Introduction to Unification Theory
Higher-Order Unification

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria
kutsia@risc. jku.at

Overview

Introduction

Preliminaries

Higher-Order Unification Procedure

Outline

Introduction

Introduction

» In first order unification, we were not allowed to replace a
variable with a function.

Introduction

» In first order unification, we were not allowed to replace a
variable with a function.

» However, it makes sense to ask to find, e.g., a function that
when applied to an object gives again this object: Find an

F such that F(a) = a.

Introduction

» In first order unification, we were not allowed to replace a
variable with a function.

» However, it makes sense to ask to find, e.g., a function that
when applied to an object gives again this object: Find an
F such that F(a) = a.

» F: Higher-order variable, appears at functional position.

Introduction

In first order unification, we were not allowed to replace a
variable with a function.

However, it makes sense to ask to find, e.g., a function that
when applied to an object gives again this object: Find an
F such that F(a) = a.

» F: Higher-order variable, appears at functional position.

» Can be solved, e.g., with the identity function or with the
constant function a.

v

v

Introduction

In first order unification, we were not allowed to replace a
variable with a function.

However, it makes sense to ask to find, e.g., a function that
when applied to an object gives again this object: Find an
F such that F(a) = a.

» F: Higher-order variable, appears at functional position.

» Can be solved, e.g., with the identity function or with the
constant function a.

Higher-order equations.

v

v

v

Introduction

» In first order unification, we were not allowed to replace a
variable with a function.

» However, it makes sense to ask to find, e.g., a function that
when applied to an object gives again this object: Find an
F such that F(a) = a.

» F: Higher-order variable, appears at functional position.

» Can be solved, e.g., with the identity function or with the
constant function a.

» Higher-order equations.
» Solving method: Higher-order unification.

Introduction

» Higher-order unification is fundamental in automating
higher-order reasoning.

» Used in logical frameworks, logic programming, program
synthesis, program transformation, type inferencing,
computational linguistics, etc.

» Much more complicated than first-order unification
(undecidable, of type zero, nonterminating, .. .).

» In this lecture: Introduction to higher-order unification.

Outline

Preliminaries

Simply Typed A-Calculus

» Simply type A-calculus is our term language.
» In this section: Definitions and elementary properties.
» Types
» Terms
» Substitutions
» Reduction
» Unification

Types

Types

Consider a finite set whose elements are called atomic types
(or base types). Then:

» Atomic types are types,
» If T and U are types than T — U is a type.

The expression Ty — T, — --- - T,, - U is a notation for the type
Ty—»> (T, —» - (T,~>U)...).

Types

Order of a Type

» o(T) = 1if T is atomic.

» o(T > U) =max{1 +0o(T),o(U)}.

Example

Let Ty, T», T be atomic types, then
»o(T) > T, > Tz) =2.
» o((T) = T») - T3) = 3.

Terms

Assumptions:
» Consider finite set of constants.
» To each constant a type is assigned.
» For each atomic type there is at least one constant.
» For each type there is an infinite set of variables.
» Two different types have disjoint sets of variables.

A-Terms

» Constants are terms.

» Variables are terms.

» If rand s are terms then (zs) is a term.

» If x is a variable and ¢ is a term then Ax. ¢ is a term.

The expression (zs; ... s,) is a notation for the term

(... (ts1) ... sn)

Terms

» Ax.tis a function where \x is the A-abstraction and ¢ is the
body. Intuitively, it is a function x ~ ¢.

» In A\x.t, Ax is a binder for x in z. Occurrences of x in ¢ are
bound.

» (ts) is an application where function 7 is applied to the
argument s.

Terms

Type of a Term
A term ¢ is said to have the type T if either

>

>

>

>

v

v

v

t is a constant of type T,
t is a variable of type T,
t=(rs), rhas type U — T and s has type U for some U,

t = \x. s, the variable x has type U, the term s has type V
and7=U-V.

A term ¢ is said to be well-typed if there exists a type T
such that r has type T.

In this case T is unique and it is called the type of t.
We consider only well-typed terms.

Order

Order of a Symbol, Language

» The order of a function symbol or a variable is the order of
its type.

» A language of order n is one which allows function symbols
of order at most n + 1 and variables of order at most n.

Formalization of the conventions:
» First order term denotes an individual.
» Second order term denotes a function on individuals.
» etc.

Free Variables

» vars(t): The set of variables occurring in the term z.

» An occurrence of a variable in a term is freeif it is not

bound.

The set of variables that occur freely in ¢, denoted fvars(t):
» fvars(c) = @, where c is a constant.

» fvars(x) = {x}.
» fvars((sr)) = fvars(s) U fvars(r).
» fvars(Ax.s) = fvars(s) ~ {x}.

Closed term: A term without free variables.

v

v

Free Variables

Example

» fvars(Mx.x) = @.
(Closed term)

» fuars(Ax.y) = {y}.

> frars(((Ax.x)x)) = {x}.

(x has a bound occurrence as well)

Substitution

» We reuse the definition of substitution as finite mapping
from the previous lectures, but in addition require that it
preserves types.

» Hence, if x — 1 is a binding of a substitution, x and ¢ have
the same type.

» The definitions of composition, more general substitution,
etc. will also be reused.

Replacement in a Term

Replacement in a Term

Leto = {x; » t1,...,x, = t,} be a substitution and ¢ be a term,
then the term (o) is defined as follows:

» ¢{o) =c.

» xi{o) = 1.

» x{o) =x, ifxé{x,...,x}.
> (sr)(o) = (s{o) r{0)).

