Rewriting Part 1. Abstract Reduction

Temur Kutsia

RISC, JKU Linz

Literature

 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

- Book's home page: http://www21.in.tum.de/~nipkow/TRaAT/
- Resources about rewriting: http://rewriting.loria.fr/

Motivation

Abstract Reduction Systems

Equational Reasoning

- Restricted class of languages: The only predicate symbol is equality ≈.
- Reasoning with equations:
 - derive consequences of given equations,
 - find values for variables that satisfy a given equation.
- At the heart of many problems in mathematics and computer science.

• Equations (identities):

$$x + 0 \approx x$$
$$x + s(y) \approx s(x + y)$$

• How to calculate s(0) + s(s(0))?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Orient equations, obtaining rewriting rules.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Apply the rules to transform expressions.

- Orient equations, obtaining rewriting rules.
- Apply the rules to transform expressions.
- Rewrite rules:

$$\begin{aligned} x + 0 &\to x \qquad (R_1) \\ x + s(y) &\to s(x + y) \qquad (R_2) \end{aligned}$$

• Rewriting s(0) + s(s(0)):

- Orient equations, obtaining rewriting rules.
- Apply the rules to transform expressions.
- Rewrite rules:

$$\begin{array}{l}
x+0 \to x & (R_1) \\
x+s(y) \to s(x+y) & (R_2)
\end{array}$$

• Rewriting s(0) + s(s(0)):

$$s(0) + s(s(0)) \rightarrow (by R_2, with x \mapsto s(0), y \mapsto s(0))$$

- Orient equations, obtaining rewriting rules.
- Apply the rules to transform expressions.
- Rewrite rules:

$$\begin{array}{l}
x+0 \to x & (R_1) \\
x+s(y) \to s(x+y) & (R_2)
\end{array}$$

• Rewriting s(0) + s(s(0)):

$$s(0) + s(s(0)) \rightarrow \qquad (by \ R_2, \text{ with } x \mapsto s(0), y \mapsto s(0))$$

$$s(s(0) + s(0)) \rightarrow \qquad (by \ R_2, \text{ with } x \mapsto s(0), y \mapsto 0)$$

- Orient equations, obtaining rewriting rules.
- Apply the rules to transform expressions.
- Rewrite rules:

$$\begin{aligned} x + 0 &\to x \qquad (R_1) \\ x + s(y) &\to s(x + y) \qquad (R_2) \end{aligned}$$

• Rewriting s(0) + s(s(0)):

$$\begin{aligned} s(0) + s(s(0)) &\to \qquad (\text{by } R_2, \text{ with } x \mapsto s(0), y \mapsto s(0)) \\ s(s(0) + s(0)) &\to \qquad (\text{by } R_2, \text{ with } x \mapsto s(0), y \mapsto 0) \\ s(s(s(0) + 0)) &\to \qquad (\text{by } R_1, \text{ with } x \mapsto s(0)) \end{aligned}$$

- Orient equations, obtaining rewriting rules.
- Apply the rules to transform expressions.
- Rewrite rules:

$$\begin{array}{l}
x+0 \to x & (R_1) \\
x+s(y) \to s(x+y) & (R_2)
\end{array}$$

• Rewriting s(0) + s(s(0)):

$$s(0) + s(s(0)) \rightarrow \qquad (by \ R_2, \text{ with } x \mapsto s(0), y \mapsto s(0))$$

$$s(s(0) + s(0)) \rightarrow \qquad (by \ R_2, \text{ with } x \mapsto s(0), y \mapsto 0)$$

$$s(s(s(0) + 0)) \rightarrow \qquad (by \ R_1, \text{ with } x \mapsto s(0))$$

$$s(s(s(0)))$$

What is Rewriting

- Process of transforming one expression into another.
- Rules describe how one expression can be rewritten into another.

(ロ)、(型)、(E)、(E)、 E) の(の)

Identities and Rewriting

- Rewriting as a computational mechanism:
 - Apply given equations in one direction, as rewrite rules.

- Compute normal forms.
- Close relationship with functional programming.
- Example: symbolic differentiation.

Identities and Rewriting

• Rewriting as a computational mechanism:

• Apply given equations in one direction, as rewrite rules.

- Compute normal forms.
- Close relationship with functional programming.
- Example: symbolic differentiation.
- Rewriting as a deduction mechanism:
 - Apply given equations in both directions.
 - Define equivalence classes of terms.
 - Equational reasoning.
 - Example: group theory.

- Expressions: Terms built over variables (u, v, ...) and the following function symbols:
 - ▶ constants 0,1 (numbers),
 - ▶ constants *X*, *Y* (indeterminates),
 - unary symbol D_X (partial derivative with respect to X),

binary symbols +, *.

- Expressions: Terms built over variables (u, v, ...) and the following function symbols:
 - ▶ constants 0,1 (numbers),
 - ▶ constants *X*, *Y* (indeterminates),
 - unary symbol D_X (partial derivative with respect to X),

- binary symbols +, *.
- Examples of terms:
 - (X + X) * Y + 1.
 - $D_X(u * v)$.
 - $(X+Y) * D_X(X*Y)$.

