
Chapter 10

Dimension and Hilbert Function

The dimension of an algebraic variety can be defined in several equivalent ways. We
will use an algebraic approach, and derive an algorithm for computing the dimension
for an ideal I (and its corresponding variety V (I)) by an application of Gröbner bases.
Our treatment of this subject is based on monomial ideals (such as the initial ideal of
an ideal) and the concept of the Hilbert function.

Throughout this chapter we let K be a field of characteristic 0, K the algebraic
closure ofK, and K a universal domain forK, i.e. K is an algebraically closed superfield
of K with infinite transcendence degree over K. E.g., C is a universal domain for Q.

10.1 An algebraic definition of dimension

The following definition of the dimension of an ideal I can be found in [Gro68], vol.
II, p. 38. We consider the coordinate ring Γ(I) and a maximal collection of coordinate
functions xi on V (I) which are independent in the coordinate ring. The number of
coordinate functions in such a maximal collection is called the dimension of I.

Definition 10.1.1: Let I ⊂ K[x1, . . . , xn] be a proper ideal and {i1, . . . , id} a subset
of {1, . . . , n}. The set {xi1 , . . . , xid} is said to be independent modulo I if

I ∩K[xi1 , . . . , xid ] = {0}.
We denote the set {X ⊆ {x1, . . . , xn} | X is independent modulo I} by ∆(I). The
dimension of I, denoted by dim(I), is the maximal number of elements in any set of
variables independent modulo I, i.e.

dim(I) = max({|X| | X ∈ ∆(I)}).
Furthermore, for a non–empty variety V ⊆ K

n
we define its dimension as

dim(V ) := dim(I(V )). 2
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In [Gro68], vol. II, p. 40 we find the following fact (2. Satz):
If I is a prime ideal in K[x1, . . . , xn], then the dimension of I equals the transcendence
degree of K(x1, . . . , xn)/I = K(V (I)) over K.

Observe that for any proper ideal I ⊂ K[x1, . . . , xn] we have

∆(I) = ∆(
√
I) and therefore dim(I) = dim(

√
I).

Let {i1, . . . , id} ⊆ {1, . . . , n}. From the elimination property of Gröbner bases we get
that

{xi1 , . . . , xid} ∈ ∆(I) iff G ∩K[xi1 , . . . , xid ] = ∅,
where G is the reduced Gröbner basis of I with respect to a lexicographic ordering
with xi1 ≺ xi2 ≺ . . . ≺ xid ≺ other variables (or, for that matter, a product ordering
with {xi1 , . . . , xid} ≺ X \ {xi1 , . . . , xid}). From these observations we can immediately
derive an algorithm DIMENSION 1 for computing the dimension of an ideal I.

Algorithm DIMENSION 1.

Given F , a finite subset of K[x1, . . . , xn], with I := 〈F 〉 6= K[x1, . . . , xn],
the algorithms computes d = dim(I), and a set of independent variables X modulo
I with |X| = d.

1. for every permutation p of {1, . . . , n} do

compute the reduced Gröbner basis Gp of I w.r.t. the
lexicographic ordering with xp(1) ≺ . . . ≺ xp(n);

ip := the greatest element of {0, . . . , n} such that
Gp ∩K[xp(1), . . . , xp(ip)] = ∅ ;

2. choose a permutation p′ such that
ip′ = max({ip | p a permutation of {1, . . . , n}});

3. d := ip′;
X := {xp′(1), . . . , xp′(ip′ )

}; 2

Example 10.1.1: Let I be the ideal generated by

F := {x1x3 + x2
1 + x1x2, x2x3 + x1 + 1, x1x2 + x1x2x3} ⊆ Q[x1, x2, x3].

We obtain ∆(I) by computing lexicographic Gröbner bases of F w.r.t. every possible
ordering of variables. Here are these six reduced Gröbner bases:
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x1 ≺ x2 ≺ x3 : {x2x3 + x1 + 1, x1x3 + 2x2
1 + x1, x1x2 − x2

