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Purpose of the Lecture

» Introduce syntactic notions:

» Terms
» Substitutions
» |dentities

» Define semantics.

» Establish connections between syntax and semantics.



Syntax



Syntax

> Alphabet

» Terms



Alphabet

A first-order alphabet consists of the following sets of symbols:

» A countable set of variables V.

v

For each n > 0, a set of n-ary function symbols F™.
Elements of F° are called constants.

Signature: F = Up>oF".

VNF=0.

v

v

v



Alphabet

A first-order alphabet consists of the following sets of symbols:

» A countable set of variables V.

v

For each n > 0, a set of n-ary function symbols F™.

v

Elements of FY are called constants.
Signature: F = Up>oF".
» VNF =0.

Notation:

v

» x,y, z for variables.
» f, g for function symbols.

> a,b,c for constants.



Terms

Definition 2.1
The set of terms T'(F,V) over F and V:

» V CT(F,V) (every variable is a term).

» For all ty,...,t, € T(F,V) and f € F™" and n > 0, we have
f(tlv"'atn) GT(J—",V)
(application of function symbols to terms yields a term).



Terms

Definition 2.1
The set of terms T'(F,V) over F and V:

» V CT(F,V) (every variable is a term).
» For all ty,...,t, € T(F,V) and f € F™" and n > 0, we have
f(tlv"'atn) € T(./_",V)
(application of function symbols to terms yields a term).
Notation:

> s,t,r for terms.



Terms

Definition 2.1
The set of terms T'(F,V) over F and V:

» V CT(F,V) (every variable is a term).

» For all ty,...,t, € T(F,V) and f € F™" and n > 0, we have
f(tlv"'atn) GT(J—",V)
(application of function symbols to terms yields a term).

Notation:
> s,t,r for terms.

Example:
»ec Fic Fl, feF
> fle, f(2,i(x))) € T(F,V).



Tree Representation of Terms

22
Positions: ¢, 1,2,21,22,221

221




Positions

Definition 2.2
Let t € T(F,V). The set of positions of t, Pos(t), is a set of
strings of positive integers, defined as follows:

» If t =z, then Pos(t) := {e},
> If t = f(t1,...,t,), then

Pos(t) :={e}U{ip|1<i<mn, pePos(t;)}.

» Prefix ordering on positions: p < ¢ iff pp’ = ¢ for some p/.



More Notions about Terms

Subterm of ¢ at position p: |,
tl = f(zi(z))
t’gl = T
tle = i(x)



More Notions about Terms

Term: t = f(e, f(x,i(x)))

Replacing a subterm
at position p by s: t[s],

tlale = a
t[g<a7a)]21 - f(e,f(g(a,a),
tli(y)laz = fle, f(x,i(y))



More Notions about Terms

Term: t = f(e, f(z,i(x))) Tree:

A set of variables occurring in t: Var(t)
Var(t) = {z}
Var(tlals) = 0
Var(tlaa) = {x}



More Notions about Terms

A size of t: |t| = card(Pos(t))
2] = 6
tlala] = 3
ltl2o| = 2




More Notions about Terms

» Ground term: A term without occurrences of variables.
» Ground ¢: Var(t) = 0.
» T'(F): The set of all ground terms over F.



Substitutions

» A T(F,V)-substitution: A function o : V — T'(F,V), whose
domain

Dom(o) :={z | o(x) # =}

is finite.



Substitutions

» A T(F,V)-substitution: A function o : V — T'(F,V), whose
domain

Dom(o) :={z | o(x) # =}

is finite.

» Range of a substitution o

Ran(o) :={o(z) | z € Dom(o)}.



Substitutions

» A T(F,V)-substitution: A function o : V — T'(F,V), whose
domain

Dom(o) :={z | o(x) # =}

is finite.

» Range of a substitution o
Ran(o) :={o(z) | z € Dom(o)}.
» Variable range of a substitution o:

VRan(o) := Var(Ran(c)).



Substitutions

» A T(F,V)-substitution: A function o : V — T'(F,V), whose
domain

Dom(o) :={z | o(x) # =}

is finite.

