
Chapter 2

Rational general solutions of

first-order algebraic ODEs

We recall the notion of a general solution of a first-order algebraic ordinary differential

equation (ODE) from the point of view of differential algebra, i.e., it is defined as a generic

zero of a prime differential ideal in a differential ring. We refer to the appendix section (B)

on differential algebra for most of preliminary notions that need for this chapter. The main

development of this chapter is the algebraic geometric method for determining a rational

general solution of a first-order algebraic ODE. We observe that the solution surface of an

algebraic ODE of order 1 having a rational general solution must be a unirational surface.

By Castelnuovo’s theorem, every unirational surface over an algebraically closed field of

characteristic 0 (e.g. the field of complex numbers) is a rational surface. Therefore, we

only consider the class of all first-order parametrizable algebraic ODEs, i.e., the differential

equation F (x, y, y�) = 0 such that F (x, y, z) = 0 defines a rational surface. This class

naturally extends the class of first-order autonomous ODEs in Feng and Gao (2004, 2006).

In this class, we derive an associated system from a proper rational parametrization of the

solution surface of the given differential equation. Then we prove that there is a one-to-one

correspondence between a rational general solution of the given first-order parametrizable

algebraic ODE and that of its associated system. In the last section, we give a criterion,

based on Ritt’s reduction of Feng-Gao’s differential polynomials, for the existence of a

rational general solution of the associated system. As an application, we use the criterion

for determining the linear systems with rational general solutions.

Throughout this chapter, we consider K to be an algebraically closed field of charac-

teristic zero, i.e., K contains the field of rational numbers Q. The content of this chapter

is essentially based on Ngô and Winkler (2010).
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2.1 Definition of (rational) general solutions

Given an algebraic ODE F (x, y�, y��, · · · , y(n)) = 0 of order n, where F is a polynomial

over K. Classically, a solution of F (x, y�, y��, · · · , y(n)) = 0 is a function depending on x,

y = f(x), such that F (x, f(x), f �(x), · · · , f (n)(x)) = 0. From the point of view of algebra,

the polynomial F can be formally seen as a differential polynomial in the differential

ring (K(x){y}, δ), where y is a differential indeterminate and δ is the unique derivation

extended from the usual derivation d
dx of the differential field K(x) (see B). Let us write

the above differential equation in the form F (y) = 0 to simplify the notation when we do

not want to stress on the order of the equation.

Let (K, δ) be a differential field extension of (K(x), d
dx). A solution of F (y) = 0

in K is an element η ∈ K such that F (x, η, δη, · · · , δnη) = 0. Observe that, if η is a

solution of F (y) = 0, then η is also a solution of all δm(F )(y) = 0 for any natural number

m ≥ 1. In fact, η is also a solution of the differential ideal generated by F , denoted by

[F ]. Furthermore, according to the theorem of zeros, Ritt (1950), II, §7 (also known as

the differential Nullstellensatz), the collection of all differential polynomials in K(x){y}
vanishing on the solutions of F is the radical differential ideal generated by F , denoted

by {F} the set

{F} = {A ∈ K(x){y} | ∃m ∈ N, Am ∈ [F ]}.

It is known from Ritt (1950), II, §14, that we can decompose {F} as

{F} = ({F} : S) ∩ {F, S}, (2.1)

where S is the separant of F and {F} : S = {A ∈ K(x){y} | SA ∈ {F}}. Note that

{F} : S is a radical differential ideal and {F} : S = {F} : S∞, defined by

{F} : S∞ = {A ∈ K(x){y} | ∃m ∈ N, SmA ∈ {F}}.

The ideal {F} : S∞ is called the saturation ideal of {F} by S. Moreover, if F is an

irreducible polynomial in the polynomial ring K[x, y1, y2, . . . , yn], which we assume from

now on, then {F} : S is a prime differential ideal (by Ritt (1950), II, §12). One can further

decompose {F, S} as the intersection of finite number of prime differential ideals because

K(x){y} is a radical Noetherian ring, i.e., the ring in which every radical differential ideal is

finitely generated. In the end, if we exclude all redundant prime differential ideals, then we

obtain a unique minimal decomposition of {F} into an intersection of irredundant prime

differential ideals, which are called essential components of {F}. Furthermore, {F} : S is

the unique essential component of {F} that does not contain the separant S because if

{F} : S would contain S, then S2 ∈ {F}. Hence, S ∈ {F}, a contradiction to the fact
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that degy(n) S < degy(n) F .

Definition 2.1.1. A generic zero of the prime differential ideal {F} : S is called a general

solution of F (y) = 0. By a generic zero η of {F} : S we mean for all G ∈ K(x){y},
G(η) = 0 ⇐⇒ G ∈ {F} : S.

Definition 2.1.2. A zero of {F, S} is called a singular solution of F (y) = 0.

Of course, when we decompose {F, S} into prime differential ideals, there might be

some components that contain {F} : S. These components will be corresponding to the

particular solutions of F (y) = 0 in the classical sense. We will demonstrate this in an

example later.

In the quotient ring K(x){y}/({F} : S), which is an integral domain∗, the class of

y is a generic zero of the prime differential ideal {F} : S. However, this is still an

implicit description of a general solution of F (y) = 0. Another way of describing a general

solution of F (y) = 0 is computing a basis of the differential ideal {F} : S. In her paper

Hubert (1996), Hubert presents an algorithmic method to determine a Gröbner basis of

the differential ideal {F} : S in the case ord(F ) = 1. Our question is:

Q 1. How to construct a generic zero of {F} : S, i.e., a general solution of

F (y) = 0 explicitly?

Our goal, in this chapter and in the next chapter(s), is to develop a method

to construct explicitly a rational general solution of F (y) = 0 in the case of

first-order parametrizable algebraic ODEs, F (x, y, y�) = 0, where F (x, y, z) = 0

defines a rational surface.

Definition 2.1.3. A rational general solution of F (y) = 0 is defined as a general solution

of F (y) = 0 of the form

y =
amxm + am−1x

m−1 + · · ·+ a0
bnxn + bn−1xn−1 + · · ·+ b0

, (2.2)

where ai, bj are constants in a differential field extension of K(x).