1 − x1, x3
1 + x2

1},
x2 ≺ x1 ≺ x3 : {x1x3 + 2x1x2 − x1, x2x3 + x1 + 1, x2

1 − x1x2 + x1, x1x
2
2 − x1x2},

x1 ≺ x3 ≺ x2 : {x2x3 + x1 + 1, x1x2 − x2
1 − x1, x1x3 + 2x2

1 + x1, x3
1 + x2

1},
x3 ≺ x1 ≺ x2 : {2x1x2 + x1x3 − x1, x2x3 + x1 + 1, 2x2

1 + x1x3 + x1, x1x
2
3 − x1},

x2 ≺ x3 ≺ x1 : {x1 + x2x3 + 1, x2x
2
3 + 2x2

2x3 − x2x3 + x3 + 2x2 − 1,
x3
2x3 − x2

2x3 + x2
2 − x2},

x3 ≺ x2 ≺ x1 : {x1 + x2x3 + 1, 2x2
2x3 + x2x

2
3 − x2x3 + 2x2 + x3 − 1,

x2x
3
3 − x2x3 + x2

3 − 1}.

Since every Gröbner basis contains a bivariate polynomial, an independent set of vari-
ables can at most contain one variable. Because of the first Gröbner basis, {x1} 6∈ ∆(I).
But {x2} ∈ ∆(I) and {x3} ∈ ∆(I), because the second Gröbner basis does not con-
tain an element of Q[x2], and the forth Gröbner basis does not contain an element of
Q[x3]. Altogether,

∆(I) = { {x2}, {x3}, ∅ }. 2

Obviously this approach suffers from the fact that n! Gröbner bases w.r.t. lexi-
cographic orderings have to be computed. So our goal is to derive a more efficient
approach to the computation of the dimension. The crucial fact for obtaining a faster
algorithm is the following theorem, which will be proved later (for graduated orderings),
after we have compiled some knowledge about Hilbert functions.

Definition 10.1.2: Let ≺ be an admissible ordering on [x1, . . . , xn], I an ideal in
K[x1, . . . , xn]. The initial ideal of I, denoted by I≺, is the ideal 〈in(I)〉, i.e. the ideal
generated by the initials or leading terms of I w.r.t. ≺. 2

Theorem 10.1.1: Let ≺ be an admissible ordering on [x1, . . . , xn], I a proper ideal
in K[x1, . . . , xn]. Let X be an element of maximal cardinality in ∆(I≺). Then X is an
element of maximal cardinality in ∆(I) and therefore

dim(I≺) = |X| = dim(I). 2

Hence, the computation of an element of maximal cardinality in ∆(I) can be re-
duced to the computation of an element of maximal cardinality in ∆(I≺).

If G is a Gröbner basis of I w.r.t. ≺, then 〈in(G)〉 = I≺. In fact, this is equivalent
to G being a Gröbner basis w.r.t. ≺. So, for every subset X = {xi1 , . . . , xid} ⊆
{x1, . . . , xn},

X ∈ ∆(I≺) iff in(g) 6∈ K[xi1 , . . . , xid] for every g ∈ G.
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Therefore, after computing G, we can obtain an element of maximal cardinality in
∆(I≺) by purely combinatorial methods.

This leads immediately to the much more efficient algorithm DIMENSION 2 for
computing the dimension of an ideal I.

Algorithm DIMENSION 2.

Given F , a finite subset of K[x1, . . . , xn], with I := 〈F 〉 6= K[x1, . . . , xn],
the algorithms computes d = dim(I), and a set of independent variables X modulo
I with |X| = d.

1. choose an admissible ordering ≺ on [x1, . . . , xn];
G := GB(F ) w.r.t. ≺;

2. for all subsets X = {xi1 , . . . , xim} of {x1, . . . , xn} check whether
X ∈ ∆(I≺), i.e. whether
in(g) 6∈ K[xi1 , . . . , xim ] for every g ∈ G;

3. X := a set of maximal cardinality satisfying this condition (*);
d := |X| 2

A proof of Theorem 10.1.1 can be found in [KaS95]. In [KrW91] a different proof
for lexicographic orderings is given. We will restrict ourselves to another special case:
we will prove Theorem 10.1.1 under the additional assumption that ≺ is a graduated
ordering, i.e.

deg(u) < deg(v) =⇒ u ≺ v for all u, v ∈ [x1, . . . , xn].

Our proof is based on the important concept of Hilbert functions.

Example 10.1.2: Let F be defined as in the previous example and let G be the
reduced Gröbner basis of F w.r.t. the lexicographic ordering with x1 ≺ x2 ≺ x3. Then

I≺ = 〈in(G)〉 = 〈x2x3, x1x3, x1x2, x3
1〉.

