Rewriting
 Part 1. Abstract Reduction

Temur Kutsia

RISC, JKU Linz

Literature

- Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
- Book's home page: http://www21.in.tum.de/~nipkow/TRaAT/
- Resources about rewriting: http://rewriting.loria.fr/

Motivation

Abstract Reduction Systems

Equational Reasoning

- Restricted class of languages: The only predicate symbol is equality \approx.
- Reasoning with equations:
- derive consequences of given equations,
- find values for variables that satisfy a given equation.
- At the heart of many problems in mathematics and computer science.

Example: Addition of Natural Numbers

- Equations (identities):

$$
\begin{gathered}
x+0 \approx x \\
x+s(y) \approx s(x+y)
\end{gathered}
$$

- How to calculate $s(0)+s(s(0))$?

Example: Addition of Natural Numbers

- Orient equations, obtaining rewriting rules.
- Apply the rules to transform expressions.

Example: Addition of Natural Numbers

- Orient equations, obtaining rewriting rules.
- Apply the rules to transform expressions.
- Rewrite rules:

$$
\begin{align*}
x+0 & \rightarrow x \tag{1}\\
x+s(y) & \rightarrow s(x+y) \tag{2}
\end{align*}
$$

- Rewriting $s(0)+s(s(0))$:

Example: Addition of Natural Numbers

- Orient equations, obtaining rewriting rules.
- Apply the rules to transform expressions.
- Rewrite rules:

$$
\begin{align*}
x+0 & \rightarrow x \tag{1}\\
x+s(y) & \rightarrow s(x+y) \tag{2}
\end{align*}
$$

- Rewriting $s(0)+s(s(0))$:

$$
s(0)+s(s(0)) \rightarrow \quad\left(\text { by } R_{2}, \text { with } x \mapsto s(0), y \mapsto s(0)\right)
$$

Example: Addition of Natural Numbers

- Orient equations, obtaining rewriting rules.
- Apply the rules to transform expressions.
- Rewrite rules:

$$
\begin{align*}
x+0 & \rightarrow x \tag{1}\\
x+s(y) & \rightarrow s(x+y) \tag{2}
\end{align*}
$$

- Rewriting $s(0)+s(s(0))$:

$$
\begin{array}{lr}
s(0)+s(s(0)) \rightarrow & \text { (by } \left.R_{2}, \text { with } x \mapsto s(0), y \mapsto s(0)\right) \\
s(s(0)+s(0)) \rightarrow & \left(\text { by } R_{2}, \text { with } x \mapsto s(0), y \mapsto 0\right)
\end{array}
$$

Example: Addition of Natural Numbers

- Orient equations, obtaining rewriting rules.
- Apply the rules to transform expressions.
- Rewrite rules:

$$
\begin{align*}
x+0 & \rightarrow x \tag{1}\\
x+s(y) & \rightarrow s(x+y) \tag{2}
\end{align*}
$$

- Rewriting $s(0)+s(s(0))$:

$$
\begin{array}{lr}
s(0)+s(s(0)) \rightarrow & \text { (by } \left.R_{2}, \text { with } x \mapsto s(0), y \mapsto s(0)\right) \\
s(s(0)+s(0)) \rightarrow & \text { (by } \left.R_{2}, \text { with } x \mapsto s(0), y \mapsto 0\right) \\
s(s(s(0)+0)) \rightarrow & \text { (by } \left.R_{1}, \text { with } x \mapsto s(0)\right)
\end{array}
$$

Example: Addition of Natural Numbers

- Orient equations, obtaining rewriting rules.
- Apply the rules to transform expressions.
- Rewrite rules:

$$
\begin{align*}
x+0 & \rightarrow x \tag{1}\\
x+s(y) & \rightarrow s(x+y) \tag{2}
\end{align*}
$$

- Rewriting $s(0)+s(s(0))$:

$$
\begin{array}{rr}
s(0)+s(s(0)) \rightarrow & \left(\text { by } R_{2}, \text { with } x \mapsto s(0), y \mapsto s(0)\right) \\
s(s(0)+s(0)) \rightarrow & \text { (by } \left.R_{2}, \text { with } x \mapsto s(0), y \mapsto 0\right) \\
s(s(s(0)+0)) \rightarrow & \text { (by } \left.R_{1} \text {, with } x \mapsto s(0)\right) \\
s(s(s(0))) &
\end{array}
$$

What is Rewriting

- Process of transforming one expression into another.
- Rules describe how one expression can be rewritten into another.

Identities and Rewriting

- Rewriting as a computational mechanism:
- Apply given equations in one direction, as rewrite rules.
- Compute normal forms.
- Close relationship with functional programming.
- Example: symbolic differentiation.

Identities and Rewriting

- Rewriting as a computational mechanism:
- Apply given equations in one direction, as rewrite rules.
- Compute normal forms.
- Close relationship with functional programming.
- Example: symbolic differentiation.
- Rewriting as a deduction mechanism:
- Apply given equations in both directions.
- Define equivalence classes of terms.
- Equational reasoning.
- Example: group theory.

Symbolic Differentiation

- Expressions: Terms built over variables (u, v, \ldots) and the following function symbols:
- constants 0,1 (numbers),
- constants X, Y (indeterminates),
- unary symbol D_{X} (partial derivative with respect to X),
- binary symbols,$+ *$.

Symbolic Differentiation

- Expressions: Terms built over variables (u, v, \ldots) and the following function symbols:
- constants 0,1 (numbers),
- constants X, Y (indeterminates),
- unary symbol D_{X} (partial derivative with respect to X),
- binary symbols + , *.
- Examples of terms:
- $(X+X) * Y+1$.
- $D_{X}(u * v)$.
- $(X+Y) * D_{X}(X * Y)$.

Symbolic Differentiation

- Expressions: Terms built over variables (u, v, \ldots) and the following function symbols:
- constants 0,1 (numbers),
- constants X, Y (indeterminates),
- unary symbol D_{X} (partial derivative with respect to X),
- binary symbols + , *.
- Examples of terms:
- $(X+X) * Y+1$.
- $D_{X}(u * v)$.
- $(X+Y) * D_{X}(X * Y)$.
- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

Symbolic Differentiation

- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

- Differentiate $D_{X}(X * X)$:

$$
D_{X}(X * X)
$$

Symbolic Differentiation

- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

- Differentiate $D_{X}(X * X)$:

$$
\begin{gathered}
D_{X}(X * X) \\
\downarrow\left(R_{4}\right) \\
\left.\left(X * D_{X}(X)\right)\right)+\left(D_{X}(X) * X\right)
\end{gathered}
$$

Symbolic Differentiation

- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

- Differentiate $D_{X}(X * X)$:

$$
\begin{gathered}
D_{X}(X * X) \\
\downarrow\left(R_{4}\right) \\
\left.\left(X * D_{X}(X)\right)\right)+\left(D_{X}(X) * X\right)
\end{gathered}
$$

Symbolic Differentiation

- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

- Differentiate $D_{X}(X * X)$:

$$
\begin{gathered}
D_{X}(X * X) \\
\downarrow\left(R_{4}\right) \\
\left.\left(X * D_{X}(X)\right)\right)+\left(D_{X}(X) * X\right) \\
(X * 1)+\left(D_{X}(X) * X\right)
\end{gathered}
$$