From the definition of a general solution of F (y) = 0, it is important to know when

a differential polynomial belongs to {F} : S. This ideal membership problem is solved by

using Ritt’s reduction. Precisely, consider the differential ring K(x){y} with the orderly

ranking (see B.2). Then for any G ∈ K(x){y}, we have

SsF I iFG =
�

i≥0

Qiδ
i(F ) +R, (2.3)

∗In Ritt (1950), II, §6, one can define a natural derivation on the quotient field of this integral domain
so that it becomes a differential field.
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where δi(F ) is the i-th derivative of F and the order of δi(F ) is less than or equal the

order of G; S is the separant of F , I is the initial of F , sF , iF ∈ N, Qi ∈ K(x){y} and

R ∈ K(x){y} is reduced with respect to F , i.e., if n is the order of F , then the order

of R is at most n and degy(n)(R) < degy(n)(F ). Moreover, if m is the order of G, then

0 ≤ i ≤ m− n. By convention, the sum is empty if m < n; in this case, R = G.

Definition 2.1.4. The differential polynomial R in (2.3) is called the differential pseudo

remainder of G with respect to F , denoted by prem(G,F ).

The following theorem, whose proof can be found in Ritt (1950), II, §13, gives an

algorithmic method to solve the ideal membership problem of {F} : S.

Theorem 2.1.1. For every G ∈ K(x){y}, G ∈ {F} : S ⇐⇒ prem(G,F ) = 0.

Corollary 2.1.2. Suppose that η is a general solution of F (y) = 0. Then for every

G ∈ K(x){y}, G(η) = 0 ⇐⇒ prem(G,F ) = 0.

Observe that S �∈ {F} : S because prem(S, F ) = S �= 0. Therefore, a general solution

of F (y) = 0 is not annulled by S.

It is known from the point of view of analysis† that the most general solution of

F (x, y, y�) contains one arbitrary constant (e.g. Ince (1926); Piaggio (1933))‡. The con-

clusion applies for higher order ODEs accordingly. In differential algebra context, one

have to make the meaning of the term “arbitrary constant” precisely. By Ritt (1950), III,

§5, an arbitrary constant w.r.t a given field K is a quantity c which can be adjoined to

the field K—to obtain an extension field K(c)—which is transcendental over K and the

derivative of c in the extension field K(c) is zero.

Let us see the above fact in the case of rational general solutions. Suppose that

y∗ =
amxm + am−1x

m−1 + · · ·+ a0
bnxn + bn−1xn−1 + · · ·+ b0

is a rational general solution of F (y) = 0. Then there exists a coefficient of y∗ does not

belong to K. Otherwise, the differential polynomial (of order 0)

G = (bnx
n + bn−1x

n−1 + · · ·+ b0)y − (amxm + am−1x
m−1 + · · ·+ a0) ∈ K(x){y}

vanishes on y∗, but prem(G,F ) = G �= 0. Therefore, y∗ must contain a constant which is

not in K and hence it is transcendental over K because K is algebraically closed.

†A solution is expanded into a Taylor series, one looks for its coefficients in the expansion.
‡In Piaggio (1933): Chapter I, §7.
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Remark 2.1.1. Suppose that y = f(x, c) is a rational general solution of F (x, y, y�) = 0,

where c is an arbitrary constant, i.e., we have

F (x, f(x, c), fx(x, c)) = 0,

where fx is the partial derivative of f w.r.t. x. Let us view x and c as parameters of the

rational map

P(x, c) = (x, f(x, c), fx(x, c)). (2.4)

The Jacobian matrix of P(x, c) is

JP =

�
1 fx(x, c) fxx(x, c)

0 fc(x, c) fxc(x, c)

�
. (2.5)

Since f effectively depends on c, we have fc(x, c) �= 0. Therefore, the generic rank of JP
is 2. Hence, P(x, c) is a rational parametrization of the surface F (x, y, z) = 0. This is the

reason why we restrict the consideration to the class of rational parametrizable algebraic

ODEs of order 1.

2.2 The associated system of first-order parametrizable al-

gebraic ODEs

2.2.1 Determination of the associated system

In this section, we present a method to determine a rational general solution of the first-

order algebraic ODE

F (x, y, y�) = 0, (2.6)

where F (x, y, z), an irreducible polynomial in K[x, y, z], defines a rational surface.

First of all, suppose that y = f(x) is a rational solution of F (x, y, y�) = 0. Then

it generates a rational space curve parametrized by (x, f(x), f �(x)), here x is viewed as a

parameter, and the curve belongs to the algebraic surface defined by F (x, y, z). Therefore,

solving the differential equation F (x, y, y�) = 0 amounts to look for all such parametric

curves on the algebraic surface F (x, y, z) = 0. By Remark 2.1.1, it is natural to consider

those algebraic surfaces possessing rational parametrizations.

Definition 2.2.1. The algebraic surface F (x, y, z) = 0 is called a unirational surface iff

there exists a rational map

P(s, t) = (χ1(s, t),χ2(s, t),χ3(s, t)) (2.7)
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such that F (P(s, t)) = 0, where χ1,χ2 and χ3 are rational functions in s and t, and

the Jacobian matrix of P(s, t) has a generic rank 2. Then P(s, t) is called a rational

parametrization of F (x, y, z) = 0.

Since the Jacobian matrix JP of P(s, t) has a generic rank 2, at least one of the 2× 2

minors of JP is non-zero. We can assume w.l.o.g that

χ1sχ2t − χ1tχ2s �= 0, (2.8)

where χis,χit are the partial derivatives of χi w.r.t s and t. Because if it is not the case,

then χ1(s, t) and χ2(s, t) must be related by the equation χ1(s, t) = φ(−χ2(s, t)), where

φ(y) is an arbitrary function of one variable. Since χ1 and χ2 are rational functions, it

follows that φ(y) is a rational function. Then the surface x − φ(−y) = 0 is a component

of F (x, y, z) = 0, hence by irreducibility, F (x, y, z) is the numerator of x− φ(−y). In this

case, the surface defined by F is not corresponding to any first-order algebraic ODE.