Hence,
∆(I≺) = { {x2}, {x3}, ∅ } and dim(I) = dim(I≺) = 1. 2

The initial ideal I≺ of an ideal I has the special property of being generated by
monomials. Such ideals have a structure very similar to homogeneous ideals. Of
course, they are particular homogeneous ideals.

Definition 10.1.3: An ideal I in K[x1, . . . , xn] is a monomial ideal iff it has a mono-
mial basis, i.e. a basis B s.t. every f ∈ B is a monomial axj1

1 · · ·xjn
n , a ∈ K. 2
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Theorem 10.1.2: Let I be an ideal in K[x1, . . . , xn]. Then the following are equiva-
lent:

(i) I is a monomial ideal.

(ii) If f ∈ I and m is a monomial occurring in f , then m ∈ I.

(iii) I is generated by a finite monomial basis.

Proof: (i) =⇒ (ii): By definition, for every f ∈ I there exist finitely many monomials
m1, . . . , mr in a monomial basis B such that

f = h1m1 + · · ·+ hrmr

for some h1, . . . , hr ∈ K[x1, . . . , xn]. Hence, every monomial in f is divisible by one of
the mi and therefore in I.
(ii) =⇒ (iii): By Hilbert’s Basis Theorem the ideal I has a finite basis B′. Then the
set

B := { m | m occurs in some f ∈ B′ }
is a finite monomial basis of I.
(iii) =⇒ (i): Trivial. 2
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10.2 The Hilbert function

Let W be a subspace of a finite–dimensional vector space V . Recall that in this case
W and the quotient space V/W are also finite–dimensional and

dim(V ) = dim(W ) + dim(V/W ). (10.2.1)

Definition 10.2.1: Let I ⊆ K[x1, . . . , xn] be an ideal. For a non–negative integer s
we let

K[x1, . . . , xn]≤s

denote the set of polynomials of total degree ≤ s in K[x1, . . . , xn] and we define

I≤s := I ∩K[x1, . . . , xn]≤s.

Note that we can consider K[x1, . . . , xn]≤s as a finite–dimensional vector space over
K and I≤s as a finite–dimensional subspace. The (affine) Hilbert function of I is the
function on the non–negative integers s defined by (using (10.2.1))

HFI(s) : = dim(K[x1, . . . , xn]≤s/I≤s)
= dim(K[x1, . . . , xn]≤s)− dim(I≤s).

2

Example 10.2.1: Consider the ideal

I = 〈x2〉 ⊂ Q[x, y, z].

By a simple inspection we see that for s = 0, 1, 2, 3 the Hilbert function of I is as
follows:

s HFI(s)
0 1
1 4
2 9
3 16

-
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For s ≥ 2 we have

HFI(s) =
(

3+s
s

)

−
(

3+(s−2)
s−2

)

= (3+s)(2+s)(1+s)−(1+s)s(s−1)
3!

= s2 + 2s+ 1.

So for s ≥ 2 the Hilbert function HFI agrees with a polynomial function. 2
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Let I ⊂ K[x1, . . . , xn] be a proper ideal, ≺ a graduated ordering on [x1, . . . , xn],
and I≺ the initial ideal of I. We will show that

I and the monomial ideal I≺ have the same Hilbert function. (10.2.2)

Therefore, we will now study Hilbert functions of monomial ideals. More precisely, we
will show that for every monomial ideal J there exists a non–negative integer t and a
univariate polynomial h ∈ Q[x] such that

HFJ(s) = h(s) for every s ≥ t and dim(J) = deg(h). (10.2.3)

Using (10.2.2) and (10.2.3) it will be easy to prove Theorem 10.1.1 for graduated
orderings. For proving (10.2.3) we introduce the concept of a translate.

Definition 10.2.2: For each monomial ideal I in K[x1, . . . , xn] we let

C(I) := {u ∈ [x1, . . . , xn] | u 6∈ I}

be the set of power products (power products with coefficient 1) not in I, the comple-
ment of I.

For M,N ⊆ [x1, . . . , xn] we define their product as

M ·N := {uv | u ∈ M, v ∈ N}.

