)\}.$
- $\blacktriangleright \ E \vDash s(s(0) + s(0)) \approx s(s(s(0))).$
- $\blacktriangleright E \not\models x + y \approx y + x.$

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of E.
- $E \vDash s \approx t$: $s \approx t$ is a semantic consequence of E.
- Equational theory of *E*:

$$\approx_E := \{ (s,t) \mid s,t \in T(\mathcal{F},\mathcal{V}), \ E \vDash s \approx t \}$$

• Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

Example 2.7

- $\blacktriangleright E = \{0 + y \approx y, \ s(x) + y \approx s(x + y)\}.$
- $\blacktriangleright \ E \vDash s(s(0) + s(0)) \approx s(s(s(0))).$
- $\blacktriangleright E \not\models x + y \approx y + x.$
- ► Model $C = (\mathbb{N}, \{0_C, s_C, +_C\})$ with $0_C = 0$, $s_C(x) = x$, $+_C(x, y) = y$.

Relating Syntax and Semantics

Theorem 2.3 (Birkhoff)

Equational logic is sound and complete:

For all $E, s, t, E \vdash s \approx t$ iff $E \vDash s \approx t$.

Relating Syntax and Semantics

Theorem 2.3 (Birkhoff)

Equational logic is sound and complete:

For all $E, s, t, E \vdash s \approx t$ iff $E \vDash s \approx t$.

Corollary 2.1 For all E, s, t,

$$s \stackrel{*}{\leftrightarrow}_E t$$
 iff $E \vdash s \approx t$ iff $E \vDash s \approx t$.

Validity and Satisfiability

Validity problem:

Given: A set of identities E and terms s and t. Decide: $s \approx_E t$.

Satisfiability problem:

Given: A set of identities E and terms s and t. Find: A substitution σ such that $\sigma(s) \approx_E \sigma(t)$.