- Expressions: Terms built over variables (u, v, ...) and the following function symbols:
 - ▶ constants 0,1 (numbers),
 - ▶ constants X, Y (indeterminates),
 - unary symbol D_X (partial derivative with respect to X),
 - binary symbols +, *.
- Examples of terms:
 - (X + X) * Y + 1.
 - $D_X(u * v)$.
 - $(X+Y) * D_X(X*Y)$.
- Rewrite rules:

$$D_X(X) \to 1 \tag{R1}$$

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

Rewrite rules:

$$D_X(X) \to 1$$
 (R₁)

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

• Differentiate $D_X(X * X)$:

 $D_X(X * X)$

Rewrite rules:

$$D_X(X) \to 1$$
 (R₁)

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

• Differentiate $D_X(X * X)$:

$$D_X(X * X) \downarrow (R_4) (X * D_X(X))) + (D_X(X) * X)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Rewrite rules:

$$D_X(X) \to 1$$
 (R₁)

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

• Differentiate $D_X(X * X)$:

$$D_X(X * X)$$

$$\downarrow^{(R_4)}$$

$$(X * D_X(X))) + (D_X(X) * X)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Rewrite rules:

$$D_X(X) \to 1$$
 (R₁)

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

$$D_X(X * X)$$

$$\downarrow^{(R_4)}$$

$$(X * D_X(X))) + (D_X(X) * X)$$

$$(R_1) \swarrow$$

$$(X * 1) + (D_X(X) * X)$$

Rewrite rules:

$$D_X(X) \to 1$$
 (R₁)

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

$$D_X(X * X)$$

$$\downarrow^{(R_4)}$$

$$(X * D_X(X))) + (D_X(X) * X)$$

$$(R_1) \swarrow$$

$$(X * 1) + (D_X(X) * X)$$

Rewrite rules:

$$D_X(X) \to 1$$
 (R₁)

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

$$D_X(X * X)$$

$$\downarrow^{(R_4)}$$

$$(X * D_X(X))) + (D_X(X) * X)$$

$$(R_1) \checkmark$$

$$(X * 1) + (D_X(X) * X)$$

Rewrite rules:

$$D_X(X) \to 1$$
 (R₁)

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$D_X(X * X)$$

$$\downarrow (R_4)$$

$$(X * D_X(X))) + (D_X(X) * X)$$

$$(R_1) \checkmark (R_1) \land (R_1) \land (R_1) \land (R_1) \land (X * 1) + (D_X(X) * X)$$

$$(R_1) \land (X * 1) + (1 * X)$$

Rewrite rules:

$$D_X(X) \to 1$$
 (R₁)

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$D_X(X * X)$$

$$\downarrow (R_4)$$

$$(X * D_X(X))) + (D_X(X) * X)$$

$$(R_1) \swarrow$$

$$(X * 1) + (D_X(X) * X)$$

$$(R_1) \searrow$$

$$(X * 1) + (1 * X)$$

Rewrite rules:

$$D_X(X) \to 1$$
 (R₁)

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Rewrite rules:

$$D_X(X) \to 1$$
 (R₁)

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

Rewrite rules:

$$D_X(X) \to 1$$
 (R₁)

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

• Differentiate $D_X(X * X)$:

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Rewrite rules:

$$D_X(X) \to 1$$
 (R₁)

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

Rewrite rules:

$$D_X(X) \to 1$$
 (R₁)

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

Differentiate D_X(X * X):

Rewrite rules:

$$D_X(X) \to 1$$
 (R₁)

$$D_X(Y) \to 0 \tag{R2}$$

$$D_X(u+v) \rightarrow D_X(u) + D_X(v)$$
 (R₃)

$$D_X(u * v) \to (u * D_X(v)) + (D_X(u) * v) \qquad (R_4)$$

$$D_X(X * X)
\downarrow (R_4)
(X * D_X(X))) + (D_X(X) * X)
(R_1) (X * 1) + (D_X(X) * X) (X * D_X(X)) + (1 * X)
(R_1) (X * 1) + (1 * X) (R_1)
(X * 1) + (1 * X)$$

The symbolic differentiation example can be used to illustrate two most important properties of TRSs:

The symbolic differentiation example can be used to illustrate two most important properties of TRSs:

1. Termination:

Is it always the case that after finitely many rule applications we reach an expression to which no more rules apply (normal form)?

- For symbolic differentiation rules this is the case.
- But how to prove it?
- An example of non-terminating rule: $u + v \rightarrow v + u$

The symbolic differentiation example can be used to illustrate two most important properties of TRSs:

The symbolic differentiation example can be used to illustrate two most important properties of TRSs:

2. Confluence:

If there are different ways of applying rules to a given term t, leading to different terms t₁ and t₂, can they be reduced by rule applications to a common term?

- For symbolic differentiation rules this is the case.
- But how to prove it?

• Adding the rule $u + 0 \rightarrow u$ (R_5) destroys confluence:

 Confluence can be regained by adding D_X(0) → 0 (completion).

Group Theory

- Terms are built over variables and the following function symbols:
 - ▶ binary ∘,
 - unary i,
 - constant 0.
- Examples of terms:
 - $x \circ (y \circ i(y))$
 - $(0 \circ x) \circ i(0)$
 - $i(x \circ y)$
- Identities (aka group axioms), defining groups:

Associativity of
$$\circ$$
 $(x \circ y) \circ z \approx x \circ (y \circ z)$ (G_1) e left unit $e \circ x \approx x$ (G_2) i left inverse $i(x) \circ x \approx e$ (G_3)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Group Theory

- Identities can be applied in both directions.
- Word problem for identities:
 - Given a set of identities E and two terms s and t.
 - Is it possible to transform s into t, using the identities in E as rewrite rules applied in both directions?

For instance, is it possible to transform e into x ∘ i(x), i.e., is the left inverse also a right-inverse?

Group Theory

$$\begin{array}{ll} (x \circ y) \circ z \approx x \circ (y \circ z) & (G_1) \\ e \circ x \approx x & (G_2) \\ i(x) \circ x \approx e & (G_3) \end{array}$$

Transform e into $x \circ i(x)$:

$$\begin{split} e \approx_{G_3} i(x \circ i(x)) \circ (x \circ i(x)) \\ \approx_{G_2} i(x \circ i(x)) \circ (x \circ (e \circ i(x))) \\ \approx_{G_3} i(x \circ i(x)) \circ (x \circ ((i(x) \circ x) \circ i(x))) \\ \approx_{G_1} i(x \circ i(x)) \circ ((x \circ (i(x) \circ x)) \circ i(x)) \\ \approx_{G_1} i(x \circ i(x)) \circ (((x \circ i(x)) \circ x) \circ i(x)) \\ \approx_{G_1} i(x \circ i(x)) \circ ((x \circ i(x)) \circ (x \circ i(x))) \\ \approx_{G_1} (i(x \circ i(x)) \circ (x \circ i(x)) \circ (x \circ i(x))) \\ \approx_{G_3} e \circ (x \circ i(x)) \\ \approx_{G_2} x \circ i(x) \end{split}$$

<□ > < @ > < E > < E > E のQ @

- Is there a simpler way to solve word problems?
- Try to solve it by rewriting (uni-directional application of identities):

- Reduce s and t to normal forms \hat{s} and \hat{t} .
- Check whether ŝ = t̂, i.e., syntactically equal.
 (= is the meta-equality.)