» (Axs)(o) = (\x.s{o)).

Example

(A x){({x e y}) = Ay
» (Ay.x)({x~ y}) = Ay.y (variable capture).

a-Equivalence

a-Equivalence

> C =, C.

> X =4 X.

> (t8)=q (s ift=41 and s =, 5.

» At =4 Ay s if t({{x > z}) =, s({y ~ z}) for some variable z
different from x and y and occurring neither in z nor in s.

Example
> X =4 Ay).

» a-equivalence is an equivalence relation.

» Application and abstraction are compatible with
a-equivalence.)

Substitution in a Term

Substitution in a Term
Let o = {x; » t1,...,x, = t,} be a substitution and ¢ be a term,
then the term ro is defined as follows:

> CO =C.

> X0 = 1.

»xo=x, ifxé{x,....x,}.

» (sr)o = (soro).

» (Mx.s)o = (\y.s{x— y}o), where y is a fresh variable of the
same type as x.

Since the choice of fresh variable is arbitrary, the substitution
operation is defined on a-equivalence classes.

Substitution in a Term

Example
» (Aex){xey}=XAzz

» (A\y.x){x~y} = Az.y (no variable capture).

» (e Ax (xy)){x = Azz} = (Azz du. (uy)).

Reduction

» Intuition: Function evaluation.

» For instance, evaluating function f : x — x + 1 at 2:
f(2)=2+1.

» As A-terms: (Axe.x+1)2)px+1{x—2} =2+1.
(6-reduction)

Reduction

Formally:
Bn-Reduction
» [-reduction: ((Ax.s) 1) > s{x ~ t}.

» n-reduction: (Ax.(rx)) > ¢, if x ¢ fvars(z).

Propagates into contexts:
» If s> s’ then (s7) > (571).
» Ifr> 7 then (st) > (st').
» If t> ¢ then Ax.r> Ax. 7.

Reduction

>* - reflexive-transitive closure of .
Facts:

» Bn-Reduction preserves types.
» If s>* tthen so ™ to.

» Each term has a unique gn-normal form modulo
a-equivalence.

Reduction

Example

Ax(f ((Ay.(yx)) Az.z)) pg Ax(f ((Az.2) x))
l>5)\x(fx)
>y f

Long Normal Form

Long Normal Form
Assume
> 1= AX1. .. A (Fs1 ... sk) isin the Sn-normal form,
» Ty > > T, > Ulis atype of 7,
» U is atomic and n > m.
Then the long normal form of ¢ is the term
= A1 A M e NG (PSS Xy X))
where
» 5! is the long normal form of s;.
» x; is the long normal form of x;.

Long Normal Form

Long Normal Form
Assume
> 1= AX1. .. A (Fs1 ... sk) isin the Sn-normal form,
» Ty > > T, > Ulis atype of 7,
» U is atomic and n > m.
Then the long normal form of ¢ is the term
= A1 A M e NG (PSS Xy X))
where
» s; is the long normal form of s;.
» x; is the long normal form of x;.
The long normal form of any term is that of its normal form.

Long Normal Form

Long Normal Form
Assume
> 1= AX1. .. A (Fs1 ... sk) isin the Sn-normal form,
» Ty > > T, > Ulis atype of 7,
» U is atomic and n > m.
Then the long normal form of ¢ is the term
= A1 A M e NG (PSS Xy X))
where
» s; is the long normal form of s;.
» x; is the long normal form of x;.
The long normal form of any term is that of its normal form.

Since t is in the normal form, r (called the head of 1) is either a
constant or a variable. N\,

Long Normal Form

Example
Let the type of f be T} — T, — U, with U atomic.
Let r be Ax.(f ((A\y.(yx)) Az.2)).

Long Normal Form

Example
Let the type of f be T} — T, — U, with U atomic.
Let r be Ax.(f ((A\y.(yx)) Az.2)).

» The long normal form of 7 is Ax.Ay.(fxy).

Long Normal Form

Example
Let the type of f be T} — T, — U, with U atomic.
Let £ be Ax.(f ((A\y.(yx)) \z.2)).

» The long normal form of 7 is Ax.Ay.(fxy).

» Ax.\y.(fxy) is a long normal form of A\x.(f x) as well, which
is a S-normal form of .

Long Normal Form

Example

Let the type of f be T} — T, — U, with U atomic.
Let r be Ax.(f ((A\y.(yx)) Az.2)).

» The long normal form of 7 is Ax.Ay.(fxy).

» Ax.\y.(fxy) is a long normal form of A\x.(f x) as well, which
is a S-normal form of .

» In general, to compute long normal form, it is not
necessary to perform n-reductions.

Long Normal Form

» In the rest, “normal form” stands for “long normal form”.
» Notation: We write

AL A Pt)

for
AXT. e Ay (PE L)

in normal form. r is either a constant or a variable.

Outline

Higher-Order Unification Procedure

Higher Order Unification

Higher-Order Unification Problem, Unifier
» Higher-Order Unification problem: a finite set of equations
P= {Sl =? Hy...,8, =7 ln},

where s;, 1; are A-terms.

» Unifier of P: a substitution o such that s;o and 1,0 have the
same normal form for each 1 <i < n.

We will use capital letters to denote free variables in unification
problems.

Higher Order Unification

Example

» P={F(f(a,b)) =" f(F(a),b)}.

Higher Order Unification

Example

> P={F(f(a,b)) = f(F(a),b)}.
» Unifier: o) = {F » Ax.f(x,b)}.