Symbolic Differentiation

- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

- Differentiate $D_{X}(X * X)$:

$$
\begin{gathered}
D_{X}(X * X) \\
\downarrow\left(R_{4}\right) \\
\left.\left(X * D_{X}(X)\right)\right)+\left(D_{X}(X) * X\right) \\
(X * 1)+\left(D_{X}(X) * X\right)
\end{gathered}
$$

Symbolic Differentiation

- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

- Differentiate $D_{X}(X * X)$:

$$
\begin{gathered}
D_{X}(X * X) \\
\downarrow\left(R_{4}\right) \\
\left.\left(X * D_{X}(X)\right)\right)+\left(D_{X}(X) * X\right) \\
(X * 1)+\left(D_{X}(X) * X\right)
\end{gathered}
$$

Symbolic Differentiation

- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

- Differentiate $D_{X}(X * X)$:

$$
\begin{gathered}
D_{X}(X * X) \\
\downarrow\left(R_{4}\right) \\
\left.\left(X * D_{X}(X)\right)\right)+\left(D_{X}(X) * X\right) \\
(X * 1)+\left(D_{X}(X) * X\right) \\
(R_{\left(R_{1}\right)} \underbrace{}_{(X * 1)})+(1 * X)
\end{gathered}
$$

Symbolic Differentiation

- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

- Differentiate $D_{X}(X * X)$:

$$
\begin{gathered}
D_{X}(X * X) \\
\downarrow\left(R_{4}\right) \\
\left.\left(X * D_{X}(X)\right)\right)+\left(D_{X}(X) * X\right) \\
(X * 1)+\underset{\left(R_{1}\right)}{\left(D_{X}(X) * X\right)} \underbrace{}_{(X * 1)}+(1 * X)
\end{gathered}
$$

Symbolic Differentiation

- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

- Differentiate $D_{X}(X * X)$:

$$
\begin{gathered}
D_{X}(X * X) \\
\downarrow\left(R_{4}\right) \\
\left.\left(X * D_{X}(X)\right)\right)+\left(D_{X}(X) * X\right) \\
(X * 1)+\underset{\left(R_{1}\right)}{\left(D_{X}(X) * X\right)} \underbrace{(1 * X)}_{(X * 1)})
\end{gathered}
$$

Symbolic Differentiation

- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

- Differentiate $D_{X}(X * X)$:

$$
\begin{aligned}
& D_{X}(X * X) \\
& \downarrow\left(R_{4}\right) \\
& \left.\left(X * D_{X}(X)\right)\right)+\left(D_{X}(X) * X\right) \\
& { }^{\left(R_{1}\right)}{ }^{\left(R_{1}\right)} \\
& (X * 1)+\left(D_{X}(X) * X\right) \quad\left(X * D_{X}(X)\right)+(1 * X) \\
& { }_{\left(R_{1}\right)} \text {, } \\
& (X * 1)+(1 * X)
\end{aligned}
$$

Symbolic Differentiation

- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

- Differentiate $D_{X}(X * X)$:

$$
\begin{gathered}
D_{X}(X * X) \\
\downarrow\left(R_{4}\right) \\
\left(X * D_{X}(X)\right) \\
(X * 1)+(\underbrace{\left(D_{X}\left(R_{1}\right)\right.}_{\left(D_{X}(X) * X\right)} \underbrace{\left(X * D_{X}\right)}_{(X) * X)} \\
(X * 1)+(1 * X))+(1 * X)
\end{gathered}
$$

Symbolic Differentiation

- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

- Differentiate $D_{X}(X * X)$:

$$
\begin{gathered}
D_{X}(X * X) \\
\downarrow\left(R_{4}\right) \\
\left(X * D_{X}(X)\right) \\
(X * 1)+(\underbrace{\left(D_{X}\left(R_{1}\right)\right.}_{\left(D_{X}(X) * X\right)} \underbrace{\left(R_{1}\right)}_{(X) * X)} \\
\left(X * D_{X}(X)\right)+(1 * X)
\end{gathered}
$$

Symbolic Differentiation

- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

- Differentiate $D_{X}(X * X)$:

$$
\begin{aligned}
& D_{X}(X * X) \\
& \downarrow\left(R_{4}\right) \\
& \left.\left(X * D_{X}(X)\right)\right)+\left(D_{X}(X) * X\right) \\
& { }^{\left(R_{1}\right)}>^{\left(R_{1}\right)} \\
& (X * 1)+\left(D_{X}(X) * X\right) \quad\left(X * D_{X}(X)\right)+(1 * X) \\
& \left(R_{1}\right) \searrow\left(R_{1}\right) \\
& (X * 1)+(1 * X)
\end{aligned}
$$

Symbolic Differentiation

- Rewrite rules:

$$
\begin{align*}
D_{X}(X) & \rightarrow 1 \tag{1}\\
D_{X}(Y) & \rightarrow 0 \tag{2}\\
D_{X}(u+v) & \rightarrow D_{X}(u)+D_{X}(v) \tag{3}\\
D_{X}(u * v) & \rightarrow\left(u * D_{X}(v)\right)+\left(D_{X}(u) * v\right) \tag{4}
\end{align*}
$$

- Differentiate $D_{X}(X * X)$:

$$
\begin{aligned}
& D_{X}(X * X) \\
& \downarrow\left(R_{4}\right) \\
& \left.\left(X * D_{X}(X)\right)\right)+\left(D_{X}(X) * X\right) \\
& { }^{\left(R_{1}\right)}>^{\left(R_{1}\right)} \\
& (X * 1)+\left(D_{X}(X) * X\right) \quad\left(X * D_{X}(X)\right)+(1 * X) \\
& \left.\left(R_{1}\right) \text { (} R_{1}\right) \\
& (X * 1)+(1 * X)
\end{aligned}
$$

Properties of Term Rewriting Systems

The symbolic differentiation example can be used to illustrate two most important properties of TRSs:

Properties of Term Rewriting Systems

The symbolic differentiation example can be used to illustrate two most important properties of TRSs:

1. Termination:

- Is it always the case that after finitely many rule applications we reach an expression to which no more rules apply (normal form)?
- For symbolic differentiation rules this is the case.
- But how to prove it?
- An example of non-terminating rule: $u+v \rightarrow v+u$

Properties of Term Rewriting Systems

The symbolic differentiation example can be used to illustrate two most important properties of TRSs:

Properties of Term Rewriting Systems

The symbolic differentiation example can be used to illustrate two most important properties of TRSs:
2. Confluence:

- If there are different ways of applying rules to a given term t, leading to different terms t_{1} and t_{2}, can they be reduced by rule applications to a common term?
- For symbolic differentiation rules this is the case.
- But how to prove it?

Properties of Term Rewriting Systems

- Adding the rule $u+0 \rightarrow u\left(R_{5}\right)$ destroys confluence:

- Confluence can be regained by adding $D_{X}(0) \rightarrow 0$ (completion).