- Is there a simpler way to solve word problems?
- Try to solve it by rewriting (uni-directional application of identities):

- Reduce s and t to normal forms \hat{s} and \hat{t} .
- Check whether ŝ = t̂, i.e., syntactically equal.
 (= is the meta-equality.)
- But... it would only work if normal forms exist and are unique.

- In the group theory example, e and $x \circ i(x)$ are equivalent, but it can not be decided by (left-to-right) rewriting: Both terms are in the normal form.
- Uniqueness of normal forms is violated: non-confluence.
- Normal forms may not exist: The process of reducing a term may lead to an infinite chain of transformations: non-termination.

- In the group theory example, e and $x \circ i(x)$ are equivalent, but it can not be decided by (left-to-right) rewriting: Both terms are in the normal form.
- Uniqueness of normal forms is violated: non-confluence.
- Normal forms may not exist: The process of reducing a term may lead to an infinite chain of transformations: non-termination.
- Termination and confluence ensure existence and uniqueness of normal forms.

- In the group theory example, e and $x \circ i(x)$ are equivalent, but it can not be decided by (left-to-right) rewriting: Both terms are in the normal form.
- Uniqueness of normal forms is violated: non-confluence.
- Normal forms may not exist: The process of reducing a term may lead to an infinite chain of transformations: non-termination.
- Termination and confluence ensure existence and uniqueness of normal forms.
- If a given set of identities leads to non-confluent system, we will try to apply the idea of completion to extend the rewrite system to a confluent one.

Motivation

Abstract Reduction Systems

Abstract vs Concrete

Concrete rewrite formalisms:

- string rewriting
- term rewriting
- graph rewriting
- λ calculus
- etc.

Abstract reduction:

• No structure on objects to be rewritten.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Abstract treatment of reductions.

Abstract Reduction Systems

- Abstract reduction system (ARS): A pair (A, \rightarrow) , where
 - A is a set,
 - the reduction \rightarrow is a binary relation on $A: \rightarrow \subseteq A \times A$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Write $a \rightarrow b$ for $(a, b) \in \rightarrow$.

Equivalence and Reduction

Again, two views at reductions.

- 1. Directed computation: Follow the reductions, trying to compute a normal form: $a_0 \rightarrow a_1 \rightarrow \cdots$
- 2. View \rightarrow as description of $\stackrel{*}{\leftrightarrow}$.
 - ▶ $a \stackrel{*}{\leftrightarrow} b$ means there is a path between a and b, with arrows traversed in both directions: $a \leftarrow c \rightarrow d \leftarrow b$
 - Goal: Decide whether $a \stackrel{*}{\leftrightarrow} b$.
 - Bidirectional rewriting is expensive.
 - Unidirectional rewriting with subsequent comparison of normal form works if the reduction system is confluent and terminating.

Termination, confluence: central topics.

Basic notions

- 1. Composition of two relations.
- 2. Given two relations $R \subseteq A \times B$ and $S \subseteq B \times C$, their composition is defined by

$$R \circ S \coloneqq \{(x, z) \mid \exists y \in B. \ (x, y) \in R \land (y, z) \in S\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Finite rewrite sequence: $a \rightarrow e \rightarrow b \rightarrow c \rightarrow f$

イロト イポト イヨト イヨト

- Finite rewrite sequence: $a \rightarrow e \rightarrow b \rightarrow c \rightarrow f$
- Empty rewrite sequence: a

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Finite rewrite sequence: $a \rightarrow e \rightarrow b \rightarrow c \rightarrow f$
- Empty rewrite sequence: a
- Infinite rewrite sequence: $a \rightarrow e \rightarrow b \rightarrow a \rightarrow \cdots$

Relations Derived from \rightarrow

$\xrightarrow{0} \coloneqq \{(x, x) \mid x \in A\}$	identity
$\xrightarrow{i+1}:=\xrightarrow{i}\circ\rightarrow$	$(i+1)$ -fold composition, $i \ge 0$
$\xrightarrow{+}:=\cup_{i>0}\xrightarrow{i}$	transitive closure
$\stackrel{*}{\rightarrow} := \stackrel{+}{\rightarrow} \cup \stackrel{0}{\rightarrow}$	reflexive transitive closure
$\stackrel{=}{\rightarrow} := \rightarrow \cup \stackrel{0}{\rightarrow}$	reflexive closure
$\xrightarrow{-1} \coloneqq \{(y, x) \mid (x, y) \in \rightarrow\}$	inverse
$\leftarrow := \xrightarrow{-1}$	inverse
$\leftrightarrow\coloneqq\to\cup\leftarrow$	symmetric closure
$\stackrel{+}{\leftrightarrow} := (\leftrightarrow)^+$	transitive symmetric closure
$\stackrel{*}{\leftrightarrow} \coloneqq (\leftrightarrow)^*$	reflexive transitive symmetric closure

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

- If $x \xrightarrow{*} y$ then we say:
 - x rewrites to y, or
 - there is some finite path from x to y, or

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• y is a reduct of x.

- If $x \xrightarrow{*} y$ then we say:
 - x rewrites to y, or
 - there is some finite path from x to y, or
 - y is a reduct of x.

イロト イポト イヨト イヨト

臣

- If $x \xrightarrow{*} y$ then we say:
 - x rewrites to y, or
 - there is some finite path from x to y, or
 - y is a reduct of x.