» Range of a substitution o
Ran(o) :={o(z) | z € Dom(o)}.
» Variable range of a substitution o:
VRan(o) := Var(Ran(c)).

> Notation: lower case Greek letters o, ¥, o, v, .. ..
Identity substitution: ¢.



Substitutions

» Notation: If Dom(o) = {z1,...,x,}, then o can be written
as the set
{1 = o(x1),...,zp — o(zp)}.
» Example:

{z—i(y),y— e}



Substitutions

» The substitution o can be extended to a mapping
o:T(F,V)—=T(F,V)
by induction:

T(f(tr,- . tn)) = flo(t1), ... o(tn)).



Substitutions

» The substitution o can be extended to a mapping
o:T(F,V)—=T(F,V)
by induction:
([t s t)) = F(o(tr), ., otn)).
> Example:

o={z—i(y),y— e}
= f(yaf(xay))
o(t) = f(e f(i(y), €))



Substitutions

» The substitution o can be extended to a mapping
o:T(F,V)—=T(F,V)
by induction:
([t s t)) = F(o(tr), ., otn)).
> Example:

o={z—i(y),y— e}
t= f(yaf(xay))
o(t) = f(e f(i(y), €))

» Sub : The set of substitutions.



More Notions about Substitutions

» Composition of ¥ and o

» Composition of two substitutions is again a substitution.

» Composition is associative but not commutative.



More Notions about Substitutions

Algorithm for obtaining a set representation of a composition of
two substitutions in a set form.

» Given:
9:{.7310—)751,...,:1:”!—)15”}
U:{yl’_)517-~~,ym'—>3m}a

the set representation of their composition ¢ is obtained
from the set

{x1=0(t1), ;= 0(tn), Y1 = S1,- -y Ym > Sm}
by deleting
» all y; — s;'s with y; € {z1,...,2,},

» all z; = o(t;)'s with z; = o(t;).



More Notions about Substitutions

Example 2.1 (Composition)

0={x— fy),y— z}.
o={z—a,y—bz—y}
o ={x— f(b),z— y}.



More Notions about Substitutions

» tis an instance of s iff there exists a o such that

o(s) =t.

v

Notation: t 2 s (or s < t).

v

Reads: t is more specific than s, or s is more general than t.

» > is a quasi-order.

v

Strict part: >.



More Notions about Substitutions

» tis an instance of s iff there exists a o such that

o(s) =t.

v

Notation: t 2 s (or s < t).

v

Reads: t is more specific than s, or s is more general than t.
» > is a quasi-order.

Strict part: >.

Example: f(e, f(i(y),€)) 2 f(y, f(z,y)), because

o(f(y, f(z,y))) = fle, f(i(y), )

for o = {x —i(y),y — e}

v

v



Identities

» An identity over T'(F,V): a pair (s,t) € T(F,V) x T(F,V).
> Written: s ~ t.
» s — left hand side, t — right hand side.



Identities

> Given a set E of identities.
» The reduction relation -5 C T(F,V) x T(F,V):

s —g tiff
there exist (I,7) € E, p € Pos(s), o € Sub
such that s|, = o(l) and t = s[o(7)],

» Sometimes written s —%, ¢.



Identities

> Given a set E of identities.
» The reduction relation -5 C T(F,V) x T(F,V):

s —g tiff
there exist (I,7) € E, p € Pos(s), o € Sub
such that s|, = o(l) and t = s[o(7)],

» Sometimes written s —%, ¢.




Identities

Example 2.2

> Let GG be the set of identities consisting of

(1) f(z, f(y,2)) = f(f(z,9),2)
(2) fle,x) =
(3) fli(x),z) =e



Identities

Example 2.2

> Let GG be the set of identities consisting of

(1) f(z, fy,2)) = f(f(2,9),2)
(2) fle,x) =
(3) fli(x),z)~e

» Then

f(i(e), f(e,e))



Identities

Example 2.2

> Let GG be the set of identities consisting of

(1) f(z, fy,2)) = f(f(2,9),2)
(2) fle,x) =
(3) fli(x),z)~e

» Then

f(i(e), f(ese€))
—a f(fli(e),e),e) [(1), o1 ={x—i(e),y — e,z e}]