For every integer r ∈ {1, . . . , n}, every set of variables {xi1 , . . . , xir} ⊆ {x1, . . . , xn},
and every u ∈ [x1, . . . , xn] we call

{u} · [xi1 , . . . , xir ]

a translate of dimension r. Furthermore, every singleton {u} ⊂ [x1, . . . , xn] is called a
translate of dimension 0. 2

Example 10.2.2: Consider the ideal

I = 〈x3
1, x1x2〉 ⊂ Q[x1, x2].
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Obviously, C(I) = {x1, x
2
1} ∪ [x2]. Let s be a non–negative integer and denote the set

of those power products in C(I) with total degree ≤ s by Cs. It will be shown in the
proof of Theorem 10.2.5 that the set {u | u ∈ Cs} (or, more precisely, the equivalence
classes with representatives u ∈ Cs) is a basis of the quotient space Q[x1, x2]≤s/I≤s.
Therefore, I has the following Hilbert function:

HFI(0) = 1, HFI(1) = 3, HFI(s) = s+ 3 for s ≥ 2.
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Note that the Hilbert function is a polynomial function for sufficiently large s (in this
example s must be at least 2). Furthermore, the degree of this polynomial is equal to
the dimension of the ideal. We will show that both results hold for arbitrary ideals.
The proof is based on the observation that if I is a monomial ideal, the set of power
products not in the ideal can be written as a finite disjoint union of translates. For
instance, in this example

C(I) = {x1} ∪ {x2
1} ∪ {1} · [x2]. 2

Theorem 10.2.1: If I ⊂ K[x1, . . . , xn] is a monomial ideal then C(I) can be written
as a finite disjoint union of translates.

Proof: The theorem holds trivially for the zero ideal, so we can assume that I 6= {0}.
The theorem also holds trivially for I = 〈1〉 = K[x1, . . . , xn], we take the empty union.

We proceed by induction on the number of variables n. If n = 1 then I = 〈xk〉 for
some integer k ≥ 0. For k = 0 we have the trivial ideal 〈1〉. Otherwise, the only power
products not in I are 1, x, . . . , xk−1. Hence, the complement C(I) is the union of the
translates {1}, {x}, . . . , {xk−1}.

So now let us assume that the result holds for n− 1 variables, and let us consider
a proper monomial ideal I in K[x1, . . . , xn].

For each j ≥ 0, let

Ij := 〈{u ∈ K[x1, . . . , xn−1] | uxj
n ∈ I}〉 ⊆ K[x1, . . . , xn−1].

Because I is an ideal, we have Ij ⊆ Ij′ for j < j′. By the ascending chain condition for
ideals in Noetherian rings, there is an integer j∗ such that Ij = Ij∗ for all j ≥ j∗. We
claim that C(I) can be written as

C(I) =

j∗
⋃

j=0

Bj , (10.2.4)

where

Bj = C(Ij) · {xj
n} for j = 0, . . . , j∗ − 1 and Bj∗ = C(Ij∗) · {xj∗

n , xj∗+1
n , . . .}.

By the induction hypothesis, the sets C(Ik), k = 0, . . . , j∗, can be written as finite
disjoint unions of translates. We leave it as an exercise to show that the sets Bj, k =
0, . . . , j∗, are also finite disjoint unions of translates.

So it only remains to prove the set equality in (10.2.4). Note that for every j < j∗

we have Bj ⊆ C(I) by the definitions of Bj and C(Ij). For showing that Bj∗ ⊆ C(I),
observe that Ij = Ij∗ for j ≥ j∗, so that C(Ij∗) · {xj

n} ⊆ C(I) for these j’s. Hence,

C(I) =

j∗
⋃

j=0

Bj .
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On the other hand, let
u = xi1

1 x
i2
2 · · ·xin

n ∈ C(I).

If in < j∗, then xi1
1 x

i2
2 · · ·xin−1

n−1 ∈ C(Iin), and therefore u ∈ Bin . If in ≥ j∗, then

u′ = xi1
1 x

i2
2 · · ·xj∗

n ∈ C(I). Hence, xi1
1 x

i2
2 · · ·xin−1

n−1 ∈ C(Ij∗), and therefore u ∈ Bj∗ . This
completes the proof of the equality in (10.2.4). 2

In Example 10.2.1 we saw that we could write the Hilbert function HFI(s) as
a difference of binomial coefficients depending on the number of variables and s for
sufficiently large s. This observation can be generalized and it will lead us to the concept
of the Hilbert polynomial. The proof of the following lemma is an easy combinatorial
exercise and is left to the reader.