Definition 2.2.2. A rational parametrization P(s, t) of F (x, y, z) = 0 is called proper iff

it has an inverse and its inverse is also rational, i.e., there is a rational map

Q(x, y, z) = (ψ1(x, y, z),ψ2(x, y, z))

such that (Q ◦P)(s, t) = (s, t) for almost all s, t and (P ◦Q)(x, y, z) = (x, y, z) for almost

all (x, y, z) on the surface F (x, y, z) = 0 or, equivalently, K(P(s, t)) = K(s, t). Such a

P(s, t) is called a birational map. The surface defined by F (x, y, z) = 0 is called rational

iff it has a proper rational parametrization.

Note that, the parametrization (2.4) in Remark 2.1.1 may be not proper.

Definition 2.2.3. The solution surface of F (x, y, y�) = 0, denoted by S, is the surface

F (x, y, z) = 0 when we view x, y, z as independent variables.

Definition 2.2.4. An algebraic ODE F (x, y, y�) = 0 is called a parametrizable algebraic

ODE if its solution surface is rational, i.e., it admits a rational parametrization of the

form (2.7).

In the sequel, we denote by AODE the set AODE = {F (x, y, y�) = 0 | F ∈ K[x, y, z]}
and by PODE the set

PODE = {F ∈ AODE | the solution surface F = 0 is rationally parametrizable}.

In AODE , if F is not involving x, then the differential equation (2.6) is called au-

tonomous . In general, F is possibly involving x, the differential equation (2.6) is called
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non-autonomous . We view an autonomous ODE as a special case of the non-autonomous

one.

Definition 2.2.5. Let y = f(x) be a rational solution of F (x, y, y�) = 0. The space curve

parametrized by C(x) = {(x, f(x), f �(x)) | x ∈ K} is called the solution curve of f w.r.t.

F (x, y, y�) = 0 or simply a solution curve of f when the differential equation is clear from

the context.

In some textbooks, the curve C(x) = (x, f(x), f �(x)) is called an integral curve. We

will use this terminology when we consider the curve C(x) without taking into account

an algebraic differential equation F (x, y, y�) = 0 having f(x) as a solution. If f(x) is

a rational function in x, then one can easily generate an algebraic differential equation

F (x, y, y�) = 0 having f(x) as a solution. Hence, C(x) becomes a solution curve of f w.r.t.

F (x, y, y�) = 0.

From now on, we always consider F in PODE and P(s, t) to be a proper rational

parametrization of F (x, y, z) = 0. The inverse map of P, denoted by P−1, defines on the

surface S, except for finitely many curves or points on S.

Definition 2.2.6. Let f(x) be a rational solution of the equation F (x, y, y�) = 0. Let

S be the solution surface of F (x, y, y�) = 0 and C(x) be the solution curve of f . Let

P be a proper rational parametrization of F (x, y, z) = 0. The solution curve C(x) is

parametrizable by P iff C(x) is almost contained in im(P) ∩ dom(P−1), i.e., except for

finitely many points on C(x). Here im(P) and dom(P−1) are the image and the domain

of the corresponding maps.

Proposition 2.2.1. Let F ∈ PODE with a proper parametrization P(s, t). The differen-

tial equation F (x, y, y�) = 0 has a rational solution whose solution curve is parametrizable

by P if and only if the system




χ1(s(x), t(x)) = x

χ2(s(x), t(x))
� = χ3(s(x), t(x))

(2.9)

has a rational solution (s(x), t(x)). In that case, y = χ2(s(x), t(x)) is a rational solution

of F (x, y, y�) = 0.

Proof. Assume that y = f(x) is a rational solution of F (x, y, y�) = 0 and the solution

curve of f(x) is parametrizable by P. Let (s(x), t(x)) = P−1(x, f(x), f �(x)). Then s(x)

and t(x) are rational functions because f(x) is a rational function and P−1 is a rational

map. We have

P(s(x), t(x)) = P(P−1(x, f(x), f �(x))) = (x, f(x), f �(x)).
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In other words, (s(x), t(x)) is a rational solution of the system





χ1(s(x), t(x)) = x

χ2(s(x), t(x)) = f(x)

χ3(s(x), t(x)) = f �(x).

(2.10)

Therefore, χ1(s(x), t(x)) = x and χ2(s(x), t(x))
� = χ3(s(x), t(x)). Conversely, if two

rational functions s = s(x) and t = t(x) satisfy the system (2.9), then y = χ2(s(x), t(x))

is a rational solution of F (x, y, y�) = 0 because F (P(s(x), t(x))) = 0.

Note that most of solution curves of F (x, y, y�) = 0 will be parametrizable by P
because P covers almost all the solution surface S and P−1 is defined at almost everywhere

on the solution surface S except for finitely many curves or points on S.

Q 2. What are rational solutions of the system (2.9)?

Let us have a closed looking at the system (2.9). We see that it can be decomposed

as a differential system and an algebraic system. Indeed, differentiating the first equation

of (2.9) and expanding the last equation of (2.9), we obtain a linear system of equations

in s�(x) and t�(x)





∂χ1(s(x), t(x))

∂s
· s�(x) + ∂χ1(s(x), t(x))

∂t
· t�(x) = 1

∂χ2(s(x), t(x))

∂s
· s�(x) + ∂χ2(s(x), t(x))

∂t
· t�(x) = χ3(s(x), t(x)).

(2.11)

If

det




∂χ1(s(x), t(x))

∂s

∂χ1(s(x), t(x))

∂t

∂χ2(s(x), t(x))

∂s

∂χ2(s(x), t(x))

∂t


 �= 0, (2.12)

then (s(x), t(x)) is a rational solution of the autonomous system of differential equations

�
s� =

f1(s, t)

g(s, t)
, t� =

f2(s, t)

g(s, t)

�
(2.13)

where f1(s, t), f2(s, t), g(s, t) ∈ K(s, t) are defined by

f1(s, t) =
∂χ2(s, t)

∂t
− χ3(s, t) ·

∂χ1(s, t)

∂t
, f2(s, t) = χ3(s, t) ·

∂χ1(s, t)

∂s
− ∂χ2(s, t)

∂s
,

g(s, t) =
∂χ1(s, t)

∂s
· ∂χ2(s, t)

∂t
− ∂χ1(s, t)

∂t
· ∂χ2(s, t)

∂s
.