• x is reducible iff there exists y such that $x \to y$.

- x is reducible iff there exists y such that $x \rightarrow y$.
- x is in normal form (irreducible) iff x is not reducible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- x is reducible iff there exists y such that $x \rightarrow y$.
- x is in normal form (irreducible) iff x is not reducible.
- y is a normal form of x iff $x \xrightarrow{*} y$ and y is in normal form.

- x is reducible iff there exists y such that $x \rightarrow y$.
- x is in normal form (irreducible) iff x is not reducible.
- y is a normal form of x iff $x \xrightarrow{*} y$ and y is in normal form.

- We write $x \xrightarrow{!} y$ if y is a normal form of x.
- If x has a unique normal form, it is denoted by $x \downarrow$.

- x is reducible iff there exists y such that $x \rightarrow y$.
- x is in normal form (irreducible) iff x is not reducible.
- y is a normal form of x iff $x \xrightarrow{*} y$ and y is in normal form.
- We write $x \xrightarrow{!} y$ if y is a normal form of x.
- If x has a unique normal form, it is denoted by $x \downarrow$.

- x is reducible iff there exists y such that $x \rightarrow y$.
- x is in normal form (irreducible) iff x is not reducible.
- y is a normal form of x iff $x \xrightarrow{*} y$ and y is in normal form.
- We write $x \xrightarrow{!} y$ if y is a normal form of x.
- If x has a unique normal form, it is denoted by $x \downarrow$.

- x is reducible iff there exists y such that $x \rightarrow y$.
- x is in normal form (irreducible) iff x is not reducible.
- y is a normal form of x iff $x \xrightarrow{*} y$ and y is in normal form.
- We write $x \xrightarrow{!} y$ if y is a normal form of x.
- If x has a unique normal form, it is denoted by $x \downarrow$.

• y is direct successor of x iff $x \to y$.

- y is direct successor of x iff $x \to y$.
- y is successor of x iff $x \xrightarrow{+} y$.

- y is direct successor of x iff $x \to y$.
- y is successor of x iff $x \xrightarrow{+} y$.
- x and y are convertible iff $x \stackrel{*}{\leftrightarrow} y$.

- y is direct successor of x iff $x \rightarrow y$.
- y is successor of x iff $x \xrightarrow{+} y$.
- x and y are convertible iff $x \stackrel{*}{\leftrightarrow} y$.
- x and y are joinable iff there exists z such that $x \xrightarrow{*} z \xleftarrow{*} y$.

- y is direct successor of x iff $x \to y$.
- y is successor of x iff $x \xrightarrow{+} y$.
- x and y are convertible iff $x \stackrel{*}{\leftrightarrow} y$.
- x and y are joinable iff there exists z such that $x \xrightarrow{*} z \xleftarrow{*} y$.

• We write $x \downarrow y$ iff x and y are joinable.

- y is direct successor of x iff $x \to y$.
- y is successor of x iff $x \xrightarrow{+} y$.
- x and y are convertible iff $x \stackrel{*}{\leftrightarrow} y$.
- x and y are joinable iff there exists z such that $x \xrightarrow{*} z \xleftarrow{*} y$.
- We write $x \downarrow y$ iff x and y are joinable.

- y is direct successor of x iff $x \to y$.
- y is successor of x iff $x \xrightarrow{+} y$.
- x and y are convertible iff $x \stackrel{*}{\leftrightarrow} y$.
- x and y are joinable iff there exists z such that $x \xrightarrow{*} z \xleftarrow{*} y$.
- We write $x \downarrow y$ iff x and y are joinable.

Example

- 1. Let $A := \mathbb{N} \{0, 1\}$ and $\rightarrow := \{(m, n) \mid m > n \text{ and } n \text{ divides } m\}$. Then
 - (a) m is in normal form iff m is prime.
 - (b) p is a normal form of m iff p is a prime factor of m.
 - (c) $m \downarrow n$ iff m and n are not relatively prime.
 - (d) $\xrightarrow{+} = \rightarrow$ because > and "divides" are already transitive.

e)
$$\stackrel{*}{\leftrightarrow} = A \times A.$$

- 2. Let $A := \{a, b\}^*$ (the set of words over the alphabet $\{a, b\}$) and $\rightarrow := \{(ubav, uabv) \mid u, v \in A\}$. Then
 - (a) w is in normal form iff w is sorted, i.e. of the form a^*b^* .
 - (b) Every w has a unique normal form $w \downarrow$, the result of sorting w.
 - (c) $w_1 \downarrow w_2$ iff $w_1 \leftrightarrow w_2$ iff w_1 and w_2 contain the same number of as and bs.

Central Notions

Definition 1.1 A relation \rightarrow is called Church-Rosser (CR) iff

 $x \stackrel{*}{\leftrightarrow} y$ implies $x \downarrow y$.

Central Notions

Definition 1.1 A relation \rightarrow is called Church-Rosser (CR) iff

 $x \stackrel{*}{\leftrightarrow} y$ implies $x \downarrow y$.

Graphically:

Solid arrows represent universal and dashed arrows existential quantification: $\forall x, y. \ x \stackrel{*}{\leftrightarrow} y \Rightarrow \exists z. \ x \stackrel{*}{\rightarrow} z \land y \stackrel{*}{\rightarrow} z.$

Central Notions: Church-Rosser

Definition 1.2

A relation \rightarrow is called confluent (C) iff

$$y_1 \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} y_2 \text{ implies } y_1 \downarrow y_2.$$

Central Notions: Church-Rosser

Definition 1.2

A relation \rightarrow is called confluent (C) iff

$$y_1 \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} y_2 \text{ implies } y_1 \downarrow y_2.$$

Graphically:

Solid arrows represent universal and dashed arrows existential quantification: $\forall x, y_1, y_2. \ y_1 \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} y_2 \Rightarrow \exists z. \ y_1 \stackrel{*}{\rightarrow} z \stackrel{*}{\leftarrow} y_2.$

Central Notions: Local Confluence

Definition 1.3 A relation \rightarrow is called locally confluent (LC) iff

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $y_1 \leftarrow x \rightarrow y_2$ implies $y_1 \downarrow y_2$.