Identities

Example 2.2

> Let GG be the set of identities consisting of

(1) f(z, fy,2)) = f(f(2,9),2)
(2) fle,x) =
(3) fli(x),z)~e

» Then

—a f(fli(e),e),e) [(1), o1 ={x—i(e),y — e,z e}]
=6 flee) [(3), 02 ={z — e}]



Identities

Example 2.2

> Let GG be the set of identities consisting of

(1) f(z, f(y,2)) = f(f(z,9),2)
(2) fle,x) =
(3) fli(x),z)~e

» Then
f(i(e), f(ese€))
—a f(fli(e),e),e) [(1), o1 ={x—i(e),y — e,z e}]
=6 flee) [(3), 02 ={z — e}]

-G e [(2), o3 = {z = e}]



Identities

* . ., .
» —: Reflexive transitive closure of —g.
* . ., . .
» <> p: Reflexive transitive symmetric closure of —p.

» An important problem of equational reasoning:
Design decision procedures for <.



Characterizations of <> g

» Syntactic characterization

» Semantic characterization.



Syntactic characterization of <=5

=: A binary relation on T'(F,V).
» = is closed under substitutions iff
s =t implies o(s) = o(t) for all s,t,0.



Syntactic characterization of <=5

=: A binary relation on T'(F,V).
» = is closed under substitutions iff
s =t implies o(s) = o(t) for all s,t,0.

» = is closed under F-operations iff

S1 =11,y 8, =ty imply f(s1,...,8,) = f(t1,...

forall s1,...,8n,t1,...,8,, n>0, feFm".



Syntactic characterization of <=5

=: A binary relation on T'(F,V).
» = is closed under substitutions iff
s =t implies o(s) = o(t) for all s,t,0.

v
I

= is closed under F-operations iff
S1 =11,y 8y =ty imply f(s1,...,8,) = f(t1,...,tn)
forall s1,...,8n,t1,-..,8,, n >0, f € F™
» = is compatible with F-operations iff s =t implies
f(sl,...,Si_1,8,8i+1,...,8n) =
f(sl, c. ,Sl',l,t,SiJrl, .. .,Sn) for all
S81,.+-,8i-1,5,t,8i41,---,5n ET(.F,V), n>0, feF™



Syntactic characterization of <=5

=: A binary relation on T'(F,V).
» = is closed under substitutions iff
s =t implies o(s) = o(t) for all s,t,0.
» = is closed under F-operations iff
S1 =11,y 8y =ty imply f(s1,...,8,) = f(t1,...,tn)
forall s1,...,8n,t1,-..,8,, n >0, f € F™
» = is compatible with F-operations iff s =t implies
f(sl, ce ey Si—15SySiH1s -0y Sn) =
f(sl, c. ,Sifl,t, Sit1ly---s Sn) for all
S81,.+-,8-1,5,t,8i41,---,3n € T(.F,V), n>0, feF™
» = is compatible with F-contexts iff s =t implies r[s], = r[t],
for all F-terms r and positions p € Pos(r).



Syntactic characterization of <=5

Lemma 2.1
Let E be a set of F-identities. Then — g is closed under
substitutions and compatible with F-operations.

Proof.
Follows from the definition of — 5.



Syntactic characterization of <=5

Lemma 2.1
Let E be a set of F-identities. Then — g is closed under
substitutions and compatible with F-operations.

Proof.
Follows from the definition of — 5. O

Lemma 2.2
Let = be a binary relation on T(F,V). Then = is compatible with
F-operations iff it is compatible with F-contexts.

Proof.
The (=) direction can be proved by induction on the length of the
position p in the context. The (<) direction is obvious. O



Syntactic characterization of <=5

Exercise: Which of the following relations is closed under
substitutions, closed under F-operations, or compatible with
JF-operations?

» s =t iff ¢t is a subterm of s.

» s =t iff t is an instance of s.

» s =tiff Var(s) C Var(t).



Syntactic characterization of <=5

Lemma 2.3

Let = be a binary relation on T'(F,V). If = is reflexive and
transitive, then it is compatible with JF-operations iff it is closed
under F-operations.