(2.14)
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If the determinant (2.12) is equal to 0, then (s(x), t(x)) is a solution of the algebraic system

�
ḡ(s, t) = 0, f̄1(s, t) = 0

�
(2.15)

where ḡ(s, t) and f̄1(s, t) are the numerators of g(s, t) and f1(s, t), respectively. In the

latter case, (s(x), t(x)) defines a curve if and only if gcd(ḡ(s, t), f̄1(s, t)) is a non-constant

polynomial in s, t. Otherwise, (s(x), t(x)) is just an intersection point of the two algebraic

curves ḡ(s, t) = 0 and f̄1(s, t) = 0, which does not satisfy the relation (2.9).

Therefore, the rational solutions of the system (2.9) is the union of the rational solu-

tions of (2.13) and the non-trivial rational solutions of (2.15).

Definition 2.2.7. The autonomous system (2.13) is called the associated system of the

differential equation F (x, y, y�) = 0 with respect to P(s, t).

The main features of the associated system are autonomous, of order 1 and of degree

1 with respect to s� and t�. Later, these features turn out to be the advantages of the

approach.

Claim 1. A rational general solution of the system (2.13) completely determines a rational

general solution of the differential equation F (x, y, y�) = 0.

At this point we define, from the point of view of differential algebra, what we mean

by a rational general solution of the system (2.13). For this purpose we need some prepa-

rations.

2.2.2 Rational general solutions of the associated system

Consider the new differential ring K(x){s, t} with the usual derivation δ extended from

the derivation
d

dx
of K(x), where s, t are two differential indeterminates. We denote by si

and ti the i-th derivatives of s and t, respectively.

Definition 2.2.8. Let V = {si | i ∈ N} ∪ {ti | i ∈ N}. The ord-lex ranking on V is the

total order defined as follows: 



si < sj if i < j,

ti < tj if i < j,

ti < sj if i ≤ j,

si < tj if i < j.

The ord-lex ranking is an orderly ranking (see the appendix B.2). We use this ranking

on the differential ring K(x){s, t} from now on.

Definition 2.2.9. Let F,G ∈ K(x){s, t}. F is said to be of higher rank than G in s iff

one of the following conditions holds:
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1. ords(F ) > ords(G);

2. ords(F ) = ords(G) = n and degsn(F ) > degsn(G).

If F is of higher rank than G in s, then we also say G is of lower rank than F in s.

Analogously these notions are defined for t.

Definition 2.2.10. Let F be a differential polynomial in K(x){s, t}. The leader of F

is the highest derivative occurring in F with respect to the ord-lex ranking on the set of

derivatives V . The initial of F is the leading coefficient of F with respect to its leader.

The separant of F is the partial derivative of F with respect to its leader.

Observe that the separant of F is also the initial of any proper derivative δi(F ) of F .

Definition 2.2.11. Let F and G be differential polynomials in K(x){s, t}. G is said to

be reduced with respect to F iff G is of lower rank than F in the indeterminate defining

the leader of F .

Let A be an autoreduced set in the differential ring R = K(x){s, t}. Let G ∈
K(x){s, t}. By Ritt’s reduction, Ritt (1950), Kolchin (1973)§, there existR ∈ R, sA, iA ∈ N
such that R is reduced w.r.t. A, the rank of R is lower than or equal to that of G and

�

A∈A
I iAA SsA

A G−R

can be written as a linear combination over R of derivatives {δi(A) | A ∈ A, δi(uA) ≤ uG},
where uA and uG are the leader of A and G, respectively. The differential polynomial R

is called the differential pseudo remainder of G with respect to A, denoted by

R = prem(G,A).

From now on, we consider Mi, Ni ∈ K[s, t], Ni �= 0, gcd(Mi, Ni) = 1 for i = 1, 2 and

two special differential polynomials F1 and F2 in R defined as follows

F1 := N1s
� −M1, F2 := N2t

� −M2.

In fact, F1 and F2 are in the subring K{s, t} of autonomous differential polynomials of R.

The leaders of F1 and F2 are s� and t�, respectively. Moreover, degs�(F1) = degt�(F2) = 1.

It follows that the initial and separant of F1 (respectively, of F2) are the same. The

differential ideal generated by F1 and F2 is denoted by [F1, F2]. In applications, we will

take M1,M2, N1, N2 to be the polynomials in the numerators and the denominators of the

right hand side of the associated system (2.13).

§Kolchin (1973), I, Proposition 1.
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The set A = {F1, F2} is an autoreduced set relative to the ord-lex ranking because

F1 is reduced with respect to F2 and F2 is reduced with respect to F1. Now by Ritt’s

reduction, for any G ∈ K(x){s, t}, we can reduce G w.r.t. the autoreduced set A to

obtain the differential pseudo remainder R = prem(G,A), which is also denoted by R =

prem(G,F1, F2) in an explicit form.

Observation 2.2.1. Observe that the differential pseudo remainder R = prem(G,F1, F2)

is always a polynomial in K(x)[s, t] because F1 and F2 are of order 1 and of degree 1 w.r.t.

their leaders.

Lemma 2.2.2. Let

I = {G ∈ K(x){s, t} | prem(G,F1, F2) = 0}.

Then I is a prime differential ideal in K(x){s, t}.

Proof. Let HA = N1N2 and denote H∞
A = {Nm1

1 Nm2
2 | m1,m2 ∈ N}. Then

[F1, F2] : H
∞
A := {G ∈ K(x){s, t} | ∃J ∈ H∞

A , JG ∈ [F1, F2]}

is a prime differential ideal (Ritt (1950), V, §3, page 107). We prove that

I = [F1, F2] : H
∞
A .

In fact, it is clear that I ⊆ [F1, F2] : H
∞
A . Let G ∈ [F1, F2] : H

∞
A . Then there exists

J ∈ H∞
A such that JG ∈ [F1, F2]. On the other hand, let R = prem(G,F1, F2), we have

J1G−R ∈ [F1, F2]

for some J1 ∈ H∞
A . It follows that JR ∈ [F1, F2]. Since R and J are in K(x)[s, t], we have

JR ∈ [F1, F2] if and only if JR = 0. We must have R = 0 because J �= 0. Therefore,

I = [F1, F2] : H
∞
A , i.e., I is a prime differential ideal.