Higher Order Unification

Example

» P={F(f(a,b)) =" f(F(a),b)}.
» Unifier: o) = {F » Ax.f(x,b)}.
» Justification:

F(f(aab))al = (()‘xf(va))f(a7b)) Dﬁf(f(a7b)7b)'

Higher Order Unification

Example
» P={F(f(a,b)) =* f(F(a),b)}.
» Unifier: o) = {F » Ax.f(x,b)}.
» Justification:

F(f(aab))al = (()‘xf(va))f(a7b)) Dﬁf(f(”?”)vb)'
f(F(a)vb)Ul :f((()‘xf(x>b))a)7b) Dﬁf(f(a?b)ab)'

Higher Order Unification

Example

» P={F(f(a,b)) =" f(F(a),b)}.

Higher Order Unification

Example

» P={F(f(a,b)) ' f(F(a),b)}.
» Another unifier: o, = {F » \x.f(f(x,b),b)}.

Higher Order Unification

Example

» P={F(f(a,b)) =" f(F(a),b)}.
» Another unifier: o, = {F » \x.f(f(x,b),b)}.
» Justification:

F(f(a,b))or = (Mxf(f(x,0),0))f(a,b)) >3 f(f(f(a,b),b),b).

Higher Order Unification

Example

» P={F(f(a,b)) =" f(F(a),b)}.
» Another unifier: o, = {F » \x.f(f(x,b),b)}.
» Justification:

F(f(a,b))or = (Mxf(f(x,0),0))f(a,b)) >3 f(f(f(a,b),b),b).
f(F(a),b)or = f((A\xf (f(x,), b)) a),b) b5 f(f(f(a, b),b), b).

Higher Order Unification

Example

» P={F(f(a,b)) =" f(F(a),b)}.

Higher Order Unification

Example

» P={F(f(a,b)) =" f(F(a),b)}.

» Infinitely many unifiers, of the shape

(F o f(o. f(x,b),...b)}.

Higher Order Unification

Example

» P={F(f(a,b)) =" f(F(a),b)}.

» Infinitely many unifiers, of the shape

(F o f(o. f(x,b),...b)}.

» Incomparable wrt instantiation quasi-ordering.

Higher Order Unification

Example

P = {F(f(a,b)) = f(F(a),b)}.

Infinitely many unifiers, of the shape

(F o f(o. f(x,b),...b)}.

» Incomparable wrt instantiation quasi-ordering.
Minimal complete set of unifiers.

v

v

v

Higher Order Unification

Example

P={F(f(a,b)) =* f(F(a),b)}.

Infinitely many unifiers, of the shape

(F o f(o. f(x,b),...b)}.

» Incomparable wrt instantiation quasi-ordering.
Minimal complete set of unifiers.
» There are problems for which this set does not exist!

v

v

v

Higher Order Unification Is of Type 0

» Unification problem: P = {F(\x. G(x),a) =¥ F(\x. G(x),b)}.

Higher Order Unification Is of Type 0

» Unification problem: P = {F(\x. G(x),a) =¥ F(\x. G(x),b)}.
» Complete set of solutions (together with the instance terms):

Higher Order Unification Is of Type 0

» Unification problem: P = {F(\x. G(x),a) =¥ F(\x. G(x),b)}.
» Complete set of solutions (together with the instance terms):

o={F~ Xx\y. Hx)} H(\x.G(x))

Higher Order Unification Is of Type 0
» Unification problem: P = {F(\x. G(x),a) =¥ F(\x. G(x),b)}.
» Complete set of solutions (together with the instance terms):

o={F~ Xx\y. Hx)} H(\x.G(x))
oo ={F~ MAy.x, G~ \x.Y} .Y

Higher Order Unification Is of Type 0

» Unification problem: P = {F(\x. G(x),a) =¥ F(\x. G(x),b)}.
» Complete set of solutions (together with the instance terms):

o={F~ Xx\y. Hx)} H(\x.G(x))
oo ={F~ MAy.x, G~ \x.Y} .Y
o1 = {F = Axy. G (x,x(H| (x,y))), G~ Ax. Y} G (\x.Y,Y)

Higher Order Unification Is of Type 0

» Unification problem: P = {F(\x. G(x),a) =¥ F(\x. G(x),b)}.
» Complete set of solutions (together with the instance terms):

o={F~ Xx\y. Hx)} H(\x.G(x))

oo ={F~ MAy.x, G~ \x.Y} .Y

o1 = {F = Axy. G (x,x(H| (x,y))), G~ Ax. Y} G (\x.Y,Y)

02 = {F > Ay, G (3, 1(H2(5, 7)), x(H3(x,)), G > Ax. Y}
Gy(\r.Y, Y, Y)

Higher Order Unification Is of Type 0

» Unification problem: P = {F(\x. G(x),a) =¥ F(\x. G(x),b)}.
» Complete set of solutions (together with the instance terms):

o={F~ Xx\y. Hx)} H(\x.G(x))

oo ={F~ MAy.x, G~ \x.Y} .Y

o1 = {F = Axy. G (x,x(H| (x,y))), G~ Ax. Y} G (\x.Y,Y)

o2 = {F > Ax.\y. GZ(xvx(le(xvy))vx(Hg(X,y)))v G~ A\x.Y}
Gy(\r.Y, Y, Y)

on = {F = Ay Gy (x,x(HY (x,9)), - .., x(Hy (x,y))), G Ax.Y}
G,(\x.Y, Y,...,Y) (There aren Y’s here.)