Group Theory

- Terms are built over variables and the following function symbols:
- binary \circ,
- unary i,
- constant 0 .
- Examples of terms:
- $x \circ(y \circ i(y))$
- $(0 \circ x) \circ i(0)$
- $i(x \circ y)$
- Identities (aka group axioms), defining groups:

$$
\begin{array}{lr}
\text { Associativity of } \circ & (x \circ y) \circ z \approx x \circ(y \circ z) \\
e \text { left unit } & e \circ x \approx x \\
i \text { left inverse } & i(x) \circ x \approx e
\end{array}
$$

Group Theory

- Identities can be applied in both directions.
- Word problem for identities:
- Given a set of identities E and two terms s and t.
- Is it possible to transform s into t, using the identities in E as rewrite rules applied in both directions?
- For instance, is it possible to transform e into $x \circ i(x)$, i.e., is the left inverse also a right-inverse?

Group Theory

$$
\begin{gather*}
(x \circ y) \circ z \approx x \circ(y \circ z) \tag{1}\\
e \circ x \approx x \tag{2}\\
i(x) \circ x \tag{3}
\end{gather*}
$$

Transform e into $x \circ i(x)$:

$$
\begin{aligned}
e & \approx_{G_{3}} i(x \circ i(x)) \circ(x \circ i(x)) \\
& \approx_{G_{2}} i(x \circ i(x)) \circ(x \circ(e \circ i(x))) \\
& \approx_{G_{3}} i(x \circ i(x)) \circ(x \circ((i(x) \circ x) \circ i(x))) \\
& \approx_{G_{1}} i(x \circ i(x)) \circ((x \circ(i(x) \circ x)) \circ i(x)) \\
& \approx_{G_{1}} i(x \circ i(x)) \circ(((x \circ i(x)) \circ x) \circ i(x)) \\
& \approx_{G_{1}} i(x \circ i(x)) \circ((x \circ i(x)) \circ(x \circ i(x))) \\
& \approx_{G_{1}}(i(x \circ i(x)) \circ(x \circ i(x))) \circ(x \circ i(x)) \\
& \approx_{G_{3}} e \circ(x \circ i(x)) \\
& \approx_{G_{2}} x \circ i(x)
\end{aligned}
$$

Solving Word Problems by Rewriting?

- Is there a simpler way to solve word problems?
- Try to solve it by rewriting (uni-directional application of identities):

- Reduce s and t to normal forms \hat{s} and \hat{t}.
- Check whether $\hat{s}=\hat{t}$, i.e., syntactically equal. (= is the meta-equality.)

Solving Word Problems by Rewriting?

- Is there a simpler way to solve word problems?
- Try to solve it by rewriting (uni-directional application of identities):

- Reduce s and t to normal forms \hat{s} and \hat{t}.
- Check whether $\hat{s}=\hat{t}$, i.e., syntactically equal. (= is the meta-equality.)
- But... it would only work if normal forms exist and are unique.

Solving Word Problems by Rewriting?

- In the group theory example, e and $x \circ i(x)$ are equivalent, but it can not be decided by (left-to-right) rewriting: Both terms are in the normal form.
- Uniqueness of normal forms is violated: non-confluence.
- Normal forms may not exist: The process of reducing a term may lead to an infinite chain of transformations: non-termination.

Solving Word Problems by Rewriting?

- In the group theory example, e and $x \circ i(x)$ are equivalent, but it can not be decided by (left-to-right) rewriting: Both terms are in the normal form.
- Uniqueness of normal forms is violated: non-confluence.
- Normal forms may not exist: The process of reducing a term may lead to an infinite chain of transformations: non-termination.
- Termination and confluence ensure existence and uniqueness of normal forms.

Solving Word Problems by Rewriting?

- In the group theory example, e and $x \circ i(x)$ are equivalent, but it can not be decided by (left-to-right) rewriting: Both terms are in the normal form.
- Uniqueness of normal forms is violated: non-confluence.
- Normal forms may not exist: The process of reducing a term may lead to an infinite chain of transformations: non-termination.
- Termination and confluence ensure existence and uniqueness of normal forms.
- If a given set of identities leads to non-confluent system, we will try to apply the idea of completion to extend the rewrite system to a confluent one.

Motivation

Abstract Reduction Systems

Abstract vs Concrete

Concrete rewrite formalisms:

- string rewriting
- term rewriting
- graph rewriting
- λ calculus
- etc.

Abstract reduction:

- No structure on objects to be rewritten.
- Abstract treatment of reductions.

Abstract Reduction Systems

- Abstract reduction system (ARS): A pair (A, \rightarrow), where
- A is a set,
- the reduction \rightarrow is a binary relation on $A: \rightarrow \subseteq A \times A$.
- Write $a \rightarrow b$ for $(a, b) \in \rightarrow$.

Abstract Reduction System: Example

- $A=\{a, b, c, d, e, f, g\}$
$\rightarrow=\left\{\begin{array}{l}(a, e),(b, a),(b, c),(c, d),(c, f) \\ (e, b),(e, g),(f, e),(f, g)\end{array}\right\}$

Equivalence and Reduction

Again, two views at reductions.

1. Directed computation: Follow the reductions, trying to compute a normal form: $a_{0} \rightarrow a_{1} \rightarrow \cdots$
2. View \rightarrow as description of $\stackrel{*}{\leftrightarrow}$.

- $a \stackrel{*}{\leftrightarrow} b$ means there is a path between a and b, with arrows traversed in both directions: $a \leftarrow c \rightarrow d \leftarrow b$
- Goal: Decide whether $a \stackrel{*}{\leftrightarrow} b$.
- Bidirectional rewriting is expensive.
- Unidirectional rewriting with subsequent comparison of normal form works if the reduction system is confluent and terminating.
Termination, confluence: central topics.

Basic notions

1. Composition of two relations.
2. Given two relations $R \subseteq A \times B$ and $S \subseteq B \times C$, their composition is defined by

$$
R \circ S:=\{(x, z) \mid \exists y \in B .(x, y) \in R \wedge(y, z) \in S\}
$$

Abstract Reduction System: Example

Abstract Reduction System: Example

- Finite rewrite sequence: $a \rightarrow e \rightarrow b \rightarrow c \rightarrow f$

Abstract Reduction System: Example

- Finite rewrite sequence: $a \rightarrow e \rightarrow b \rightarrow c \rightarrow f$
- Empty rewrite sequence: a

Abstract Reduction System: Example

- Finite rewrite sequence: $a \rightarrow e \rightarrow b \rightarrow c \rightarrow f$
- Empty rewrite sequence: a
- Infinite rewrite sequence: $a \rightarrow e \rightarrow b \rightarrow a \rightarrow \cdots$

Relations Derived from \rightarrow

$$
\begin{aligned}
& \xrightarrow{0}:=\{(x, x) \mid x \in A\} \quad \text { identity } \\
& \xrightarrow{i+1}:=\xrightarrow{i} 0 \rightarrow \\
& \xrightarrow{+}:=\cup_{i>0} \xrightarrow{i} \\
& \xrightarrow{*}:=\xrightarrow{+} \cup \xrightarrow{0} \\
& \stackrel{=}{\rightarrow}:=\rightarrow \xrightarrow{0} \\
& \xrightarrow{-1}:=\{(y, x) \mid(x, y) \in \rightarrow\} \quad \text { inverse } \\
& \leftarrow:=\xrightarrow{-1} \\
& \leftrightarrow:=\rightarrow \cup \leftarrow \\
& \stackrel{+}{\leftrightarrow}:=(\leftrightarrow)^{+} \\
& \stackrel{*}{\leftrightarrow}:=(\leftrightarrow)^{*} \\
& \text { identity } \\
& \text { (} i+1 \text {)-fold composition, } i \geq 0 \\
& \text { transitive closure } \\
& \text { reflexive transitive closure } \\
& \text { reflexive closure } \\
& \text { inverse } \\
& \text { symmetric closure } \\
& \text { transitive symmetric closure } \\
& \text { reflexive transitive symmetric closure }
\end{aligned}
$$

Terminology

- If $x \xrightarrow{*} y$ then we say:
- x rewrites to y, or
- there is some finite path from x to y, or
- y is a reduct of x.