Definition 2.2.12. Let Mi, Ni ∈ K[s, t], Ni �= 0, gcd(Mi, Ni) = 1 for i = 1, 2. A rational

solution (s(x), t(x)) of the autonomous system

�
s� =

M1(s, t)

N1(s, t)
, t� =

M2(s, t)

N2(s, t)

�
(2.16)

is called a rational general solution iff it is a rational generic zero of the prime differential

ideal I, i.e., for any G ∈ K(x){s, t}, we have

G(s(x), t(x)) = 0 ⇐⇒ prem(G,N1s
� −M1, N2t

� −M2) = 0. (2.17)
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Lemma 2.2.3. Let (s(x), t(x)) be a rational general solution of the system (2.16). Let G

be a bivariate polynomial in K(x)[s, t]. Then G(s(x), t(x)) = 0 ⇐⇒ G = 0 in K(x)[s, t].

Proof. Since G ∈ K(x)[s, t], we have prem(G,N1s
�−M1, N2t

�−M2) = G. By definition of

general solutions, G(s(x), t(x)) = 0 ⇐⇒ G = 0 in K(x)[s, t].

Lemma 2.2.4. Let

s(x) =
akx

k + ak−1x
k−1 + · · ·+ a0

blxl + bl−1xl−1 + · · ·+ b0
and t(x) =

cmxm + cm−1x
m−1 + · · ·+ c0

dnxn + dn−1xn−1 + · · ·+ d0

be a non-trivial rational solution of the system (2.16), where ai, bi, ci, di are in some field of

constants L, extended from K; and bl, dn �= 0. If (s(x), t(x)) is a rational general solution

of the system (2.16), then there exists a constant, which is transcendental over K, among

the coefficients of s(x) and t(x).

Proof. Let S = (blx
l + bl−1x

l−1 + · · · + b0)s − (akx
k + ak−1x

k−1 + · · · + a0) and T =

(dnx
n + dn−1x

n−1 + · · · + d0)t − (cmxm + cm−1x
m−1 + · · · + c0). Let G = resx(S, T ) be

the resultant of S and T with respect to x. Then G is a polynomial in s and t with the

coefficients depending on ai, bi, ci, di. If all ai, bi, ci, di were in K, then G ∈ K[s, t] and

G(s(x), t(x)) = 0. Since (s(x), t(x)) is a rational general solution, it follows by Lemma

2.2.3 that G = 0. But G is the implicit equation of the rational curve with parametrization

(s(x), t(x)); compare Chapter 4 §4.5 in Sendra et al. (2008). So G �= 0, in contradiction.

Therefore, there is a coefficient of s(x) or t(x) that does not belong to K. Since K is an

algebraically closed field, a constant which is not in K must be a transcendental element

over K.

This lemma gives us a necessary condition for (s(x), t(x)) to be a rational general

solution of the system (2.16). It requires that any rational general solution of the system

has to contain at least one coefficient transcendental over the constant field of the system

itself. As an early discussion in the chapter, this transcendental coefficient is an arbitrary

constant. Next we give a sufficient condition for a rational solution (s(x), t(x)) of the

system (2.16) to be a rational general solution.

Lemma 2.2.5. Let (s(x), t(x)) be a rational solution of the system (2.16). Let H(s, t)

be the monic defining polynomial (w.r.t. a lexicographic order of terms in s and t) of the

rational algebraic curve defined by (s(x), t(x)). If there is an arbitrary constant in the

set of coefficients of H(s, t), then (s(x), t(x)) is a rational general solution of the system

(2.16).

Proof. Suppose that (s(x), t(x)) is a rational solution of the system (2.16). Let G ∈
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K(x){s, t} be a differential polynomial such that G(s(x), t(x)) = 0. Let

R = prem(G,N1s
� −M1, N2t

� −M2).

Then R ∈ K(x)[s, t] and R(s(x), t(x)) = 0. It is sufficient to assume that there is only

one arbitrary constant c in the set of coefficients of H(s, t). Then H(s, t) ∈ K(c)[s, t].

Moreover, H(s, t) is irreducible over K(c) because it is a rational curve (Sendra et al.

(2008), Theorem 4.4). Therefore, the polynomial R(s, t) must be a multiple of H(s, t).

This happens if and only if R = 0. It follows that (s(x), t(x)) is a rational general solution

of the system (2.16).

Q 3. What is the inverse image of a solution curve of a rational general

solution of F (x, y, y�) = 0?

Theorem 2.2.6. Let y = f(x) be a rational general solution of F (x, y, y�) = 0. Suppose

that the solution curve of f is parametrizable by P(s, t) = (χ1(s, t),χ2(s, t),χ3(s, t)). Let

(s(x), t(x)) = P−1(x, f(x), f �(x))

and g(s, t) =
∂χ1(s, t)

∂s
· ∂χ2(s, t)

∂t
− ∂χ1(s, t)

∂t
· ∂χ2(s, t)

∂s
. Then g(s(x), t(x)) �= 0 and

(s(x), t(x)) is a rational general solution of the system (2.13).

Proof. It is sufficient to prove the claim that if R ∈ K(x)[s, t] and R(s(x), t(x)) = 0, then

R = 0. If this is done, then g(s(x), t(x)) �= 0 because g(s, t) �= 0 by (2.8). Suppose that

P ∈ K(x){s, t} is a differential polynomial such that P (s(x), t(x)) = 0. Let

R = prem(P,N1s
� −M1, N2t

� −M2),

where M1,M2, N1, N2 are numerators and denominators of the right hand side of the

system (2.13). Then R ∈ K(x)[s, t] and P (s(x), t(x)) = 0 implies that R(s(x), t(x)) = 0.

By the claim, R = 0. Hence (s(x), t(x)) is a rational general solution of the system (2.13).

Now it remains to prove the claim. We have

R(s(x), t(x)) = R(P−1(x, f(x), f �(x))) = 0.

Let us consider the rational function R(P−1(x, y, z)) =
U(x, y, z)

V (x, y, z)
. Then U(x, y, y�) is a

differential polynomial satisfying the condition

U(x, f(x), f �(x)) = 0.