Higher Order Unification Is of Type 0

» Unification problem: P = {F(\x. G(x),a) =¥ F(\x. G(x),b)}.
» Complete set of solutions:

o={F~ Xx\y.H(x)}
oo ={F~ Xx.x, G~ M\x.Y}
on = {F = M \y. G, (x,x(H{ (x,y)), ..., x(Hy)(x,y))), G~ Ax.Y}

Higher Order Unification Is of Type 0

» Unification problem: P = {F(\x. G(x),a) =¥ F(\x. G(x),b)}.
» Complete set of solutions:

o={F~ Xx\y.H(x)}
oo ={F~ Xx.x, G~ M\x.Y}
o = {F > Ay G x(H) (5,9)), - X(HE(3,9))), G o> Ax. Y
» No mcsu. Forall i,j > i: o; ﬁ{F’G} gj, 0 f;{F’G} O, O; ;{'{F’G} o, and
(o ={FG} O‘i+1’l9i where
19,' = {G,‘H =)\x.)\yl. .)\y,-+1.Gi(x,y1, P ,y,-),
H'' »HY, . HY - HY

Higher Order Unification Is of Type 0

Unification problem: P = {F(\x. G(x),a) =* F(\x. G(x),b)}.
Complete set of solutions:

v

v

o={F~ Xx\y.H(x)}
oo ={F~ Xx.x, G~ M\x.Y}
on = {F — Xx\y. G, (x,x(H{ (x,¥)),...,x(H,;(x,y))), G~ Ax.Y}

No mcsu. For all i,j > i: o; ;{'{F’G} gj, 0 f;{F’G} o, O ;{'{F’G} o, and
(o ={FG} O‘i+1’l9i where

v

Vi = {Gir1 = A A1 A1 Gi(X, v, -, 00,
H'' e HY, . HY - HYY

1 *

Infinite descending chain: o >0} o, »{F:G} ..

v

Higher Order Unification Is of Type 0

» Unification problem: P = {F(\x. G(x),a) =¥ F(\x. G(x),b)}.

Higher Order Unification Is of Type 0

» Unification problem: P = {F(\x. G(x),a) =¥ F(\x. G(x),b)}.
» The problem is of third order.

Higher Order Unification Is of Type 0

» Unification problem: P = {F(\x. G(x),a) =¥ F(\x. G(x),b)}.
» The problem is of third order.
» Higher-order unification of the order 3 and above is of type 0.

Higher Order Unification Is of Type 0

» Unification problem: P = {F(\x. G(x),a) =¥ F(\x. G(x),b)}.

» The problem is of third order.

» Higher-order unification of the order 3 and above is of type 0.
» Second order unification is infinitary.

Higher Order Unification Is Undecidable

» Idea: Reduce Hilbert’s 10th problem to a higher-order
unification problem.

» Hilbert’s 10th problem is undecidable: There is no
algorithm that takes as input two polynomials P(X1,...,X,)
and Q(Xj, ..., X,) with natural coefficients and answers if
there exist natural numbers m,...,m, such that

P(m17"'7mn) :Q(mh"-amn)'

» Reduction requires to represent

» natural numbers,
» addition,
» multiplication

in terms of higher-order unification.

Higher Order Unification Is Undecidable

Representation (Goldfarb 1981):
» Natural number n represented as a A-term denoted by 7:
Mx.g(a,g(a,...gla,x)...))

with n occurrences of g and a. The type of gisi — i — i and
the type of a is i. Such terms are called Goldfarb numbers.

» Goldfarb numbers are exactly those that solve the
unification problem

{g(a,X(a)) =" X(g(a,a))}

and have the type i — i.

Higher Order Unification Is Undecidable

Representation:
» Addition is represented by the A-term add:

AndmAx. n(m(x)).

» Multiplication is represented by the higher-order unification
problem

{Y(a,b,g(g(Xs(a), X2(b)),a)) =" g(g(a,b),Y(Xi(a), g(a,b),a))
Y(b7a’g(g(X3(b)7X2(a))aa)) = g(g(b7a)7 Y(Xl (b)vg(a’a)’a))}

that has a solution {X; » my, X, = m3, X3 — m3, Y — t} for
some t iff my x my = m3.

Higher Order Unification Is Undecidable

Reduction from Hilbert’s 10th problem:
» Every equation P(Xy,...,X,) = Q(X1,...,X,) can be
decomposed into a system of equations of the form:
Xi"')(j :ka X; ><Xj :Xk, X; =m.
» With each such system associate a unification problem
containing
» for each X; an equation g(a,X;(a)) =* Xi(g(a,a)),
» for each X; + X; = X, the equation add(X;,X;) =" X;,
» for each X; x X; = X; the two equations used to define

multiplication,
» for each X; = m the equation X; =7 7.

Second Order Unification Is Undecidable

» The reduction implies undecidability of higher-order
unification.

» Since the reduction is actually to second-order unification,
the result is sharper:

Theorem
Second-order unification is undecidable.

For the details of undecidability of second-order unification, see

[1 W. D. Goldfarb

The undecidability of the second-order unification problem.
Theoretical Computer Science 13, 225-230.

Higher-Order Unification Procedure

» Higher-order semi-decision procedure is easy to design:

Higher-Order Unification Procedure

» Higher-order semi-decision procedure is easy to design:

1. Enumerate all substitutions (in fact, it is enough to
enumerate all closed substitutions).

Higher-Order Unification Procedure

» Higher-order semi-decision procedure is easy to design:
1. Enumerate all substitutions (in fact, it is enough to
enumerate all closed substitutions).
2. For a given unification problem, take the first untried
substitution and check whether it is a solution.