Terminology

- If $x \xrightarrow{*} y$ then we say:
- x rewrites to y, or
- there is some finite path from x to y, or
- y is a reduct of x.

Terminology

- If $x \xrightarrow{*} y$ then we say:
- x rewrites to y, or
- there is some finite path from x to y, or
- y is a reduct of x.

Terminology

- x is reducible iff there exists y such that $x \rightarrow y$.

Terminology

- x is reducible iff there exists y such that $x \rightarrow y$.
- x is in normal form (irreducible) iff x is not reducible.

Terminology

- x is reducible iff there exists y such that $x \rightarrow y$.
- x is in normal form (irreducible) iff x is not reducible.
- y is a normal form of x iff $x \xrightarrow{*} y$ and y is in normal form.

Terminology

- x is reducible iff there exists y such that $x \rightarrow y$.
- x is in normal form (irreducible) iff x is not reducible.
- y is a normal form of x iff $x \xrightarrow{*} y$ and y is in normal form.
- We write $x \stackrel{!}{\rightarrow} y$ if y is a normal form of x.
- If x has a unique normal form, it is denoted by $x \downarrow$.

Terminology

- x is reducible iff there exists y such that $x \rightarrow y$.
- x is in normal form (irreducible) iff x is not reducible.
- y is a normal form of x iff $x \xrightarrow{*} y$ and y is in normal form.
- We write $x \stackrel{!}{\rightarrow} y$ if y is a normal form of x.
- If x has a unique normal form, it is denoted by $x \downarrow$.

Terminology

- x is reducible iff there exists y such that $x \rightarrow y$.
- x is in normal form (irreducible) iff x is not reducible.
- y is a normal form of x iff $x \xrightarrow{*} y$ and y is in normal form.
- We write $x \stackrel{!}{\rightarrow} y$ if y is a normal form of x.
- If x has a unique normal form, it is denoted by $x \downarrow$.

Terminology

- x is reducible iff there exists y such that $x \rightarrow y$.
- x is in normal form (irreducible) iff x is not reducible.
- y is a normal form of x iff $x \xrightarrow{*} y$ and y is in normal form.
- We write $x \stackrel{!}{\rightarrow} y$ if y is a normal form of x.
- If x has a unique normal form, it is denoted by $x \downarrow$.

Terminology

- y is direct successor of x iff $x \rightarrow y$.

Terminology

- y is direct successor of x iff $x \rightarrow y$.
- y is successor of x iff $x \xrightarrow{+} y$.

Terminology

- y is direct successor of x iff $x \rightarrow y$.
- y is successor of x iff $x \xrightarrow{+} y$.
- x and y are convertible iff $x \stackrel{*}{\leftrightarrow} y$.

Terminology

- y is direct successor of x iff $x \rightarrow y$.
- y is successor of x iff $x \xrightarrow{+} y$.
- x and y are convertible iff $x \stackrel{*}{\leftrightarrow} y$.
- x and y are joinable iff there exists z such that $x \xrightarrow{*} z \stackrel{*}{\leftarrow} y$.

Terminology

- y is direct successor of x iff $x \rightarrow y$.
- y is successor of x iff $x \xrightarrow{+} y$.
- x and y are convertible iff $x \stackrel{*}{\leftrightarrow} y$.
- x and y are joinable iff there exists z such that $x \xrightarrow{*} z \stackrel{*}{\leftarrow} y$.
- We write $x \downarrow y$ iff x and y are joinable.

Terminology

- y is direct successor of x iff $x \rightarrow y$.
- y is successor of x iff $x \xrightarrow{+} y$.
- x and y are convertible iff $x \stackrel{*}{\leftrightarrow} y$.
- x and y are joinable iff there exists z such that $x \xrightarrow{*} z \stackrel{*}{\leftarrow} y$.
- We write $x \downarrow y$ iff x and y are joinable.

Terminology

- y is direct successor of x iff $x \rightarrow y$.
- y is successor of x iff $x \xrightarrow{+} y$.
- x and y are convertible iff $x \stackrel{*}{\leftrightarrow} y$.
- x and y are joinable iff there exists z such that $x \xrightarrow{*} z \stackrel{*}{\leftarrow} y$.
- We write $x \downarrow y$ iff x and y are joinable.

Example

1. Let $A:=\mathbb{N}-\{0,1\}$ and $\rightarrow:=\{(m, n) \mid m>n$ and n divides $m\}$. Then
(a) m is in normal form iff m is prime.
(b) p is a normal form of m iff p is a prime factor of m.
(c) $m \downarrow n$ iff m and n are not relatively prime.
(d) $\xrightarrow{+}=\rightarrow$ because $>$ and "divides" are already transitive.
(e) $\stackrel{*}{\leftrightarrow}=A \times A$.
2. Let $A:=\{a, b\}^{*}$ (the set of words over the alphabet $\{a, b\}$) and $\rightarrow:=$ $\{(u b a v, u a b v) \mid u, v \in A\}$. Then
(a) w is in normal form iff w is sorted, i.e. of the form $a^{*} b^{*}$.
(b) Every w has a unique normal form $w \downarrow$, the result of sorting w.
(c) $w_{1} \downarrow w_{2}$ iff $w_{1} \stackrel{*}{\leftrightarrow} w_{2}$ iff w_{1} and w_{2} contain the same number of a s and $b s$.

Central Notions

Definition 1.1
A relation \rightarrow is called Church-Rosser (CR) iff

$$
x \stackrel{*}{\leftrightarrow} y \text { implies } x \downarrow y .
$$

Central Notions

Definition 1.1
A relation \rightarrow is called Church-Rosser (CR) iff

$$
x \stackrel{*}{\leftrightarrow} y \text { implies } x \downarrow y .
$$

Graphically:

Solid arrows represent universal and dashed arrows existential quantification: $\forall x, y . x \stackrel{*}{\leftrightarrow} y \Rightarrow \exists z . x \xrightarrow{*} z \wedge y \xrightarrow{*} z$.

Central Notions: Church-Rosser

Definition 1.2
A relation \rightarrow is called confluent (C) iff

$$
y_{1} \stackrel{*}{\leftarrow} x \xrightarrow{*} y_{2} \text { implies } y_{1} \downarrow y_{2} .
$$

Central Notions: Church-Rosser

Definition 1.2
A relation \rightarrow is called confluent (C) iff

$$
y_{1} \stackrel{*}{\leftarrow} x \xrightarrow{*} y_{2} \text { implies } y_{1} \downarrow y_{2} .
$$

Graphically:

Solid arrows represent universal and dashed arrows existential quantification: $\forall x, y_{1}, y_{2} . y_{1} \stackrel{*}{\leftarrow} x \xrightarrow{*} y_{2} \Rightarrow \exists z \cdot y_{1} \xrightarrow{*} z \stackrel{*}{\leftarrow} y_{2}$.