Central Notions: Local Confluence

Definition 1.3 A relation \rightarrow is called locally confluent (LC) iff

 $y_1 \leftarrow x \rightarrow y_2$ implies $y_1 \downarrow y_2$.

Graphically:

Solid arrows represent universal and dashed arrows existential quantification: $\forall x, y_1, y_2. \ y_1 \leftarrow x \rightarrow y_2 \Rightarrow \exists z. \ y_1 \stackrel{*}{\rightarrow} z \stackrel{*}{\leftarrow} y_2.$

Central Notions: T, N, UN, Convergence

Definition 1.4

- A relation \rightarrow is called
 - terminating (T) iff there is no infinite descending chain $a_0 \rightarrow a_1 \rightarrow \cdots$.
 - normalizing (N) iff every element has a normal form.
 - uniquely normalizing (UN) iff every element has at most one normal form.

convergent iff it is both confluent and terminating.

Central Notions: T, N, UN, Convergence

Definition 1.4

- A relation \rightarrow is called
 - terminating (T) iff there is no infinite descending chain $a_0 \rightarrow a_1 \rightarrow \cdots$.
 - normalizing (N) iff every element has a normal form.
 - uniquely normalizing (UN) iff every element has at most one normal form.

- convergent iff it is both confluent and terminating.
- Alternative terminology:
 - Strongly normalizing: terminating.
 - Weakly normalizing: normalizing.

Central Notions: CR Reformulated

- Obviously, $x \downarrow y$ implies $x \stackrel{*}{\leftrightarrow} y$.
- Therefore, the Church-Rosser property can be formulated as the equivalence:

 \blacktriangleright \rightarrow is called Church-Rosser iff

 $x \stackrel{*}{\leftrightarrow} y \text{ iff } x \downarrow y.$

1. T \implies N

<ロ>

1. T \implies N

2. T ← N

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3. CR
$$\iff \stackrel{*}{\leftrightarrow} = \downarrow$$

4. CR
$$\implies$$
 UN

$$\bigcirc a \longrightarrow b$$

1. T
$$\implies$$
 N

3. CR
$$\iff \stackrel{*}{\Leftrightarrow} = \downarrow$$

4. CR
$$\implies$$
 UN

$$\bigcirc a \longrightarrow b$$

<□ > < @ > < E > < E > E のQ @

1.
$$T \implies N$$

2. $T \iff N \qquad \bigcirc a \longrightarrow b$
3. $CR \iff \stackrel{*}{\leftrightarrow} = \downarrow$

- 4. CR \implies UN
- 5. CR \Leftarrow UN

 $\bigcirc a \longleftarrow b \longrightarrow c$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. T
$$\implies$$
 N
2. T \Leftarrow N $\bigcirc a \longrightarrow b$

- 3. CR $\iff \underset{\leftrightarrow}{}^* = \downarrow$
- 4. CR \implies UN
- 5. CR \Leftarrow UN

$$\bigcirc a \longleftarrow b \longrightarrow c$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

6. $N \wedge UN \implies C$

1. T
$$\implies$$
 N
2. T \Leftarrow N $\bigcirc a \longrightarrow b$
3. CR $\iff \stackrel{*}{\Leftrightarrow} = \downarrow$

- 4. CR \implies UN
- 5. CR \Leftarrow UN

$$\bigcirc a \longleftarrow b \longrightarrow c$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 6. $N \wedge UN \implies C$
- 7. C \implies LC

1. T
$$\implies$$
 N
2. T \Leftarrow N $\bigcirc a \longrightarrow b$
3. CR $\iff \stackrel{*}{\Leftrightarrow} = \downarrow$
4. CR \implies UN
5. CR \Leftarrow UN $\bigcirc a \longleftarrow b \longrightarrow c$
6. N \land UN \implies C
7. C \implies LC
8. C \Leftarrow LC

1. T
$$\implies$$
 N
2. T \Leftarrow N $\bigcirc a \longrightarrow b$
3. CR $\iff \stackrel{*}{\Leftrightarrow} = \downarrow$
4. CR \implies UN
5. CR \Leftarrow UN $\bigcirc a \longleftarrow b \longrightarrow c$
6. N \land UN \implies C
7. C \implies LC
8. C \Leftarrow LC $a \longleftarrow b \bigcirc c \longrightarrow d$

- Recall what we were looking for.
- Ability to check equivalence by the search of a common reduct.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- This is exactly the Church-Rosser property.
- How does it relate to confluence and termination?

Church-Rosser and Confluence

- The Church-Rosser property and confluence coincide.
- $CR \implies C$ is immediate.
- ► CR ⇐ C has a nice diagrammatic proof:

Central Notions: Semi-Confluence

Definition 1.5

A relation \rightarrow is called semi-confluent (SC) iff

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$y_1 \leftarrow x \xrightarrow{*} y_2$$
 implies $y_1 \downarrow y_2$.

Central Notions: Semi-Confluence

Definition 1.5

A relation \rightarrow is called semi-confluent (SC) iff

$$y_1 \leftarrow x \xrightarrow{*} y_2$$
 implies $y_1 \downarrow y_2$.

Graphically:

Solid arrows represent universal and dashed arrows existential quantification: $\forall x, y_1, y_2. y_1 \leftarrow x \xrightarrow{*} y_2 \Rightarrow \exists z. y_1 \xrightarrow{*} z \xleftarrow{*} y_2.$

CR, C, SC, LC

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト 一 国 … の Q ()

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

 $\begin{array}{l} \mathsf{Proof.} \\ (1 \Rightarrow 2) \end{array}$

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Proof.

 $(1 \Rightarrow 2)$

• Assume \rightarrow is CR and $y_1 \xleftarrow{*} x \xrightarrow{*} y_2$. Show $y_1 \downarrow y_2$.

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Proof.