Higher-Order Unification Procedure

» Higher-order semi-decision procedure is easy to design:
1. Enumerate all substitutions (in fact, it is enough to
enumerate all closed substitutions).
2. For a given unification problem, take the first untried
substitution and check whether it is a solution.
3. If yes, stop with success. If not, mark the substitution as
tried and iterate.

Higher-Order Unification Procedure

» Higher-order semi-decision procedure is easy to design:
1. Enumerate all substitutions (in fact, it is enough to
enumerate all closed substitutions).
2. For a given unification problem, take the first untried
substitution and check whether it is a solution.
3. If yes, stop with success. If not, mark the substitution as
tried and iterate.

» Checking is not hard: Apply the substitution to both sides of
each equation, normalize, and compare the normal forms.

Higher-Order Unification Procedure

» Higher-order semi-decision procedure is easy to design:

1. Enumerate all substitutions (in fact, it is enough to
enumerate all closed substitutions).

2. For a given unification problem, take the first untried
substitution and check whether it is a solution.

3. If yes, stop with success. If not, mark the substitution as
tried and iterate.

» Checking is not hard: Apply the substitution to both sides of
each equation, normalize, and compare the normal forms.

» If the problem is solvable, the procedure will detect it after
finite steps.

Higher-Order Unification Procedure

v

Higher-order semi-decision procedure is easy to design:
1. Enumerate all substitutions (in fact, it is enough to
enumerate all closed substitutions).
2. For a given unification problem, take the first untried
substitution and check whether it is a solution.
3. If yes, stop with success. If not, mark the substitution as
tried and iterate.
Checking is not hard: Apply the substitution to both sides of
each equation, normalize, and compare the normal forms.

If the problem is solvable, the procedure will detect it after
finite steps.

Then... why to bother with looking for another unification
procedure?

v

v

v

Higher-Order Unification Procedure

Why to look for a “better” procedure?

Higher-Order Unification Procedure

Why to look for a “better” procedure?
» To find solutions faster.

Higher-Order Unification Procedure

Why to look for a “better” procedure?
» To find solutions faster.
» To report failure for many unsolvable cases.

Higher-Order Unification Procedure

Why to look for a “better” procedure?
» To find solutions faster.
» To report failure for many unsolvable cases.
» To reduce redundancy.
> etc.

Higher-Order Unification Procedure

» System: a pair P; o, where P is a higher-order unification
problem and ¢ is a substitution.

» Procedure is given by transformation rules on systems.

» The description essentially follows the paper

[§ W. Snyder and J. Gallier.
Higher-Order Unification Revisited: Complete Sets of
Transformations.
J. Symbolic Computation, 8(1-2), 101—-140, 1989.

Important Observation

» Flex-flex equation has a form

AXp. e A F(S1, 00 y8) = Axp o A G(ty,...

The head of both sides are free variables.

Important Observation

» Flex-flex equation has a form
AXp. e A F(S1, 00 y8) = Axp o A G(t1,. - tm).

The head of both sides are free variables.
» Any flex-flex equation is solvable. Just take

{FAy1.... M. ¢, G Ayp.... Ay ¢}

Important Observation

» Flex-flex equation has a form
AXp. e A F(S1, 00 y8) = Axp o A G(t1,. - tm).

The head of both sides are free variables.
» Any flex-flex equation is solvable. Just take

{FAy1.... M. ¢, G Ayp.... Ay ¢}

» The appropriate ¢ always exists because for each type we
have at least one constant of that type.

Important Observation

v

Flex-flex equation has a form
AXp. e A F(S1, 00 y8) = Axp o A G(t1,. - tm).

The head of both sides are free variables.
Any flex-flex equation is solvable. Just take

v

{FAy1.... M. ¢, G Ayp.... Ayp. ¢}

v

The appropriate ¢ always exists because for each type we
have at least one constant of that type.

Flex-flex equations may introduce infinite branching in the
search tree (very undesirable property).

v

Important Observation

v

Flex-flex equation has a form
AXp. e A F(S1, 00 y8) = Axp o A G(t1,. - tm).

The head of both sides are free variables.
Any flex-flex equation is solvable. Just take

{FAy1.... M. ¢, G Ayp.... Ayp. ¢}
The appropriate ¢ always exists because for each type we
have at least one constant of that type.

Flex-flex equations may introduce infinite branching in the
search tree (very undesirable property).

ldea: Do not try to solve flex-flex equations. Assume them
solved. Preunification.

Preunification

Preunifier

» Let = be the least congruence relation on the set of
A-terms that contains the set of flex-flex pairs.

» A substitution o is a preunifier for a unification problem
{s12"t1,.. . s, 2" 1,) iff

normal-form(s;o’) = normal-form(t;o)
foreach 1 <i<n.

Convention

» X, abbreviates xi, ..., x,.
» \X, abbreviates \x;..... AXy,.