Lemma 10.2.2: The number of power products of degree ≤ s in [x1, . . . , xm] is the
binomial coefficient

(

m+ s

s.

)

2

Now we can determine the number of power products of degree ≤ s in an arbitrary
translate.

Lemma 10.2.3: Let u ∈ [x1, . . . , xn] and t = deg(u).

(i) The number of power products of degree ≤ s in the translate {u} · [x1, . . . , xm] is
equal to the binomial coefficient

(

m+ s− t

s− t

)

,

provided that s ≥ t.

(ii) For s ≥ t, this number of power products is a polynomial function of s of degree
m and the coefficient of sm is 1/m!.

Proof: If s ≥ t then each power product v in {u} · [x1, . . . , xm] of degree ≤ s has the
form u · w, where w is a power product in [x1, . . . , xm] of degree ≤ s− t. The formula
given in (i) follows from Lemma 10.2.2 by counting the number of possible w.
(ii) follows immediately from (i) and the definition of the binomial coefficient. 2

Theorem 10.2.4: If I ⊂ K[x1, . . . , xn] is a proper monomial ideal, then for all s
sufficiently large, the number of power products not in I of degree ≤ s is a polynomial
of degree d = dim(I) in s. Furthermore, the coefficient of sd in this polynomial is
positive.
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Proof: By Theorem 10.2.1 we can write C(I) as a finite disjoint union of translates

C(I) = C1 ∪ . . . ∪ Cr. (10.2.5)

For j ∈ {1, . . . , r} and a non–negative integer s we denote the number of power products
in Cj of degree ≤ s by cj(s) and the number of power products in C(I) of degree ≤ s
by c(s). By (10.2.5),

c(s) = c1(s) + · · ·+ cr(s).

From Lemma 10.2.3 we get that for every j ∈ {1, . . . , r} there exists a non–negative
integer tj and a univariate polynomial hj(x) = amj

xmj + · · ·+ a0 ∈ Q[x], such that

(1) cj(s) = h(s) for every s ≥ tj ,

(2) mj is the dimension of the translate Cj and amj
= 1/mj!.

Let t∗ := max(t1, . . . , tr) and m∗ the maximal dimension of the translates C1, . . . , Cr.
Obviously, for s ≥ t∗ the function c is given by a polynomial of degree m∗ and the
coefficient of sm

∗

in this polynomial is positive.
It remains to show that m∗ = dim(I). Let {xi1 , . . . , xik} ∈ ∆(I) be a set of

independent variables modulo I. Obviously [xi1 , . . . , xik ] ⊆ C(I). Hence, by Lemma
10.2.3, k ≤ m∗. Since dim(I) is the maximal cardinality of any set of independent
variables, we get dim(I) ≤ m∗. On the other hand, let the translate {u} · [xi1 , . . . , xik ]
be a subset of C(I). Since I is an ideal, we obtain [xi1 , . . . , xik ] ⊆ C(I). By Theorem
10.1.2, {xi1 , . . . , xik} ∈ ∆(I), and therefore dim(I) ≥ m∗. 2

Our next goal is to generalize Theorem 10.2.4 to arbitrary ideals. The following
crucial observation is due to Macaulay.

Theorem 10.2.5: Let I ⊆ K[x1, . . . , xn] be an ideal and let ≺ be a graduated ordering
on [x1, . . . , xn]. Then the monomial ideal J = I≺ (the initial ideal) has the same Hilbert
function as I.

Proof: For a non–negative integer s let [x1, . . . , xn]≤s denote the set of power products
of degree ≤ s, and let

Ms := {u ∈ [x1, . . . , xn]≤s | u ∈ J} and M ′
s := {u ∈ [x1, . . . , xn]≤s | u 6∈ J}.

Ms ∪ M ′
s is a basis of the vector space K[x1, . . . , xn]≤s. Theorem 10.1.2 implies that

Ms is a basis of the vector space J≤s. So

HFJ(s) = dim(K[x1, . . . , xn]≤s)− dim(J≤s) = |M ′
s|.

Thus, for proving the theorem it suffices to show that M ′
s (or, more precisely,

the equivalence classes with representatives in M ′
s) is a basis of the quotient space

K[x1, . . . , xn]≤s/I≤s.