 $(1 \Rightarrow 2)$

• Assume \rightarrow is CR and $y_1 \xleftarrow{*} x \xrightarrow{*} y_2$. Show $y_1 \downarrow y_2$.

• $y_1 \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} y_2$ implies $y_1 \stackrel{*}{\leftrightarrow} y_2$.

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Proof.

 $(1 \Rightarrow 2)$

• Assume \rightarrow is CR and $y_1 \xleftarrow{*} x \xrightarrow{*} y_2$. Show $y_1 \downarrow y_2$.

- $y_1 \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} y_2$ implies $y_1 \stackrel{*}{\leftrightarrow} y_2$.
- CR implies $y_1 \downarrow y_2$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

 $\begin{array}{l} \mathsf{Proof.} \\ (2 \Rightarrow 3) \end{array}$

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Proof.

 $(2 \Rightarrow 3)$

• Semi-confluence is a special case of confluence.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

 $\begin{array}{l} \mathsf{Proof.} \\ (3 \Rightarrow 1) \end{array}$

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Proof.

 $(3 \Rightarrow 1)$

• Assume \rightarrow is SC and $x \stackrel{*}{\leftrightarrow} y$. Show $x \downarrow y$.

イロト 不得 トイヨト イヨト

= 900

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Proof.

 $(3 \Rightarrow 1)$

- Assume \rightarrow is SC and $x \stackrel{*}{\leftrightarrow} y$. Show $x \downarrow y$.
- Induction on the length of the chain $x \stackrel{*}{\leftrightarrow} y$.

・ロット (雪) () () () ()

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Proof.

 $(3 \Rightarrow 1)$

- Assume \rightarrow is SC and $x \stackrel{*}{\leftrightarrow} y$. Show $x \downarrow y$.
- Induction on the length of the chain $x \stackrel{*}{\leftrightarrow} y$.

• Base case: x = y. Trivial.

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Proof.

 $(3 \Rightarrow 1)$

- Assume \rightarrow is SC and $x \stackrel{*}{\leftrightarrow} y$. Show $x \downarrow y$.
- Induction on the length of the chain $x \stackrel{*}{\leftrightarrow} y$.

- Base case: x = y. Trivial.
- Assume $x \stackrel{*}{\leftrightarrow} y' \leftrightarrow y$. Show $x \downarrow y$.

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Proof.

 $(3 \Rightarrow 1)$

- Assume \rightarrow is SC and $x \stackrel{*}{\leftrightarrow} y$. Show $x \downarrow y$.
- Induction on the length of the chain $x \stackrel{*}{\leftrightarrow} y$.
- Base case: x = y. Trivial.
- Assume $x \stackrel{*}{\leftrightarrow} y' \leftrightarrow y$. Show $x \downarrow y$.
- By IH, $x \downarrow y'$, i.e. $x \xrightarrow{*} z \xleftarrow{} y'$ for some z.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Proof. $(3 \Rightarrow 1)$ (Cont.)

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Proof. $(3 \Rightarrow 1)$ (Cont.)

• Show $x \downarrow y$ by case distinction on $y' \leftrightarrow y$.

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Proof.

 $(3 \Rightarrow 1)$ (Cont.)

- Show $x \downarrow y$ by case distinction on $y' \leftrightarrow y$.
- $y' \leftarrow y$: $x \downarrow y$ follows directly from $x \downarrow y'$:

$$x \xleftarrow{*} y' \longleftarrow y$$

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Proof. $(3 \Rightarrow 1)$ (Cont.)

• Show $x \downarrow y$ by case distinction on $y' \leftrightarrow y$.

(日)、(四)、(日)、(日)、

Theorem 1.1

The following conditions are equivalent:

- 1. \rightarrow has the Chursh-Rosser property.
- 2. \rightarrow is confluent.
- 3. \rightarrow is semi-confluent.

Proof.

 $(3 \Rightarrow 1)$ (Cont.)

- Show $x \downarrow y$ by case distinction on $y' \leftrightarrow y$.
- $y' \rightarrow y$: Semi-confluence implies $z \downarrow y$ and, hence $x \downarrow y$:

LL ののの ほ くぼをくぼをく取す

Corollaries

- If \rightarrow is confluent and $x \stackrel{*}{\leftrightarrow} y$ then
 - 1. $x \xrightarrow{*} y$ if y is in a normal form, and
 - 2. x = y if both x and y are in a normal form.
- Hence, for confluent relations, convertibility is equivalent to joinability.

• Without termination, joinability can not be decided.

Corollaries

- ▶ If \rightarrow is confluent, then every element has at most one normal form (C \implies UN)
- If \rightarrow is normalizing and confluent, then every element has exactly one normal form.

Hence, for confluent and normalizing reductions the notation $x\downarrow$ is well-defined.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Goal-Directed Equivalence Test

Theorem 1.2 If \rightarrow is confluent and normalizing, then

- every element x has a unique normal form $x \downarrow$,
- $x \stackrel{*}{\leftrightarrow} y \text{ iff } x \downarrow = y \downarrow$.

Normalization requires breadth-first search for normal forms.

Goal-Directed Equivalence Test

Theorem 1.2 If \rightarrow is confluent and normalizing, then

- every element x has a unique normal form $x \downarrow$,
- $x \stackrel{*}{\leftrightarrow} y \text{ iff } x \downarrow = y \downarrow$.

Normalization requires breadth-first search for normal forms.

Theorem 1.3

If \rightarrow is confluent and terminating, then

- every element x has a unique normal form $x \downarrow$,
- $x \stackrel{*}{\leftrightarrow} y \text{ iff } x \downarrow = y \downarrow.$

Termination permits depth-first search for normal forms.

Confluence and Termination

How to show confluence and termination of an ARS?

Idea: Embedding the reduction into a well-founded order.