Since f(x) is a rational general solution of F (y) = 0 and U(x, y, y�) vanishes on y = f(x),

the differential pseudo remainder of U with respect to F must be zero. On the other hand,
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both F and U are differential polynomials of order 1, we only divide U by F and not by

any of its derivatives. Hence, we have the reduction

ImU = Q0F,

where I is the initial of F , m ∈ N and Q0 is a differential polynomial of order at most 1

in K(x){y}. Therefore,

R(s, t) = R(P−1(P(s, t))) =
U(P(s, t))

V (P(s, t))
=

Q0(P(s, t))F (P(s, t))

Im(P(s, t))V (P(s, t))
= 0

because F (P(s, t)) = 0 and I(P(s, t)) �= 0.

Q 4. Suppose that we have a rational solution of F (x, y, y�) = 0 but it is

not parametrizable by P? Could this solution be a rational general solution of

F (x, y, y�) = 0?

Proposition 2.2.7. If y = f(x) is a rational solution of F (x, y, y�) = 0 but it is not

parametrizable by P, then it can not be a rational general solution of F (x, y, y�) = 0.

Proof. Since y = f(x) is not parametrizable by P, the solution curve (x, f(x), f �(x)) must

lie on the intersection of the solution surface F (x, y, z) = 0 and another surface G(x, y, z) =

0 defined by the denominators of the inverse map P−1. The resultant R(x, y) = resz(F,G)

is vanished on f(x) and reduced w.r.t. F . By definition, this can not be a general

solution.

Q 5. How to construct a rational general solution of F (x, y, y�) = 0 from a

rational general solution of its associated system?

Assume that (s(x), t(x)) is a rational general solution of the associated system (2.13).

Substituting s(x) and t(x) into χ1(s, t) and using the relation (2.11) we get χ1(s(x), t(x)) =

x+ c for some constant c. Hence χ1(s(x− c), t(x− c)) = x. It follows that

y = χ2(s(x− c), t(x− c)) (2.18)

is a solution of the differential equation F (x, y, y�) = 0. Moreover, we will prove that

y = χ2(s(x− c), t(x− c)) is a rational general solution of F (x, y, y�) = 0.

Theorem 2.2.8. Let (s(x), t(x)) be a rational general solution of the system (2.13). Let

c = χ1(s(x), t(x)) − x. Then y = χ2(s(x − c), t(x − c)) is a rational general solution of

F (x, y, y�) = 0.

Proof. By the above discussion, it is clear that y = χ2(s(x − c), t(x − c)) is a rational

solution of F (x, y, y�) = 0. Let G be an arbitrary differential polynomial in K(x){y} such
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that G(y) = 0. Let R = prem(G,F ) be the differential pseudo remainder of G with respect

to F . It follows that R(y) = 0. We have to prove that R = 0. Assume that R �= 0. Then

R(χ1(s, t),χ2(s, t),χ3(s, t)) =
W (s, t)

Z(s, t)
∈ K(s, t).

On the other hand,

R(P(s(x− c), t(x− c))) = R(x, y, y�) = 0.

It follows that W (s(x − c), t(x − c)) = 0, hence, W (s(x), t(x)) = 0. By Lemma 2.2.3 we

must have W (s, t) = 0. Thus R(χ1(s, t),χ2(s, t),χ3(s, t)) = 0. Since F is irreducible and

degy� R < degy� F, we have R = 0 in K[x, y, z]. Therefore, y is a rational general solution

of F (x, y, y�) = 0.

2.2.3 Algorithm and example

Theorem 2.2.6 and Theorem 2.2.8 give a method to determine a rational general solution of

the first-order parametrizable algebraic ODE F (x, y, y�) = 0. We summarize the procedure

by the following semi-algorithm. It depends on a method for solving the system (2.13).

Algorithm GENERALSOLVER

Input: F (x, y, y�) = 0 and P(s, t) = (χ1(s, t),χ2(s, t),χ3(s, t)) such that F (P(s, t)) = 0
and P(s, t) is proper, where F ∈ K[x, y, z] and χ1,χ2,χ3 ∈ K(s, t).
Output: a rational general solution of F (x, y, y�) = 0 in the affirmative case.

1. Compute f1(s, t), f2(s, t), g(s, t) as in (2.14).

2. Compute a rational general solution (s(x), t(x)) of the associated system

�
s� =

f1(s, t)

g(s, t)
, t� =

f2(s, t)

g(s, t)

�
.

3. Compute the constant c := χ1(s(x), t(x))− x.

4. Return y = χ2(s(x− c), t(x− c)).

Note that we still have to solve the associated system for its rational general solutions

in general cases. The rest of this chapter and the next chapters will develop a method for

determining a rational general solution of such systems.
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Example 2.2.1. Consider the differential equation

F (x, y, y�) ≡ y�3 − 4xyy� + 8y2 = 0. (2.19)

Note that this differential equation appears in Piaggio (1933), Chapter XV, Arts 161, in

Hubert (1996) and in Kamke (1948), equation I.525. Here we demonstrate our approach

for this differential equation. The solution surface z3 − 4xyz + 8y2 = 0 has a proper

parametrization¶

P(s, t) = (t,−4s2 · (2s− t),−4s · (2s− t)).

The inverse map is P−1(x, y, z) =
�y
z
, x

�
. We compute

g(s, t) = 8s · (3s− t),

f1(s, t) = 4s · (3s− t), f2(s, t) = 8s · (3s− t).

In this case, the associated system is very simple

�
s� =

1

2
, t� = 1

�
. Solving this system

we obtain a rational general solution s(x) =
x

2
+ c2, t(x) = x+ c1 for arbitrary constants

c1, c2. The above algorithm follows that the rational general solution of the differential

equation F (x, y, y�) = 0 is

y = −4s(x− c1)
2 · (2s(x− c1)− t(x− c1)) = −c(x+ c)2, (2.20)

where c = 2c2 − c1. The following is the graph of three solution curves

(x,−c(x+ c)2,−2c(x+ c))

with c = −1, 1 and 2 on the solution surface z3 − 4xyz + 8y2 = 0.

Figure 2.1: Some solution curves on the solution surface z3 − 4xyz + 8y2 = 0

¶It can be seen that the cubic curve z3 − 4xyz + 8y2 = 0 is rational over K(x).
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Note that, in this example, gcd(g(s, t), f1(s, t)) = 4s · (3s− t). This defines a reducible

algebraic curve and we still find some solutions of the differential equation (2.19), whose

solution curves are parametrizable by P(s, t), by solving the system





t(x) = x

−4s(x)2 · (2s(x)− t(x)) = f(x)

−4s(x) · (2s(x)− t(x)) = f �(x)

4s(x) · (3s(x)− t(x)) = 0.