166



Let u1, . . . , ur ∈ M ′
s and c1, . . . , cr ∈ K such that f := c1u1 + · · ·+ crur = 0 in the

quotient space. I.e. the polynomial f must be reducible to 0 modulo a Gröbner basis
G of I w.r.t. ≺. However, f is already in normal form w.r.t. G. So we must have
f = 0, i.e. c1 = · · · = cr = 0. Hence, M ′

s is linearly independent in the quotient space.
It remains to show thatM ′

s spans the quotient space. Let g ∈ K[x1, . . . , xn]≤s and g′

its normal form modulo the Gröbner basis G. Since ≺ is graduated, g and g′ represent
the same equivalence class in the quotient space K[x1, . . . , xn]≤s/I≤s. Obviously, g′ can
be written in the form g′ = c1u1+· · ·+crur for some u1, . . . , ur ∈ M ′

s and c1, . . . , cr ∈ K.
2

Corollary: Let I ⊆ K[x1, . . . , xn] be an ideal. There exists a polynomial h(x) ∈ Q[x],
such that for sufficiently large s we have HFI(s) = h(s).

Proof: This is an immediate consequence of Theorems 10.2.4 and 10.2.5. 2

Definition 10.2.3: Let I ⊆ K[x1, . . . , xn] be an ideal. The polynomial which equals
HFI(s) for sufficiently large s is called the (affine) Hilbert polynomial of I, denoted by
HPI(s). 2

The smallest integer t such that HFI(s) = HPI(s) for all s ≥ t is called the index
of regularity of I. Determining the index of regularity is of considerable interest and
importance in many computations with ideals, but we will not pursue this topic here.

Theorem 10.2.6: Let I ⊂ K[x1, . . . , xn] be a proper ideal. Then dim(I) equals the
degree of the Hilbert polynomial of I.

Proof: Denote the dimension of I by d and let {xi1 , . . . , xid} be an element of ∆(I) of
maximal cardinality and s a non–negative integer. Then [xi1 , . . . , xid]≤s (or, more pre-
cisely, the equivalence classes represented by these monomials) is a linearly independent
subset of the quotient space K[x1, . . . , xn]≤s/I≤s. By Lemma 10.2.2,

(

d+ s

s

)

≤ HFI(s).

Since the above binomial coefficient is a polynomial function in s of degree d (see
Lemma 10.2.3), the dimension of I is at most the degree of the Hilbert polynomial of
I.

On the other hand, let ≺ be a graduated ordering on [x1, . . . , xn] and I≺ the initial
ideal of I w.r.t. ≺. If a subset X = {xi1 , . . . , xik} of {x1, . . . , xn} is not in ∆(I),
then there exists a non–zero polynomial f ∈ I ∩K[xi1 , . . . , xik ]. Hence, lpp(f) ∈ I≺ ∩
K[xi1 , . . . , xik ] and X 6∈ ∆(I≺). It follows that ∆(I≺) ⊆ ∆(I) and therefore dim(I≺) ≤
dim(I). By Theorems 10.2.4 and 10.2.5, the degree of the Hilbert polynomial of I is
equal to dim(I≺). Therefore, the degree of the Hilbert polynomial is at most dim(I).
2
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Now we have compiled all the necessary prerequisites for proving Theorem 10.1.1
under the additional assumption, that ≺ is a graduated ordering.

Theorem 10.1.1: Let ≺ be a graduated ordering on [x1, . . . , xn], I a proper ideal in
K[x1, . . . , xn]. Let X be an element of maximal cardinality in ∆(I≺). Then X is an
element of maximal cardinality in ∆(I) and therefore

dim(I≺) = |X| = dim(I).

Proof: Using Theorems 10.2.4, 10.2.5, and 10.2.6, we obtain

dim(I≺) = deg(HPI≺)
= deg(HPI)
= dim(I).

We still have to show that any maximal element in ∆(I≺) is also a maximal element
in ∆(I). Clearly, ∆(I≺) ⊆ ∆(I), since

X ∈ ∆(I≺) X ∈ ∆(I)
m m

I≺ ∩K[X ] = 〈0〉 =⇒ I ∩K[X ] = 〈0〉

Therefore, if X is an element of maximal cardinality in ∆(I≺), then X must also be
an element of maximal cardinality in ∆(I) (becauce dim(I≺) = dim(I)). 2
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