Central Notions: Local Confluence

Definition 1.3
A relation \rightarrow is called locally confluent (LC) iff

$$
y_{1} \leftarrow x \rightarrow y_{2} \text { implies } y_{1} \downarrow y_{2} \text {. }
$$

Central Notions: Local Confluence

Definition 1.3
A relation \rightarrow is called locally confluent (LC) iff

$$
y_{1} \leftarrow x \rightarrow y_{2} \text { implies } y_{1} \downarrow y_{2} .
$$

Graphically:

Solid arrows represent universal and dashed arrows existential quantification: $\forall x, y_{1}, y_{2} . y_{1} \leftarrow x \rightarrow y_{2} \Rightarrow \exists z . y_{1} \xrightarrow{*} z \stackrel{*}{\leftarrow} y_{2}$.

Central Notions: T, N, UN, Convergence

Definition 1.4
A relation \rightarrow is called

- terminating (T) iff there is no infinite descending chain $a_{0} \rightarrow a_{1} \rightarrow \cdots$.
- normalizing (N) iff every element has a normal form.
- uniquely normalizing (UN) iff every element has at most one normal form.
- convergent iff it is both confluent and terminating.

Central Notions: T, N, UN, Convergence

Definition 1.4
A relation \rightarrow is called

- terminating (T) iff there is no infinite descending chain

$$
a_{0} \rightarrow a_{1} \rightarrow \cdots .
$$

- normalizing (N) iff every element has a normal form.
- uniquely normalizing (UN) iff every element has at most one normal form.
- convergent iff it is both confluent and terminating.

Alternative terminology:

- Strongly normalizing: terminating.
- Weakly normalizing: normalizing.

Central Notions: CR Reformulated

- Obviously, $x \downarrow y$ implies $x \stackrel{*}{\leftrightarrow} y$.
- Therefore, the Church-Rosser property can be formulated as the equivalence:
- \rightarrow is called Church-Rosser iff

$$
x \stackrel{*}{\leftrightarrow} y \text { iff } x \downarrow y .
$$

Properties

1. $\mathrm{T} \Longrightarrow \mathrm{N}$

Properties

$$
\begin{aligned}
& \text { 1. } \mathrm{T} \Longrightarrow \mathrm{~N} \\
& \text { 2. } \mathrm{T} \Longleftrightarrow \mathrm{~N}
\end{aligned}
$$

Properties

$$
\begin{array}{ll}
\text { 1. } \mathrm{T} & \Longleftrightarrow \mathrm{~N} \\
\text { 2. } \mathrm{T} & \rightleftharpoons \mathrm{~N}
\end{array} \quad \subset a \longrightarrow b
$$

Properties

$$
\begin{aligned}
& \text { 1. } \mathrm{T} \quad \Longleftrightarrow \mathrm{~N} \\
& \text { 2. } \mathrm{T} \quad \Longleftrightarrow \mathrm{~N} \\
& \text { 3. } \mathrm{CR} \quad \Longleftrightarrow \stackrel{*}{\leftrightarrow}=\downarrow
\end{aligned} \quad \subset a \longrightarrow b
$$

Properties

1. $\mathrm{T} \Longrightarrow \mathrm{N}$
2. $\mathrm{T} \Leftarrow \mathrm{N}$
$C a \longrightarrow b$
3. $\mathrm{CR} \Longleftrightarrow \stackrel{*}{\leftrightarrow}=\downarrow$
4. $C R \Longrightarrow U N$

Properties

1. $\mathrm{T} \Longrightarrow \mathrm{N}$
2. $\mathrm{T} \Leftarrow \mathrm{N}$
$C a \longrightarrow b$
3. $\mathrm{CR} \Longleftrightarrow \stackrel{*}{\leftrightarrow}=\downarrow$
4. $C R \Longrightarrow U N$
5. $\mathrm{CR} \Leftarrow \mathrm{UN}$

Properties

1. $\mathrm{T} \Longrightarrow \mathrm{N}$
2. $\mathrm{T} \Leftarrow \mathrm{N}$
$\subset a \longrightarrow b$
3. $\mathrm{CR} \Longleftrightarrow \stackrel{*}{\leftrightarrow}=\downarrow$
4. $C R \Longrightarrow U N$
5. $\mathrm{CR} \Leftarrow \mathrm{UN}$
$C a \longleftarrow b \longrightarrow c$

Properties

1. $\mathrm{T} \Longrightarrow \mathrm{N}$
2. $\mathrm{T} \Leftarrow \mathrm{N}$
$C a \longrightarrow b$
3. $\mathrm{CR} \Longleftrightarrow \stackrel{*}{\leftrightarrow}=\downarrow$
4. $C R \Longrightarrow U N$
5. $\mathrm{CR} \Longleftrightarrow \mathrm{UN} \quad \subset a \longleftarrow b \longrightarrow c$
6. $N \wedge U N \Longrightarrow C$

Properties

1. $\mathrm{T} \Longrightarrow \mathrm{N}$
2. $\mathrm{T} \Leftarrow \mathrm{N}$
$C a \longrightarrow b$
3. $\mathrm{CR} \Longleftrightarrow \stackrel{*}{\leftrightarrow}=\downarrow$
4. $C R \Longrightarrow U N$
5. $\mathrm{CR} \Longleftrightarrow \mathrm{UN} \quad \subset a \longleftarrow b \longrightarrow c$
6. $N \wedge U N \Longrightarrow C$
7. $\mathrm{C} \Longrightarrow \mathrm{LC}$

Properties

1. $\mathrm{T} \Longrightarrow \mathrm{N}$
2. $\mathrm{T} \Leftarrow \mathrm{N}$
$C a \longrightarrow b$
3. $\mathrm{CR} \Longleftrightarrow \stackrel{*}{\leftrightarrow}=\downarrow$
4. $C R \Longrightarrow U N$
5. $\mathrm{CR} \Leftarrow \mathrm{UN} \quad \subset a \longleftarrow b \longrightarrow c$
6. $N \wedge U N \Longrightarrow C$
7. $\mathrm{C} \Longrightarrow \mathrm{LC}$
8. $C \Longleftarrow L C$

Properties

1. $\mathrm{T} \Longrightarrow \mathrm{N}$
2. $\mathrm{T} \Leftarrow \mathrm{N}$

$$
C a \longrightarrow b
$$

3. $\mathrm{CR} \Longleftrightarrow \stackrel{*}{\leftrightarrow}=\downarrow$
4. $C R \Longrightarrow U N$
5. $\mathrm{CR} \Longleftarrow \mathrm{UN} \quad \mathrm{C} a \longleftarrow b \longrightarrow c$
6. $N \wedge U N \Longrightarrow C$
7. $\mathrm{C} \Longrightarrow \mathrm{LC}$
8. $\mathrm{C} \Longleftarrow \mathrm{LC}$

$$
a \longleftarrow b \longleftarrow c \longrightarrow d
$$

Properties

- Recall what we were looking for.
- Ability to check equivalence by the search of a common reduct.
- This is exactly the Church-Rosser property.
- How does it relate to confluence and termination?