(2.21)

This system has two different solutions, namely

(s(x), t(x)) = (0, x) and (s(x), t(x)) =
�x
3
, x

�
.

These solutions give us two other solutions of the equation (2.19), namely y = 0 and

y =
4

27
x3. The solution y = 0 can be obtained by specifying the constant c = 0 in the

general solution (2.20). However, we can not get the solution y =
4

27
x3 from the general

solution (2.20). Note that the separant of F is S = 3y�2 − 4xy. We can prove that the

common solutions of F and S, which are called singular solutions of F (x, y, y�) = 0, are

only y = 0 and y =
4

27
x3. Here is the graph of the cubic curve

�
x,

4

27
x3,

4

9
x2

�
generated

by the singular solution y =
4

27
x3. �

Figure 2.2: The cubic curve

�
x,

4

27
x3,

4

9
x2

�
on the solution surface z3 − 4xyz + 8y2 = 0

Remark 2.2.1. Let F (x, y, y�) = 0 be a first-order algebraic ODE and let S =
∂F

∂y�
be its

separant. The singular solutions of F (x, y, y�) = 0 are defined by the system

{F (x, y, y�) = 0, S(x, y, y�) = 0}.
�The visualization is done by surfex, which is included as a Singular library, see Labs (2001).
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Assume that y = f(x) is a rational singular solution of F (x, y, y�) = 0. Then y = f(x) must

be a rational solution of the first-order autonomous ODE defined by resx(F, S) = 0. This

must define a rational curve and we can compute its rational solutions by parametrization.

The rational solutions of resx(F, S) = 0 are the candidates for rational singular solutions

of F (x, y, y�) = 0.

E.g. in the above example, resx(F, S) = 8y(−y�3 + 4y2). Solving this differential

equation we obtain y = 0 and a rational general solution y =
4

27
(x + c)3, where c is an

arbitrary constant. Now, it is clear that y = 0 is a singular solution of F (x, y, y�) = 0. In

order that y =
4

27
(x + c)3 is a singular solution of F (x, y, y�) = 0, we must have c = 0.

Hence, y =
4

27
x3.

2.2.4 Specialize to first-order autonomous algebraic ODEs

We consider autonomous algebraic ODEs of order 1 F (y, y�) = 0 as a special case of a

possibly non-autonomous algebraic ODE. In this section, we show that if F (y, z) = 0 is a

rational curve, then the associated system of F (y, y�) = 0 is really simple.

By Feng and Gao (2004, 2006), in order that F (y, y�) = 0 has a non-trivial rational

solution, the algebraic curve F (y, z) = 0 must be rational. Suppose that (f(t), g(t)) is

a proper rational parametrization of the curve F (y, z) = 0. Then we immediately have

P(s, t) = (s, f(t), g(t)) as a proper parametrization of the solution surface F (x, y, z) = 0.

This is a special case of a pencil of rational curves, namely, a cylindrical surface. With

respect to P(s, t) the associated system is

�
s� = 1, t� =

g(t)

f �(t)

�
.

The second equation of the associated system is again autonomous but of degree 1 in the

derivative. Therefore, its rational solution must be either a constant or a linear rational

function of the form
ax+ b

cx+ d
, where a, b, c and d are constants such that ad− bc �= 0.

Let s = x + C, t = t(x) be a rational general solution of the above associated sys-

tem, where C is an arbitrary constant. Then, by algorithm GENERALSOLVER, we obtain

y = f(t(x− C)) as a rational general solution of F (y, y�) = 0. This means that if we spe-

cialize the algorithm GENERALSOLVER to first-order autonomous algebraic ODEs, we obtain

Algorithm 1 in Feng and Gao (2004). Moreover, in this specialization we can geometrically

interpret the reason why we can get a rational general solution from a non-trivial rational

solution y = f(x) of F (y, y�) = 0 by simply taking y = f(x+C) for an arbitrary constant

C, which is stated in Theorem 5 in Feng and Gao (2004).
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2.2.5 Independence of the proper parametrization

We know that proper rational parametrizations of a rational surface are not unique. In-

deed, two parametrizations are different by a birational map of the plane. Let

φ(s1, t1) = (φ1(s1, t1),φ2(s1, t1))

be a birational map of the plane and ψ(s2, t2) = φ−1(s2, t2). If P(s1, t1) is a proper

parametrization of F (x, y, z) = 0, then (P ◦ψ)(s2, t2) is a new proper rational parametriza-

tion of F (x, y, z) = 0.

Q 6. How are the associated systems of F (x, y, y�) = 0 w.r.t. P(s1, t1) and

(P ◦ ψ)(s2, t2) related to each other?

Suppose that 


s�1 = R1(s1, t1),

t�1 = R2(s1, t1),

is the associated system of F (x, y, y�) = 0 w.r.t. P(s1, t1). Then the associated system of

F (x, y, y�) = 0 w.r.t. the proper parametrization (P ◦ ψ)(s2, t2) is
�

s�2
t�2

�
= Jφ ·

�
s�1
t�1

�
= Jφ ·

�
R1(s1, t1)

R2(s1, t1)

�

(s1, t1) = (ψ1(s2, t2), ψ2(s2, t2))
(2.22)

where Jφ =

�
φ1s1 φ1t1

φ2s1 φ2t1

�
is the Jacobian matrix of the map φ. The two associated

systems have the same rational solvability although they are different and the complexity

of these systems are not the same.

It can be proven that every birational map of the line is of the form φ(x) =
ax+ b

cx+ d
,

where a, b, c, d ∈ K and ad − bc �= 0. Unfortunately, it is not known what are the forms

of a birational map of the plane. Therefore, any description on the birational maps of the

plane could help us to simplify the associated system and perhaps find the simplest one.

Example 2.2.2. Consider the differential equation

F (x, y, y�) ≡ y�2 + 3y� − 2y − 3x = 0.