- Idea: Embedding the reduction into a well-founded order.
- ▶ Well-founded order (B,>): No infinite descending chain b₀ > b₁ > b₂ > … in B.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Examples of well-founded orders:

- $(\mathbb{N}, >)$: The set of natural numbers with the standard ordering.
- (ℕ \ {0},>): The set of positive integers where a > b iff b | a and b ≠ a.
- ({a,b,c}*,>): The set of finite words over a fixed alphabet, where w₁ > w₂ iff w₂ is a proper substring of w₁.

Examples of well-founded orders:

- (ℕ,>): The set of natural numbers with the standard ordering.
- $(\mathbb{N} \setminus \{0\}, >)$: The set of positive integers where a > b iff $b \mid a$ and $b \neq a$.
- ({a,b,c}*,>): The set of finite words over a fixed alphabet, where w₁ > w₂ iff w₂ is a proper substring of w₁.

Examples of non-well-founded orders:

- $(\mathbb{Z}, >)$: The set of integers with the standard ordering.
- $(\mathbb{Q}_0^+, >)$: The set of non-negative rationals with the standard ordering.
- ► ({a,b,c}*,>): The set of finite words over a fixed alphabet, where > is the lexicographic ordering, e.g. a > ab > abb >

Theorem 1.4

Let (A, \rightarrow) be an ARS. Then \rightarrow is terminating iff there exists a well-founded order (B, >) and a mapping $\varphi : A \rightarrow B$ such that

 $a_1 \rightarrow a_2 \text{ implies } \varphi(a_1) > \varphi(a_2).$

Lemma 1.1 (Newman's Lemma)

If \rightarrow is terminating and locally confluent, then it is confluent.

・ロト・日本・モート モー うへぐ

Lemma 1.1 (Newman's Lemma)

If \rightarrow is terminating and locally confluent, then it is confluent.

Proof.

• Use well-founded induction. Let (A, \rightarrow) be an ARS. Then WFI is the inference rule:

$$\frac{\forall x \in A. (\forall y \in A. (x \xrightarrow{+} y \Rightarrow P(y)) \Rightarrow P(x))}{\forall x \in A. P(x)}$$
(WFI)

where P is some property of elements of A.

- Reads: To prove P(x) for all $x \in A$, try to prove P(x) under the assumption that P(y) holds for all successors y of x.
- Holds when \rightarrow is terminating.

Lemma 1.1 (Newman's Lemma) If → is terminating and locally confluent, then it is confluent. Proof. (Cont.)

Lemma 1.1 (Newman's Lemma) If → is terminating and locally confluent, then it is confluent. Proof. (Cont.)

• Let P be

$$P(x) = \forall y, z. \ y \xleftarrow{*} x \xrightarrow{*} z \Rightarrow y \downarrow z.$$

Obviously, \rightarrow is confluent if P(x) holds for all $x \in A$.

Lemma 1.1 (Newman's Lemma) If → is terminating and locally confluent, then it is confluent. Proof. (Cont.)

• Let P be

$$P(x) = \forall y, z. \ y \xleftarrow{*} x \xrightarrow{*} z \Rightarrow y \downarrow z.$$

Obviously, \rightarrow is confluent if P(x) holds for all $x \in A$.

• Show P(x) under the assumption P(t) for all $x \xrightarrow{+} t$.

Lemma 1.1 (Newman's Lemma) If → is terminating and locally confluent, then it is confluent. Proof. (Cont.)

• Let P be

$$P(x) = \forall y, z. \ y \xleftarrow{*} x \xrightarrow{*} z \Rightarrow y \downarrow z.$$

Obviously, \rightarrow is confluent if P(x) holds for all $x \in A$.

- Show P(x) under the assumption P(t) for all $x \xrightarrow{+} t$.
- Fix x, y, z arbitrarily. Assume $y \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} z$. Prove $y \downarrow z$.

Lemma 1.1 (Newman's Lemma) If \rightarrow is terminating and locally confluent, then it is confluent. Proof. (Cont.)

• Let P be

$$P(x) = \forall y, z. \ y \xleftarrow{*} x \xrightarrow{*} z \Rightarrow y \downarrow z.$$

Obviously, \rightarrow is confluent if P(x) holds for all $x \in A$.

- Show P(x) under the assumption P(t) for all $x \xrightarrow{+} t$.
- Fix x, y, z arbitrarily. Assume $y \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} z$. Prove $y \downarrow z$.

• Case 1:
$$x = y$$
 or $y = x$. Trivial.

Lemma 1.1 (Newman's Lemma) If → is terminating and locally confluent, then it is confluent. Proof. (Cont.)

- 日本 - 1 日本 - 日本 - 日本

Lemma 1.1 (Newman's Lemma) If \rightarrow is terminating and locally confluent, then it is confluent. Proof. (Cont.)

• Case 2: $x \to y_1 \xrightarrow{*} y$ and $x \to z_1 \xrightarrow{*} z$.

Lemma 1.1 (Newman's Lemma) If \rightarrow is terminating and locally confluent, then it is confluent. Proof. (Cont.)

• Case 2:
$$x \to y_1 \xrightarrow{*} y$$
 and $x \to z_1 \xrightarrow{*} z$.

Showing Confluence (Termination Not Required)

Definition 1.6

A relation \rightarrow is called strongly confluent (StC) iff

$$\forall x, y_1, y_2. \ y_1 \leftarrow x \rightarrow y_2 \Rightarrow \exists z. \ y_1 \stackrel{*}{\rightarrow} z \stackrel{=}{\leftarrow} y_2.$$

Remark: The definition is symmetric: $y_1 \leftarrow x \rightarrow y_2$ must imply both $y_1 \xrightarrow{*} z_1 \stackrel{=}{\leftarrow} y_2$ and $y_1 \xrightarrow{*} z_2 \stackrel{=}{\leftarrow} y_2$ for suitably chosen z_1 and z_2 .