Church-Rosser and Confluence

- The Church-Rosser property and confluence coincide.
- $\mathrm{CR} \Longrightarrow C$ is immediate.
- $\mathrm{CR} \Longleftarrow \mathrm{C}$ has a nice diagrammatic proof:

Central Notions: Semi-Confluence

Definition 1.5
A relation \rightarrow is called semi-confluent (SC) iff

$$
y_{1} \leftarrow x \xrightarrow{*} y_{2} \text { implies } y_{1} \downarrow y_{2} .
$$

Central Notions: Semi-Confluence

Definition 1.5
A relation \rightarrow is called semi-confluent (SC) iff

$$
y_{1} \leftarrow x \xrightarrow{*} y_{2} \text { implies } y_{1} \downarrow y_{2} .
$$

Graphically:

Solid arrows represent universal and dashed arrows existential quantification: $\forall x, y_{1}, y_{2} . y_{1} \leftarrow x \xrightarrow{*} y_{2} \Rightarrow \exists z . y_{1} \xrightarrow{*} z \stackrel{*}{\leftarrow} y_{2}$.

CR, C, SC, LC

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
($1 \Rightarrow 2$)

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
($1 \Rightarrow 2$)

- Assume \rightarrow is CR and $y_{1} \stackrel{*}{\leftarrow} x \xrightarrow{*} y_{2}$. Show $y_{1} \downarrow y_{2}$.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
($1 \Rightarrow 2$)

- Assume \rightarrow is CR and $y_{1} \stackrel{*}{\leftarrow} x \xrightarrow{*} y_{2}$. Show $y_{1} \downarrow y_{2}$.
- $y_{1} \stackrel{*}{\leftarrow} x \xrightarrow{*} y_{2}$ implies $y_{1} \stackrel{*}{\leftrightarrow} y_{2}$.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
(1 $\Rightarrow 2$)

- Assume \rightarrow is CR and $y_{1} \stackrel{*}{\leftarrow} x \xrightarrow{*} y_{2}$. Show $y_{1} \downarrow y_{2}$.
- $y_{1} \stackrel{*}{\leftarrow} x \xrightarrow{*} y_{2}$ implies $y_{1} \stackrel{*}{\leftrightarrow} y_{2}$.
- CR implies $y_{1} \downarrow y_{2}$.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
(2 $\Rightarrow 3$)

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
(2 $\Rightarrow 3$)

- Semi-confluence is a special case of confluence.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
(3 $\Rightarrow 1$)

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
($3 \Rightarrow 1$)

- Assume \rightarrow is SC and $x \stackrel{*}{\leftrightarrow} y$. Show $x \downarrow y$.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
($3 \Rightarrow 1$)

- Assume \rightarrow is SC and $x \stackrel{*}{\leftrightarrow} y$. Show $x \downarrow y$.
- Induction on the length of the chain $x \stackrel{*}{\leftrightarrow} y$.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
($3 \Rightarrow 1$)

- Assume \rightarrow is SC and $x \stackrel{*}{\leftrightarrow} y$. Show $x \downarrow y$.
- Induction on the length of the chain $x \stackrel{*}{\leftrightarrow} y$.
- Base case: $x=y$. Trivial.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
($3 \Rightarrow 1$)

- Assume \rightarrow is SC and $x \stackrel{*}{\leftrightarrow} y$. Show $x \downarrow y$.
- Induction on the length of the chain $x \stackrel{*}{\leftrightarrow} y$.
- Base case: $x=y$. Trivial.
- Assume $x \stackrel{*}{\leftrightarrow} y^{\prime} \leftrightarrow y$. Show $x \downarrow y$.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
($3 \Rightarrow 1$)

- Assume \rightarrow is SC and $x \stackrel{*}{\leftrightarrow} y$. Show $x \downarrow y$.
- Induction on the length of the chain $x \stackrel{*}{\leftrightarrow} y$.
- Base case: $x=y$. Trivial.
- Assume $x \stackrel{*}{\leftrightarrow} y^{\prime} \leftrightarrow y$. Show $x \downarrow y$.
- By $\mathrm{IH}, x \downarrow y^{\prime}$, i.e. $x \xrightarrow{*} z \stackrel{*}{\leftarrow} y^{\prime}$ for some z.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
(3 $\Rightarrow 1$) (Cont.)

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
($3 \Rightarrow 1$) (Cont.)

- Show $x \downarrow y$ by case distinction on $y^{\prime} \leftrightarrow y$.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
($3 \Rightarrow 1$) (Cont.)

- Show $x \downarrow y$ by case distinction on $y^{\prime} \leftrightarrow y$.
- $y^{\prime} \leftarrow y: x \downarrow y$ follows directly from $x \downarrow y^{\prime}$:

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
($3 \Rightarrow 1$) (Cont.)

- Show $x \downarrow y$ by case distinction on $y^{\prime} \leftrightarrow y$.

Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. \rightarrow has the Chursh-Rosser property.
2. \rightarrow is confluent.
3. \rightarrow is semi-confluent.

Proof.
($3 \Rightarrow 1$) (Cont.)

- Show $x \downarrow y$ by case distinction on $y^{\prime} \leftrightarrow y$.
- $y^{\prime} \rightarrow y$: Semi-confluence implies $z \downarrow y$ and, hence $x \downarrow y$:

Corollaries

- If \rightarrow is confluent and $x \stackrel{*}{\leftrightarrow} y$ then

1. $x \xrightarrow{*} y$ if y is in a normal form, and
2. $x=y$ if both x and y are in a normal form.

- Hence, for confluent relations, convertibility is equivalent to joinability.
- Without termination, joinability can not be decided.

Corollaries

- If \rightarrow is confluent, then every element has at most one normal form $(\mathrm{C} \Longrightarrow U N)$
- If \rightarrow is normalizing and confluent, then every element has exactly one normal form.

Hence, for confluent and normalizing reductions the notation $x \downarrow$ is well-defined.

Goal-Directed Equivalence Test

Theorem 1.2
If \rightarrow is confluent and normalizing, then

- every element x has a unique normal form $x \downarrow$,
- $x \stackrel{*}{\leftrightarrow} y$ iff $x \downarrow=y \downarrow$.

Normalization requires breadth-first search for normal forms.

Goal-Directed Equivalence Test

Theorem 1.2
If \rightarrow is confluent and normalizing, then

- every element x has a unique normal form $x \downarrow$,
- $x \stackrel{*}{\leftrightarrow} y$ iff $x \downarrow=y \downarrow$.

Normalization requires breadth-first search for normal forms.

Theorem 1.3
If \rightarrow is confluent and terminating, then

- every element x has a unique normal form $x \downarrow$,
- $x \stackrel{*}{\leftrightarrow} y$ iff $x \downarrow=y \downarrow$.

Termination permits depth-first search for normal forms.

Confluence and Termination

- How to show confluence and termination of an ARS?

Showing Termination

- Idea: Embedding the reduction into a well-founded order.