Syntactic characterization of <=5

Lemma 2.3

Let = be a binary relation on T'(F,V). If = is reflexive and
transitive, then it is compatible with JF-operations iff it is closed
under F-operations.

Proof.

(=) Assume s; =t; for all 1 <1i < n. By compatibility we have

f(s1,82,-..,8n) = f(t1,82,...,8n)
f(t17827"'75n) f(tlth)”'aSn)

f(t17t27“'78n) Ef(t17t27"'7tn)

Transitivity of = implies f(s1,...,sn) = f(t1,...,tn).
(<) Using reflexivity of =.



Syntactic characterization of <=5

Theorem 2.1

Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof.

< g is an equivalence relation by definition.



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence

relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof.
< is an equivalence relation by definition.

(a) Obvious.



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < E IS the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.



Syntactic characterization of <=5

Theorem 2.1

Let E be a set of identities. < E IS the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.
Proof (Cont.)

(b) Assume s <> t. Prove o(s) <> o(t) for a o by induction on
the length of <> chain.



Syntactic characterization of <=5

Theorem 2.1

Let E be a set of identities. < E IS the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.
Proof (Cont.)

(b) Assume s <> t. Prove o(s) <> o(t) for a o by induction on
the length of <> chain. IB s = t: Obvious.
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Theorem 2.1

Let E be a set of identities. < E IS the smallest equivalence
relation on T(F,V) that

(a) contains E,
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Proof (Cont.)
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Theorem 2.1

Let E be a set of identities. < E IS the smallest equivalence
relation on T(F,V) that

(a) contains E,
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Proof (Cont.)

(b) Assume s <> t. Prove o(s) <> o(t) for a o by induction on
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Syntactic characterization of <=5

Theorem 2.1

Let E be a set of identities. < E IS the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.
Proof (Cont.)

(b) Assume s <> t. Prove o(s) <> o(t) for a o by induction on
the length of <5 g chain. IB s = t: Obvious. IH for s <> p t.
IS: Let s <> p t <35 t'. By case distinction on <.
» t »pt': By IH: 0(s) &g o(t).
t—=pt =0olt)—polt)=ot) g alt).
By transitivity of <> p: o(s) <> g o(t).



Syntactic characterization of <=5

Theorem 2.1

Let E be a set of identities. < E IS the smallest equivalence
relation on T(F,V) that

(a) contains E,

(b) is closed under substitutions, and

(c) is closed under F-operations.
Proof (Cont.)

(b) Assume s <> t. Prove o(s) <> o(t) for a o by induction on
the length of <5 g chain. IB s = t: Obvious. IH for s <> p t.
IS: Let s <> p t <35 t'. By case distinction on <.
» t »pt': By IH: 0(s) &g o(t).
t—=pt =0olt)—polt)=ot) g alt).
By transitivity of <> p: o(s) <> g o(t).
» ' —p t. Similar to the previous item.



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

(c) » <5pis reflexive and transitive and compatible with
F-operations (because — g is).



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

(c) » <5pis reflexive and transitive and compatible with
F-operations (because — g is).
» By Lemma 2.3, <5 is closed under F-operations.



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

Prove that QE is the smallest such relation. Take another
equivalence relation = on T'(F, V) which satisfies (a), (b), (c).
Prove that <5 C =.



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

Prove that QE is the smallest such relation. Take another
equivalence relation = on T'(F, V) which satisfies (a), (b), (c).
Prove that <5 C =.

> First, prove - C =.



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

Prove that QE is the smallest such relation. Take another
equivalence relation = on T'(F, V) which satisfies (a), (b), (c).
Prove that <5 C =.
> First, prove - C =.
» Let s —p t. It implies that there exist (I,7) € E, p € Pos(s),
and o such that s|, = o(l), t = s[o(r)],.



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

» EC ==l=r=o0(l)=0(r).



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

» EC ==l=r=o0(l)=0(r).

» = is reflexive and transitive and closed under F-operations.
By Lemma 2.3, = is compatible with F-operations.