One Technical Notion

Partial Binding
A partial binding of type Ty —» --- - T,, - U (U atomic) is a term
of the form

ATy LAV, H (G, Yy)y AVl Hi (T, V)

where [is a constant or a variable, and

One Technical Notion

Partial Binding
A partial binding of type Ty —» --- - T,, - U (U atomic) is a term
of the form

X LWL, -Hy (o yh sy A Hi G ¥K,)

where [is a constant or a variable, and
» the type of x; is T; for 1 <i <n,

One Technical Notion

Partial Binding
A partial binding of type T} —» --- - T, » U (U atomic) is a term
of the form

X LWL, -Hy (o yh sy A Hi G ¥K,)

where [is a constant or a variable, and
» the type of x; is T; for 1 <i <n,

» the type of lis S| — - = S — U, where S; is
R, -+ —>R. - S/ (S} atomic) for 1 <i<k,

One Technical Notion

Partial Binding
A partial binding of type T} —» --- - T, » U (U atomic) is a term
of the form

X LWL, -Hy (o yh sy A Hi G ¥K,)

where [is a constant or a variable, and
» the type of x; is T; for 1 <i <n,

» the type of lis S| — - = S — U, where S; is
R, -+ —>R. - S/ (S} atomic) for 1 <i<k,

» the type of i is Rifor 1 <i<kand 1 <j<m;.

One Technical Notion

Partial Binding
A partial binding of type T} —» --- - T, » U (U atomic) is a term
of the form

X LWL, -Hy (o yh sy A Hi G ¥K,)

where [is a constant or a variable, and
» the type of x; is T; for 1 <i <n,

» the type of lis S| — - = S — U, where S; is
R, -+ —>R. - S/ (S} atomic) for 1 <i<k,

» the type of i is Rifor 1 <i<kand 1 <j<m;.

» the type of H; is T —>---—>T,,—>R’.1 —>---—>anl,—>Sl(for
1<i<k.

Partial Binding

ATy (A by H1 (T 3h) Aol Hi(Ta, 3,))

v

Imitation binding: / is a constant or a free variable.

(i™) Projection binding: 7 is x;.

A partial binding ¢ is appropriate to F if t and F have the
same types.

» F — t: Appropriate partial (imitation, projection) binding if ¢
is partial (imitation, projection) binding appropriate to F.

v

v

Higher-Order Preunification Procedure

» The inference system Uy op consists of the rules:
» Trivial
» Decomposition
» Variable Elimination
» Orient
» Imitation
» Projection
» The rules transform systems: pairs P; o, where P is a
higher-order unification problem and ¢ is a substitution.

» A system P; o is in presolved form if P is either empty or
consists of flex-flex equations only.

Higher-Order Preunification Procedure. Rules

Trivial: {t="1}uP ;9= P

Higher-Order Preunification Procedure. Rules

Trivial: {t="1}uP ;9= P
Decomposition:

{)‘)Tk l(s17~--7sn) =’)\)Tk l(ll,...,tn)}upl;ﬁ:
{51 = AXi- By ooy AXE. Sy =7 M\Xx. tp, U P’

where [is either a constant or one of the bound variables xi, ..., x.

Higher-Order Preunification Procedure. Rules

Trivial: {t="1}uP ;9= P
Decomposition:

{)OTk l(s17~--7sn) =’)\)Tk l(l‘l,...,tn)}uP’;19=>
{51 = AXi- By ooy AXE. Sy =7 M\Xx. tp, U P’

where [is either a constant or one of the bound variables xi, ..., x.
Variable Elimination:

g F(xy, . .ox) 2 1} UP' 9 = PH{F — 1};0{F » 1}.

If F ¢ fvars(t)

Higher-Order Preunification Procedure. Rules

Orient:

(N (11, 1) =5 N5 F(s1,. ., 8,)} UP' 30 —>
{0\ F(s1,.. . 80) = N I(t1, ... 1)} U P 0

where [is not a free variable.

Higher-Order Preunification Procedure. Rules
Orient:
(N (11, 1) =5 N5 F(s1,. ., 8,)} UP' 30 —>
{0\ F(s1,.. . 80) = N I(t1, ... 1)} U P 0
where [is not a free variable.
Imitation:

{)\)Tk F(Sl,.. Sn) =)\)Ck f(l‘l,...,lm)}UP,;ﬁ:>
{\%%. f(/\z,l Hi(s1,... s,,,z,l A Hy (St 80,20)0
P \w (11, .. tw)o} UP o3 00

where

» 0 ={F~\y,. f()\zrl Hl(y,,,zrl), C AT 7" . H, (yerm))}
appropriate imitation binding.

» Hy,... H, are fresh variables. ZN,

Higher-Order Preunification Procedure. Rules

Projection:

(NG F(s1,...,80) = M. L(t1, ...) JUP ;9 =
{A\%. si()\g. Hl(S1,---,Sma sy A Hy (St 80,20)0

=P A% I(t1, ... tw)o} UP o300
where

» [is either a constant or one of the bound variables x, ..., x,

» o = {F = M\ (A Hi (s), A Hu (5, 20)) s
appropriate projection binding.

» Hy,...,H, are fresh variables.

Higher-Order Preunification Procedure. Control

In order to solve a higher-order unification problem P:
» Create an initial system P;¢.

Higher-Order Preunification Procedure. Control

In order to solve a higher-order unification problem P:
» Create an initial system P;¢.

» Apply successively rules from Uyop, building a complete
(finitely branching, but potentially infinite) tree of
derivations.

Higher-Order Preunification Procedure. Control

In order to solve a higher-order unification problem P:
» Create an initial system P;e.

» Apply successively rules from Uyop, building a complete
(finitely branching, but potentially infinite) tree of
derivations.

» If no rule can be applied to a node, and it contains at least
one equation that is not flex-flex, then extend the branch
with 1, indicating failure.

Higher-Order Preunification Procedure. Control

In order to solve a higher-order unification problem P:
» Create an initial system P;e.

» Apply successively rules from Uyop, building a complete
(finitely branching, but potentially infinite) tree of
derivations.