Showing Termination

- Idea: Embedding the reduction into a well-founded order.
- Well-founded order $(B,>)$: No infinite descending chain $b_{0}>b_{1}>b_{2}>\cdots$ in B.

Showing Termination

Examples of well-founded orders:

- $(\mathbb{N},>)$: The set of natural numbers with the standard ordering.
- $(\mathbb{N} \backslash\{0\},>)$: The set of positive integers where $a>b$ iff $b \mid a$ and $b \neq a$.
- $\left(\{a, b, c\}^{*},>\right)$: The set of finite words over a fixed alphabet, where $w_{1}>w_{2}$ iff w_{2} is a proper substring of w_{1}.

Showing Termination

Examples of well-founded orders:

- $(\mathbb{N},>)$: The set of natural numbers with the standard ordering.
- $(\mathbb{N} \backslash\{0\},>)$: The set of positive integers where $a>b$ iff $b \mid a$ and $b \neq a$.
- $\left(\{a, b, c\}^{*},>\right)$: The set of finite words over a fixed alphabet, where $w_{1}>w_{2}$ iff w_{2} is a proper substring of w_{1}.
Examples of non-well-founded orders:
- $(\mathbb{Z},>)$: The set of integers with the standard ordering.
- $\left(\mathbb{Q}_{0}^{+},>\right)$: The set of non-negative rationals with the standard ordering.
- $\left(\{a, b, c\}^{*},>\right)$: The set of finite words over a fixed alphabet, where $>$ is the lexicographic ordering, e.g. $a>a b>a b b>\cdots$.

Showing Termination

Theorem 1.4
Let (A, \rightarrow) be an $A R S$. Then \rightarrow is terminating iff there exists a well-founded order $(B,>)$ and a mapping $\varphi: A \rightarrow B$ such that

$$
a_{1} \rightarrow a_{2} \text { implies } \varphi\left(a_{1}\right)>\varphi\left(a_{2}\right) .
$$

Showing Confluence (for a Terminating Relation)

Lemma 1.1 (Newman's Lemma)
If \rightarrow is terminating and locally confluent, then it is confluent.

Showing Confluence (for a Terminating Relation)

Lemma 1.1 (Newman's Lemma)

If \rightarrow is terminating and locally confluent, then it is confluent.
Proof.

- Use well-founded induction. Let (A, \rightarrow) be an ARS. Then WFI is the inference rule:

$$
\frac{\forall x \in A .(\forall y \in A \cdot(x \xrightarrow{+} y \Rightarrow P(y)) \Rightarrow P(x))}{\forall x \in A \cdot P(x)}(\mathrm{WFI})
$$

where P is some property of elements of A.

- Reads: To prove $P(x)$ for all $x \in A$, try to prove $P(x)$ under the assumption that $P(y)$ holds for all successors y of x.
- Holds when \rightarrow is terminating.

Showing Confluence (for a Terminating Relation)

Lemma 1.1 (Newman's Lemma)
If \rightarrow is terminating and locally confluent, then it is confluent.
Proof. (Cont.)

Showing Confluence (for a Terminating Relation)

Lemma 1.1 (Newman's Lemma)

If \rightarrow is terminating and locally confluent, then it is confluent.
Proof. (Cont.)

- Let P be

$$
P(x)=\forall y, z . y \stackrel{*}{\leftarrow} x \xrightarrow{*} z \Rightarrow y \downarrow z .
$$

Obviously, \rightarrow is confluent if $P(x)$ holds for all $x \in A$.

Showing Confluence (for a Terminating Relation)

Lemma 1.1 (Newman's Lemma)

If \rightarrow is terminating and locally confluent, then it is confluent.
Proof. (Cont.)

- Let P be

$$
P(x)=\forall y, z . y \stackrel{*}{\leftarrow} x \xrightarrow{*} z \Rightarrow y \downarrow z .
$$

Obviously, \rightarrow is confluent if $P(x)$ holds for all $x \in A$.

- Show $P(x)$ under the assumption $P(t)$ for all $x \xrightarrow{+} t$.

Showing Confluence (for a Terminating Relation)

Lemma 1.1 (Newman's Lemma)

If \rightarrow is terminating and locally confluent, then it is confluent.
Proof. (Cont.)

- Let P be

$$
P(x)=\forall y, z . y \stackrel{*}{\leftarrow} x \xrightarrow{*} z \Rightarrow y \downarrow z .
$$

Obviously, \rightarrow is confluent if $P(x)$ holds for all $x \in A$.

- Show $P(x)$ under the assumption $P(t)$ for all $x \xrightarrow{+} t$.
- Fix x, y, z arbitrarily. Assume $y \stackrel{*}{\leftarrow} x \xrightarrow{*} z$. Prove $y \downarrow z$.

Showing Confluence (for a Terminating Relation)

Lemma 1.1 (Newman's Lemma)

If \rightarrow is terminating and locally confluent, then it is confluent.
Proof. (Cont.)

- Let P be

$$
P(x)=\forall y, z . y \stackrel{*}{\leftarrow} x \xrightarrow{*} z \Rightarrow y \downarrow z .
$$

Obviously, \rightarrow is confluent if $P(x)$ holds for all $x \in A$.

- Show $P(x)$ under the assumption $P(t)$ for all $x \xrightarrow{+} t$.
- Fix x, y, z arbitrarily. Assume $y \stackrel{*}{\leftarrow} x \xrightarrow{*} z$. Prove $y \downarrow z$.
- Case 1: $x=y$ or $y=x$. Trivial.

Showing Confluence (for a Terminating Relation)

Lemma 1.1 (Newman's Lemma)
If \rightarrow is terminating and locally confluent, then it is confluent.
Proof. (Cont.)

Showing Confluence (for a Terminating Relation)

Lemma 1.1 (Newman's Lemma)
If \rightarrow is terminating and locally confluent, then it is confluent.
Proof. (Cont.)

- Case 2: $x \rightarrow y_{1} \xrightarrow{*} y$ and $x \rightarrow z_{1} \xrightarrow{*} z$.

Showing Confluence (for a Terminating Relation)

Lemma 1.1 (Newman's Lemma)

If \rightarrow is terminating and locally confluent, then it is confluent.
Proof. (Cont.)

- Case 2: $x \rightarrow y_{1} \xrightarrow{*} y$ and $x \rightarrow z_{1} \xrightarrow{*} z$.

Showing Confluence (Termination Not Required)

Definition 1.6
A relation \rightarrow is called strongly confluent (StC) iff

$$
\forall x, y_{1}, y_{2} . y_{1} \leftarrow x \rightarrow y_{2} \Rightarrow \exists z . y_{1} \xrightarrow{*} z \stackrel{=}{\leftarrow} y_{2} .
$$

Remark: The definition is symmetric: $y_{1} \leftarrow x \rightarrow y_{2}$ must imply both $y_{1} \xrightarrow{*} z_{1} \stackrel{=}{\leftarrow} y_{2}$ and $y_{1} \xrightarrow{*} z_{2} \stackrel{=}{\leftarrow} y_{2}$ for suitably chosen z_{1} and z_{2}.