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

» By Lemma 2.2, = is compatible with contexts: o(l) =
implies u[o(1)]pos = u[o(r)]pos for all u, pos € Pos(u),

(r)

g
g



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

» By Lemma 2.2, = is compatible with contexts: o(l) =
implies u[o(1)]pos = u[o(r)]pos for all u, pos € Pos(u),

» In particular, s = s[o(l)], = s[o(r)], =t.

(r)

g
g



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Cont.)

» By Lemma 2.2, = is compatible with contexts: o(l) =
implies u[o(1)]pos = u[o(r)]pos for all u, pos € Pos(u),

» In particular, s = s[o(l)], = s[o(r)], =t.

(r)

g
g

» Hence, s=tand - C =.



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.



Syntactic characterization of <=5

Theorem 2.1
Let E be a set of identities. < is the smallest equivalence
relation on T(F,V) that

(a) contains E,
(b) is closed under substitutions, and

(c) is closed under F-operations.

Proof (Finished).

» 5 C = implies <> C =, because, by definition, <> is the
smallest equivalence relation containing —g.



Syntactic characterization of <=5

Theorem 2.1 says that <> can be obtained by starting with the
binary relation £ and closing it under

> reflexivity,
> symmetry,

> transitivity,

v

substitutions, and
» J-operations.
describing the closing process leads to equational logic.



Equational Logic

Inference rules:

s~teFR
Frs~t
Frs~t Fls~t Ertxr
EFrFs~s EFrtxs Frsx~r
Ers=t EFtrsi=t; -+ Ebs,=t,

EtFo(s)=o(t) Et f(s1y...,80) =~ f(t1,...,tn)

EF s~ t: s~tisa syntactic consequence of E, or s = t is
provable from E.



Equational Logic

Example 2.3
> Let B = {a b, f(z) ~ g(x)}.
» Prove E+ g(b) = f(a).

Proof:

22

Erfa~b (Func. closure) Er f($) ($) (Subst. inst.)
E+ f(a) =~ f(b) E+ f(b) = g(b
Et f(a) = g(b)

Et+g(b) = f(a)

ZZ

(Transitivity)

(Symmetry)



Equational Logic

Example 2.3
» Let E={a~D, f(z)~g(zx)}.
» Prove EF g(b) = f(a).

Proof:

22

Erfa~b (Func. closure) Er f($) ($) (Subst. inst.)
E+ f(a) =~ f(b) E+ f(b) = g(b
Et f(a) = g(b)

Et+g(b) = f(a)

22

(Transitivity)

(Symmetry)

Compare with the derivation of g(b) <> f(a):

g(b) <k g(a) <k f(a)



Convertibility and Provability

Theorem 2.2 (Logicality)
For all E, s,t,

s¢spt iff EFsat.

Proof.

Follows from Theorem 2.1.



Convertibility and Provability

Differences in behavior:

1. The rewriting approach 5 allows the replacement of a
subterm at an arbitrary position in a single step; The inference
rule approach E I needs to simulate this with a sequence of
small steps.

2. The inference rule approach allows the simultaneous
replacement in each argument of an operation; The rewriting
approach needs to simulate this by a number of replacement
steps in sequence.



Semantics



Semantic Algebras

> F-algebra A= (A,{fa}ser)-
» A is a nonempty set, the carrier.
> fq: A" — Ais an interpretation for f € F".



Semantic Algebras

» F-algebra A= (A,{fa}ser)
» A is a nonempty set, the carrier.
> fq: A" — Ais an interpretation for f € F".

Example 2.4
Two {0, s, +}-algebras:

A= (N,{04,54,+4}) with04 =0, sa(z) =2z +1, +a(z,y) =z+y.

B = (N,{05,s5,+85}) with 0 =1, sg(x) =z + 1, +5(z,y) =2z +y.



Variable Assignment, Interpretation Function

» Variable assignment: a:V — A
» Interpretation function: [a]4(+) : T(F,V) — A

ala(t) = { a(t) iftey

Alla]a(t), ..., [efaltn)) ift= f(ty,...



Variable Assignment, Interpretation Function

» Variable assignment: a:V — A
» Interpretation function: [a]4(-) : T(F,V) — A

B a(t) ifteVy
[a]a(t) = { fa(fe)aty), .. [ala(tn) ift=f(tr,... tn)

Example 2.5
A= (N,{04,54,+4}) with 04 =0, sa(x) =2+ 1,
+alz,y) =z +y.