» If no rule can be applied to a node, and it contains at least
one equation that is not flex-flex, then extend the branch
with 1, indicating failure.

» Successful leaves contain presolved systems.

Higher-Order Preunification Procedure. Control

In order to solve a higher-order unification problem P:

»>

>

Create an initial system P;e.

Apply successively rules from Ugop, building a complete
(finitely branching, but potentially infinite) tree of
derivations.

If no rule can be applied to a node, and it contains at least
one equation that is not flex-flex, then extend the branch
with 1, indicating failure.

Successful leaves contain presolved systems.

If A; o is a successful leaf, o is a solution of P computed by
the higher-order preunification procedure.

Higher-Order Preunification. Major Results

Theorem (Soundness)

If P;e =" A;0 and A is in presolved form, then ol py is a
preunifier of P.

Theorem (Completeness)

If 9 is a preunifier of P, then there exists a sequence of
transformations P;e ="* A; o such that A is in presolved form,
and o SJZ‘"S(P) .

Higher-Order Preunification. Optimization

» The procedure can be optimized by stripping off the binder
Ax when x does not occur in the body.

» For instance, Elimination rule does not apply to
Ay, P(x) =7 Ay, f(a)

» After removing Ay from both sides, Elimination can be
applied directly.

Higher-Order Preunification. Examples

Example

» Unification problem {F(f(a)) =* f(F(a))}.
» The preunification procedure enumerates the complete set
of (pre)unifiers that is infinite.

» Here we show only two derivations.

Higher-Order Preunification. Examples

Example

» Unification problem {F(f(a)) =* f(F(a))}.
» The preunification procedure enumerates the complete set
of (pre)unifiers that is infinite.

» Here we show only two derivations.

{F(f(a)) =" f(F(a))};e

Higher-Order Preunification. Examples

Example

» Unification problem {F(f(a)) =* f(F(a))}.
» The preunification procedure enumerates the complete set
of (pre)unifiers that is infinite.

» Here we show only two derivations.
{F(f(a)) =" f(F(a))};e
—>pj {f (@) =7 f(@)}; {F = \x. x}

Higher-Order Preunification. Examples

Example

» Unification problem {F(f(a)) =* f(F(a))}.
» The preunification procedure enumerates the complete set
of (pre)unifiers that is infinite.

» Here we show only two derivations.
{F(f(a)) =" f(F(a))};e

= Proj {f(a) i?f(a)}; {F > AX. X}
=1 &; {F ~» \x. x}

Higher-Order Preunification. Examples

Example

» Unification problem {F(f(a)) =* f(F(a))}.
» The preunification procedure enumerates the complete set
of (pre)unifiers that is infinite.

» Here we show only two derivations.
{F(f(a)) =" f(F(a))};e
:ij {f(a) i?f(a)}; {F = Ax. X}
=1 &; {F ~» \x. x}

{F(f(a)) =" f(F(a)}se

Higher-Order Preunification. Examples

Example

» Unification problem {F(f(a)) =* f(F(a))}.
» The preunification procedure enumerates the complete set
of (pre)unifiers that is infinite.
» Here we show only two derivations.
{F(f(a)) =" f(F(a))};e
—prj {f(a) = f(@)}; {F = \x. x}
=1 &; {F ~» \x. x}
{F(f(a)) =" f(F(a))};e
=it {F(G(f(a))) =° F(F(G(a)))}; {F = Ax. f(G(x))}

Higher-Order Preunification. Examples

Example

» Unification problem {F(f(a)) =* f(F(a))}.
» The preunification procedure enumerates the complete set
of (pre)unifiers that is infinite.

» Here we show only two derivations.
{F(f(a)) =" f(F(a))};e
—prj {f(a) = f(@)}; {F = \x. x}
=7 @ {F ~ Ax. x}
{F(f(a)) =* f(F(a))};e
— i {f(G(f(a))) =° F(F(G(a)))}; {F = Mx. f(G(x))}
— e {G(f(a)) =* F(G(a)}; {F = Ax. f(G(x))}

Higher-Order Preunification. Examples

Example

» Unification problem {F(f(a)) =* f(F(a))}.
» The preunification procedure enumerates the complete set
of (pre)unifiers that is infinite.

» Here we show only two derivations.

{F(f(a)) =" f(F(a))};e
—prj {f(a) = f(@)}; {F = \x. x}
=7 @ {F ~ Ax. x}

{F(f(a)) =* f(F(a))};e
— i {f(G(f(a))) =° F(F(G(a)))}; {F = Mx. f(G(x))}
— e {G(f(a)) =* F(G(a)}; {F = Ax. f(G(x))}
—prj {f(@) =° f(a)}; {F = Mx. f(x),G = Ax. x}

Higher-Order Preunification. Examples

Example

» Unification problem {F(f(a)) =* f(F(a))}.
» The preunification procedure enumerates the complete set
of (pre)unifiers that is infinite.

» Here we show only two derivations.
{F(f(a)) =* f(F(a))}:e
—prj {f(a) = f(@)}; {F = \x. x}
=7 @ {F ~ Ax. x}
{F(f(a)) =* f(F(a))};e
=it {F(G(f(a))) =° F(F(G(a)))}; {F = Ax. f(G(x))}
= pec {G(f(@)) = f(G(a))}; {F = Ax. f(G(x))}
—prj {f(@) =° f(a)}; {F = Mx. f(x),G = Ax. x}
=7 ;{F ~» \x. f(x),G — \x. x} o,

Higher-Order Preunification. Examples

Example

» Problem {\x. F(f(x,G)) =" Mx. g(f(x,G1),f(x,G2))}.
» Here we show only the successful derivation.

re-solved form reached.