Showing Confluence (Termination Not Required)

Definition 1.6

A relation \rightarrow is called strongly confluent (StC) iff

$$\forall x, y_1, y_2. \ y_1 \leftarrow x \rightarrow y_2 \Rightarrow \exists z. \ y_1 \stackrel{*}{\rightarrow} z \stackrel{=}{\leftarrow} y_2.$$

Remark: The definition is symmetric: $y_1 \leftarrow x \rightarrow y_2$ must imply both $y_1 \stackrel{*}{\rightarrow} z_1 \stackrel{=}{\leftarrow} y_2$ and $y_1 \stackrel{*}{\rightarrow} z_2 \stackrel{=}{\leftarrow} y_2$ for suitably chosen z_1 and z_2 . Graphically:

Solid arrows represent universal and dashed arrows existential quantification.

C, SC, LC, StC

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Showing Confluence (Termination Not Required)

Theorem 1.5 Any strongly confluent relation is semi-confluent (and, thus, confluent).

Proof.

Showing Confluence (Termination Not Required)

- StC is a pretty strong property.
- Trying to show strong confluence of \rightarrow would not be practical.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- StC is a pretty strong property.
- Trying to show strong confluence of \rightarrow would not be practical.
- The trick to show confluence of → is not to prove its strong confluence, but to define a StC relation →_s such that ^{*}→_s = ^{*}→.

- StC is a pretty strong property.
- Trying to show strong confluence of \rightarrow would not be practical.
- The trick to show confluence of → is not to prove its strong confluence, but to define a StC relation →_s such that ^{*}→_s = ^{*}→.

- If $\stackrel{*}{\rightarrow}_1 = \stackrel{*}{\rightarrow}_2$, then \rightarrow_1 is confluent iff \rightarrow_2 is confluent.
- Hence, if $\stackrel{*}{\rightarrow}_{s} = \stackrel{*}{\rightarrow}$, then $StC(\rightarrow_{s}) \Rightarrow C(\rightarrow_{s}) \Leftrightarrow C(\rightarrow)$.

- StC is a pretty strong property.
- Trying to show strong confluence of \rightarrow would not be practical.
- The trick to show confluence of → is not to prove its strong confluence, but to define a StC relation →_s such that ^{*}→_s = ^{*}→.
- If $\stackrel{*}{\rightarrow}_1 = \stackrel{*}{\rightarrow}_2$, then \rightarrow_1 is confluent iff \rightarrow_2 is confluent.
- Hence, if $\stackrel{*}{\rightarrow}_{s} = \stackrel{*}{\rightarrow}$, then $StC(\rightarrow_{s}) \Rightarrow C(\rightarrow_{s}) \Leftrightarrow C(\rightarrow)$.
- To simplify the search of →_s, the condition can be weakened due to following easy lemma:

If
$$\rightarrow_1 \subseteq \rightarrow_2 \subseteq \stackrel{*}{\rightarrow}_1$$
, then $\stackrel{*}{\rightarrow}_1 = \stackrel{*}{\rightarrow}_2$.

Summarizing the ideas from the previous slide:

Theorem 1.6 If $\rightarrow \subseteq \rightarrow_s \subseteq \stackrel{*}{\rightarrow}$ and \rightarrow_s is strongly confluent, then \rightarrow is confluent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The theorem can be made stronger, considering the diamond property:

Definition 1.7

A relation \rightarrow has the diamond property iff

 $\forall x, y_1, y_2. \ y_1 \leftarrow x \rightarrow y_2 \Rightarrow \exists z. \ y_1 \rightarrow z \leftarrow y_2.$

The theorem can be made stronger, considering the diamond property:

Definition 1.7

A relation \rightarrow has the diamond property iff

 $\forall x, y_1, y_2. \ y_1 \leftarrow x \rightarrow y_2 \Rightarrow \exists z. \ y_1 \rightarrow z \leftarrow y_2.$

Graphically:

The diamond property implies strong confluence, therefore:

Theorem 1.7 If $\rightarrow \subseteq \rightarrow_d \subseteq \xrightarrow{*}$ and \rightarrow_d has the diamond property, then \rightarrow is confluent.

 Confluence proofs can be localized by splitting a reduction up into several smaller reductions and showing their confluence separately.

• An additional property, commuting, should be satisfied.

- Confluence proofs can be localized by splitting a reduction up into several smaller reductions and showing their confluence separately.
- An additional property, commuting, should be satisfied.

Definition 1.8

Two relations \rightarrow_1 and \rightarrow_2 commute iff

$$\forall x, y_1, y_2. \ y_1 \xleftarrow{*}_1 x \xrightarrow{*}_2 y_2 \Rightarrow \exists z. \ y_1 \xleftarrow{*}_2 z \xleftarrow{*}_1 y_2.$$

Lemma 1.2 (Commutative Union Lemma) If \rightarrow_1 and \rightarrow_2 are confluent and commute, then $\rightarrow_1 \cup \rightarrow_2$ is also confluent.

Lemma 1.2 (Commutative Union Lemma) If \rightarrow_1 and \rightarrow_2 are confluent and commute, then $\rightarrow_1 \cup \rightarrow_2$ is also confluent.

Proof.

• $\stackrel{*}{\rightarrow}_1 \circ \stackrel{*}{\rightarrow}_2$ has the diamond property:

- (1) Confluence of \rightarrow_1
- (2) Confluence of \rightarrow_2
- (12) Commutation of \rightarrow_1 and \rightarrow_2

Lemma 1.3 (Commutative Union Lemma)

If \rightarrow_1 and \rightarrow_2 are confluent and commute, then $\rightarrow_1 \cup \rightarrow_2$ is also confluent.

Lemma 1.3 (Commutative Union Lemma)

If \rightarrow_1 and \rightarrow_2 are confluent and commute, then $\rightarrow_1 \cup \rightarrow_2$ is also confluent.

Proof. (Cont.)

The following inclusions hold:

$$\rightarrow_1 \cup \rightarrow_2 \subseteq \xrightarrow{*}_1 \circ \xrightarrow{*}_2 \subseteq (\rightarrow_1 \cup \rightarrow_2)^*.$$

▶ By Theorem 1.7, $\rightarrow_1 \cup \rightarrow_2$ is confluent.