B = (N,{03,s5,+5}) with O =1, sg(x) =z + 1,
+5(z,y) =2z +y.

t=s(s(x)) +s(x+y), alz) =2, aly) =3, f(z) =1, By) = 4.



Validity, Models

» An equation s & t is valid in algebra A, written A FE s = t, iff

for all assignments a.

» An F-algebra A is a model of the set of identities F over
T(F,V)iff AEs~tforalls~tekE.



Validity, Models

» An equation s & t is valid in algebra A, written A FE s = t, iff

for all assignments a.
» An F-algebra A is a model of the set of identities F over
T(F,V)iff AEs~tforall s~teE.

Example 2.6
A= (N,{04,54,+a}) with04 =0, sa(x) =2+ 1, +a(z,y) =z +y.

B =(N,{0s,s5,+5}) with Og =1, sg(z) =z + 1, +5(z,y) =2z +y.
E={0+y~y, s(x)+y~s(z+y)}

A is a model of E, while B is not.



Validity, Models, Equational Theory

v

EEs~tiff s~ tisvalid in all models of E.

EFE s=t: s~tisasemantic consequence of E.

v

v

Equational theory of E:

~pi={(s,t) | s,t € T(F,V), EFEs~t}

v

Notation: s ~p t iff (s,t) € ~p.



Validity, Models, Equational Theory

» [F s~ tiff s~ tisvalid in all models of F.
» K Es~t: s~tisasemantic consequence of E.

» Equational theory of E:
~pi={(s,t) | s,t € T(F,V), EFEs~t}
» Notation: s ~pg t iff (s,t) € ~p.
Example 2.7

» E={0+y~y, s(r) +y~s(z+y)}



Validity, Models, Equational Theory

» [F s~ tiff s~ tisvalid in all models of F.
» K Es~t: s~tisasemantic consequence of E.

» Equational theory of E:
~pi={(s,t) | s,t € T(F,V), EFEs~t}
» Notation: s ~pg t iff (s,t) € ~p.
Example 2.7

» E={0+ty=y, s(z) +ty=sz+y)}
» EFs(s(0)+s(0)) =~ s(s(s(0))).



Validity, Models, Equational Theory

» [F s~ tiff s~ tisvalid in all models of F.
» K Es~t: s~tisasemantic consequence of E.

» Equational theory of E:
~pi={(s,t) | s,t € T(F,V), EFEs~t}
» Notation: s ~pg t iff (s,t) € ~p.
Example 2.7

» E={0+y=~y, s(x)+y~s(z+y)}
» EFs(s(0)+s(0)) =~ s(s(s(0))).
» EFrc+y~y+u.



Validity, Models, Equational Theory

» [F s~ tiff s~ tisvalid in all models of F.
» K Es~t: s~tisasemantic consequence of E.

» Equational theory of E:
~pi={(s,t) | s,t € T(F,V), EFEs~t}
» Notation: s ~pg t iff (s,t) € ~p.
Example 2.7

» E={0+y~y, s(z)+ty~sl@+y)}

» EE s(s(0) + s(0)) =~ s(s(s(0))).

» EFzc+y~y+u.

» Model C = (N, {0¢, s¢, +¢}) with O¢c =0, s¢(z) = =,
+e(z,y) = v.



Relating Syntax and Semantics

Theorem 2.3 (Birkhoff)
Equational logic is sound and complete:

Forall E,;s,t, EFs~t iff EEs=t.



Relating Syntax and Semantics

Theorem 2.3 (Birkhoff)

Equational logic is sound and complete:

Forall E,;s,t, EFs~t iff EEs=t.
Corollary 2.1
For all £, s,t,

s<spt iff ErFs~t iff EEs~t.



Validity and Satisfiability

Validity problem:
Given: A set of identities ¥ and terms s and ¢.
Decide: s =g t.
Satisfiability problem:

Given: A set of identities &/ and terms s and .
Find: A substitution o such that o(s) =g o(t).
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