Higher-Order Preunification. Examples

Example

» Problem {\x. F(f(x,G)) =" Mx. g(f(x,G1),f(x,G2))}.
» Here we show only the successful derivation.

{)\)C F(f('x7 G)) i? AX. g(f(-xa Gl)vf(-xa G2))};€

re-solved form reached.

Higher-Order Preunification. Examples

Example

» Problem {\x. F(f(x,G)) =" Mx. g(f(x,G1),f(x,G2))}.
» Here we show only the successful derivation.
{)\)C F(f(-xa G)) =7 Ax. g(f(x, G1)>f(-x7 G2))};5

=i {\x. g(H (f(x, G)), Ha(f (x,G))) =7 Ax. g(f(x, G1),f(x,G2)) };
{F =Xy g(H(y),H:(y))}

re-solved form reached.

Higher-Order Preunification. Examples

Example

» Problem {\x. F(f(x,G)) =" Mx. g(f(x,G1),f(x,G2))}.
» Here we show only the successful derivation.

{\x. F(f(x,G)) =" Ax. g(f(x,G1),f(x,G2)) }i ¢
— it {\x. g(H1(f(x,G)), Ha(f(x,G))) =" Ax. g(f(x,G1),f(x,G2))};
{F = Xy. g(Hi(y), H2(y))}
= Dpec,Proj,Proj A\ (%, G) = Ax f(x, G, A f(x,G) =7 Ax f(x,Ga))
{F = Ay. g(y,y),Hi = \y. y,Hy = \y. y}

re-solved form reached.

Higher-Order Preunification. Examples

Example

» Problem {\x. F(f(x,G)) =" Mx. g(f(x,G1),f(x,G2))}.
» Here we show only the successful derivation.

{\x. F(f(x,G)) =" Ax. g(f(x,G1),f(x,G2)) }i ¢
— it {\x. g(H1(f(x,G)), Ha(f(x,G))) =" Ax. g(f(x,G1),f(x,G2))};
{F = Xy. g(Hi(y), H2(y))}
= Dpec,Proj,Proj A\ (%, G) = Ax f(x, G, A f(x,G) =7 Ax f(x,Ga))
{F = Ay. g(y,y),Hi = \y. y,Hy = \y. y}
= pec,1r,Dec,Tr {\X. G =7 \x. Gy, \x. G =7)\x. Gy };
{F = Xy. g(v,y), Hi = Ay. y,Hy = \y. y}

re-solved form reached.

Higher-Order Preunification. Examples

Example

» Problem {\x. F(f(x,G)) =" Mx. g(f(x,G1),f(x,G2))}.
» Here we show only the successful derivation.

{\x. F(f(x,G)) =" Ax. g(f(x,G1),f(x,G2)) }i ¢
— it {\x. g(H1(f(x,G)), Ha(f(x,G))) =" Ax. g(f(x,G1),f(x,G2))};
{F = Xy. g(Hi(y), H2(y))}
= Dpec,Proj,Proj A\ (%, G) = Ax f(x, G, A f(x,G) =7 Ax f(x,Ga))
{F = Ay. g(y,y),Hi = \y. y,Hy = \y. y}
= pec,1r,Dec,Tr {\X. G =7 \x. Gy, \x. G =7)\x. Gy };
{F = Xy. g(v,y), Hi = Ay. y,Hy = \y. y}

Pre-solved form reached.

Higher-Order Preunification. Examples

Example

» Problem {\x. F(x,a) =% \x. f(G(a,x))}.
» One of the successful derivations.

Higher-Order Preunification. Examples

Example
» Problem {\x. F(x,a) =% \x. f(G(a,x))}.
» One of the successful derivations.
{{\x. F(x,a) =" Mx. f(G(a,x))};e

Higher-Order Preunification. Examples

Example
» Problem {\x. F(x,a) =% \x. f(G(a,x))}.
» One of the successful derivations.
{{\x. F(x,a) =" Mx. f(G(a,x))};e
=i { M f(H(x,a)) =7 Ax. £(G(a,x)) 15 {F = Ay Ava. f(H(1,72))}

Higher-Order Preunification. Examples

Example
» Problem {\x. F(x,a) =% \x. f(G(a,x))}.
» One of the successful derivations.
{{\x. F(x,a) =" Mx. f(G(a,x))};e
=i { M f(H(x,a)) =7 Ax. £(G(a,x)) 15 {F = Ay Ava. f(H(1,72))}

== pec { M. H(x,a) = A G(a,x)};{F = My1. . f(H(y1,y2))}
Flex-flex.

Decidable Subcases

Some decidable subcases of higher-order unification:

»>

Monadic second-order unification. Terms do not contain
constants of arity greater than 1.

Example: {\xf(F(x)) =7 M. F(f(x))}.

Second-order unification with linear occurrences of
second-order variables.

Context unification.
Linear second-order unification.
Bounded second-order unification.

Decidable Subcases

Some decidable subcases of higher-order unification:

» Unification with higher-order patterns. Pattern is a term ¢
such that for every subterm of the form F(sy,...,s,), the s’s
are distinct variables bound in z.

Example: {\x.\y. F(x) =* Ax.\y. ¢(G(y,x))}.

» Higher-order matching. One side in the equations is a
closed term.

Example. {\x. F(x,\y. y) =* Ax.f(x,a)}.

	Introduction
	Preliminaries
	Higher-Order Unification Procedure