Showing Confluence (Termination Not Required)

Definition 1.6
A relation \rightarrow is called strongly confluent (StC) iff

$$
\forall x, y_{1}, y_{2} . y_{1} \leftarrow x \rightarrow y_{2} \Rightarrow \exists z . y_{1} \xrightarrow{*} z \stackrel{=}{\leftarrow} y_{2} .
$$

Remark: The definition is symmetric: $y_{1} \leftarrow x \rightarrow y_{2}$ must imply both $y_{1} \xrightarrow{*} z_{1} \stackrel{\equiv}{\leftarrow} y_{2}$ and $y_{1} \xrightarrow{*} z_{2} \stackrel{\equiv}{\leftarrow} y_{2}$ for suitably chosen z_{1} and z_{2}. Graphically:

Solid arrows represent universal and dashed arrows existential quantification.

C, SC, LC, StC

Showing Confluence (Termination Not Required)

Theorem 1.5
Any strongly confluent relation is semi-confluent (and, thus, confluent).

Proof.

Showing Confluence (Termination Not Required)

- StC is a pretty strong property.
- Trying to show strong confluence of \rightarrow would not be practical.

Showing Confluence (Termination Not Required)

- StC is a pretty strong property.
- Trying to show strong confluence of \rightarrow would not be practical.
- The trick to show confluence of \rightarrow is not to prove its strong confluence, but to define a StC relation \rightarrow_{s} such that ${ }_{\rightarrow}^{*}{ }_{s} \xrightarrow{*}$.

Showing Confluence (Termination Not Required)

- StC is a pretty strong property.
- Trying to show strong confluence of \rightarrow would not be practical.
- The trick to show confluence of \rightarrow is not to prove its strong confluence, but to define a StC relation \rightarrow_{s} such that ${ }_{\rightarrow}^{*}{ }_{s} \xrightarrow{*}$.
- If $\stackrel{*}{\rightarrow}_{1}=\xrightarrow{*}_{2}$, then \rightarrow_{1} is confluent iff \rightarrow_{2} is confluent.
- Hence, if $\xrightarrow{*}_{s}=\xrightarrow{*}$, then $\mathrm{StC}\left(\rightarrow_{s}\right) \Rightarrow \mathrm{C}\left(\rightarrow_{s}\right) \Leftrightarrow \mathrm{C}(\rightarrow)$.

Showing Confluence (Termination Not Required)

- StC is a pretty strong property.
- Trying to show strong confluence of \rightarrow would not be practical.
- The trick to show confluence of \rightarrow is not to prove its strong confluence, but to define a StC relation \rightarrow_{s} such that ${ }_{\rightarrow}^{*}{ }_{s} \xrightarrow{*}$.
- If $\stackrel{*}{\rightarrow}_{1}=\stackrel{*}{\rightarrow}_{2}$, then \rightarrow_{1} is confluent iff \rightarrow_{2} is confluent.
- Hence, if $\xrightarrow{*}_{s}=\xrightarrow{*}$, then $\mathrm{StC}\left(\rightarrow_{s}\right) \Rightarrow \mathrm{C}\left(\rightarrow_{s}\right) \Leftrightarrow \mathrm{C}(\rightarrow)$.
- To simplify the search of \rightarrow_{s}, the condition can be weakened due to following easy lemma:

$$
\text { If } \rightarrow_{1} \subseteq \rightarrow_{2} \subseteq \xrightarrow[\rightarrow]{*}_{1} \text {, then } \xrightarrow[\rightarrow]{*}_{1}=\xrightarrow[\rightarrow]{*}_{2} \text {. }
$$

Showing Confluence (Termination Not Required)

Summarizing the ideas from the previous slide:
Theorem 1.6
If $\rightarrow \subseteq \rightarrow_{s} \subseteq \xrightarrow{*}$ and \rightarrow_{s} is strongly confluent, then \rightarrow is confluent.

Showing Confluence (Termination Not Required)

The theorem can be made stronger, considering the diamond property:

Definition 1.7
A relation \rightarrow has the diamond property iff

$$
\forall x, y_{1}, y_{2} . y_{1} \leftarrow x \rightarrow y_{2} \Rightarrow \exists z . y_{1} \rightarrow z \leftarrow y_{2} .
$$

Showing Confluence (Termination Not Required)

The theorem can be made stronger, considering the diamond property:

Definition 1.7
A relation \rightarrow has the diamond property iff

$$
\forall x, y_{1}, y_{2} . y_{1} \leftarrow x \rightarrow y_{2} \Rightarrow \exists z . y_{1} \rightarrow z \leftarrow y_{2} .
$$

Graphically:

Showing Confluence (Termination Not Required)

The diamond property implies strong confluence, therefore:
Theorem 1.7
If $\rightarrow \subseteq \rightarrow_{d} \subseteq \xrightarrow{*}$ and \rightarrow_{d} has the diamond property, then \rightarrow is confluent.

Confluence by Commutation

- Confluence proofs can be localized by splitting a reduction up into several smaller reductions and showing their confluence separately.
- An additional property, commuting, should be satisfied.

Confluence by Commutation

- Confluence proofs can be localized by splitting a reduction up into several smaller reductions and showing their confluence separately.
- An additional property, commuting, should be satisfied.

Definition 1.8
Two relations \rightarrow_{1} and \rightarrow_{2} commute iff

$$
\forall x, y_{1}, y_{2} \cdot y_{1} \stackrel{*}{\leftarrow}_{1} x \stackrel{*}{\rightarrow}_{2} y_{2} \Rightarrow \exists z \cdot y_{1} \stackrel{*}{\rightarrow}_{2} z \stackrel{*}{\leftarrow}_{1} y_{2} .
$$

Confluence by Commutation

Lemma 1.2 (Commutative Union Lemma)
If \rightarrow_{1} and \rightarrow_{2} are confluent and commute, then $\rightarrow_{1} \cup \rightarrow_{2}$ is also confluent.

Confluence by Commutation

Lemma 1.2 (Commutative Union Lemma)

If \rightarrow_{1} and \rightarrow_{2} are confluent and commute, then $\rightarrow_{1} \cup \rightarrow_{2}$ is also confluent.

Proof.

- ${ }^{*}{ }_{1} \circ \xrightarrow{*}_{2}$ has the diamond property:

(1) Confluence of \rightarrow_{1}
(2) Confluence of $\rightarrow 2$
(12) Commutation of \rightarrow_{1} and \rightarrow_{2}

Confluence by Commutation

Lemma 1.3 (Commutative Union Lemma)
If \rightarrow_{1} and \rightarrow_{2} are confluent and commute, then $\rightarrow_{1} \cup \rightarrow_{2}$ is also confluent.

Confluence by Commutation

Lemma 1.3 (Commutative Union Lemma)
If \rightarrow_{1} and \rightarrow_{2} are confluent and commute, then $\rightarrow_{1} \cup \rightarrow_{2}$ is also confluent.

Proof. (Cont.)

- The following inclusions hold:

$$
\rightarrow_{1} \cup \rightarrow_{2} \subseteq \xrightarrow{*}_{1} \circ \xrightarrow[\rightarrow]{*}_{2} \subseteq\left(\rightarrow_{1} \cup \rightarrow_{2}\right)^{*} .
$$

- By Theorem 1.7, $\rightarrow_{1} \cup \rightarrow_{2}$ is confluent.