The solution surface z2 + 3z − 2y − 3x = 0 can be parametrized by

P(s, t) =

�
t

s
+

2s+ t2

s2
,−1

s
− 2s+ t2

s2
,
t

s

�
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and also by

Q(s, t) =

�
s,

t2

2
− 3

2
s− 9

8
, t− 3

2

�
.

The transformation between them is φ(s, t) =

�
t

s
+

2s+ t2

s2
,
t

s
+

3

2

�
, i.e., Q◦φ = P, with

the inverse

φ−1 = ψ(s, t) =

�
8

−3 + 8t+ 4s− 4t2
,

4(2t− 3)

−3 + 8t+ 4s− 4t2

�
.

Now, the associated system of F (x, y, y�) w.r.t. P(s, t) is {s� = st, t� = s+ t2} while the

associated system w.r.t. Q(s, t) is {s� = 1, t� = 1}.

Remark 2.2.2. The properness of a parametrization of the solution surface F (x, y, z) = 0

is important. We might consider non-proper parametrizations of F (x, y, z) = 0 as well.

However, we then have no control on the associated system, i.e., a non-rational solution

of the associated system might be mapped into a rational solution of F (x, y, y�) = 0. For

instance, let us consider the differential equation F ≡ y�2 − 4y = 0. The solution surface

z2−4y = 0 can be parametrized by the improper map P(s, t) =

�
s,

t4

4
, t2

�
. Its associated

system is �
s� = 1, t� =

1

t

�
. (2.23)

Although this system has a non-rational general solution (s(x), t(x)) = (x + c,
√
2x), its

image by P(s, t) gives us the rational general solution of y�2−4y = 0, namely, y = (x−c)2,

where c is an arbitrary constant.

Nonetheless, this may well be a way to study more general classes of solutions of

algebraic ODEs by parametrization.

2.2.6 A degree bound for rational solutions of the associated system

We have studied the algebraic ODE of order 1, F (x, y, y�) = 0, provided a proper rational

parametrization P(s, t) = (χ1(s, t),χ2(s, t),χ3(s, t)) of the solution surface F (x, y, z) = 0.

We know that every rational solution (s(x), t(x)) of the associated system of F (x, y, y�) = 0

w.r.t. P(s, t) satisfies the condition χ1(s(x), t(x)) = x+ c for some constant c.

Q 7. What is the relation between deg s(x) and deg t(x) if χ1(s(x), t(x)) = x?

From the condition χ1(s(x), t(x)) = x we can deduce that the degree of t(x) is bounded

in terms of the degree of s(x) and the degree of χ1(s, t) with respect to s.

Theorem 2.2.9. Let

χ1(s, t) =
an(t)s

n + an−1(t)s
n−1 + · · ·+ a0(t)

bm(t)sm + bm−1(t)sm−1 + · · ·+ b0(t)
∈ K(s, t)
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be such that χ1(s, t) �∈ K(s) and χ1(s, t) �∈ K(t), where m,n ∈ N and bm(t) �= 0. Suppose

that s(x) and t(x) are rational functions in K(x) such that χ1(s(x), t(x)) = x. Let δ =

deg s(x). Then

deg t(x) ≤ 1 + δmax{m,n}.

Proof. We have

χ1(s(x), t(x)) = x ⇐⇒ an(t(x))s(x)
n + an−1(t(x))s(x)

n−1 + · · ·+ a0(t(x))

bm(t(x))s(x)m + bm−1(t)s(x)m−1 + · · ·+ b0(t(x))
= x.

We know that for any rational function t ∈ K(x), x is algebraic over K(t) and

deg t(x) = [K(x) : K(t)].

Therefore, in order to find a degree bound for t, it is enough to find an algebraic equation

for x over K(t). Let s(x) =
P

Q
, where P,Q ∈ K[x], Q �= 0. Let

δ = deg s(x) = max{degP, degQ}, l = degQ.

We have

x =
Qm

Qn
· (an(t)P

n + · · ·+ a0(t)Q
n)

(bm(t)Pm + · · ·+ b0(t)Qm)

= Qm−n · (an(t)P
n + · · ·+ a0(t)Q

n)

(bm(t)Pm + · · ·+ b0(t)Qm)
·

This equation derives a non-zero algebraic equation of x over K(t) because χ1(s, t) �∈ K(s)

and χ1(s, t) �∈ K(t). We can compute the degree of x in the above equation regarding

l ≤ δ.

If n ≥ m, then

deg t(x) ≤ max{1 +mδ + l(n−m), nδ} ≤ 1 + nδ.

If n < m, then

deg t(x) ≤ max{1 +mδ, nδ + l(m− n)} ≤ 1 +mδ.

Therefore, deg t(x) ≤ 1 + δmax{m,n}.

Of course, the degree of s(x) can also be bounded in the same way by the degree of

t(x) and the degree of the first component of P(s, t) with respect to t.
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2.3 A criterion for the existence of a rational general solu-

tion

In this section, we derive a criterion for the existence of a rational general solution of the

associated system of the equation F (x, y, y�) = 0. The following lemma can be found in

Feng and Gao (2006).

Lemma 2.3.1. Let n,m ∈ N. There exists a differential polynomial Dn,m(y) such that

every rational function

y =
anx

n + an−1x
n−1 + · · ·+ a0

bmxm + bm−1xm−1 + · · ·+ b0

is a solution of Dn,m(y), where ai, bj are constants in K. Moreover, the differential poly-

nomial Dn,m(y) has only rational solutions.

Definition 2.3.1. The differential polynomial in Lemma 2.3.1 is given by

Dn,m(y) =

����������

�
n+1
0

�
y(n+1)

�
n+1
1

�
y(n) · · ·

�
n+1
m

�
y(n+1−m)

�
n+2
0

�
y(n+2)

�
n+2
1

�
y(n+1) · · ·

�
n+2
m

�
y(n+2−m)

...
... · · · ...�

n+1+m
0

�
y(n+1+m)

�
n+1+m

1

�
y(n+m) · · ·

�
n+1+m

m

�
y(n+1)

����������

.

We call Dn,m(y) a Feng-Gao’s differential polynomial.

Using Feng-Gao’s differential polynomials we have the following criterion.

Theorem 2.3.2. Let M1, N1,M2, N2 ∈ K[s, t], N1, N2 �= 0. The autonomous system

(2.16), i.e., �
s� =

M1(s, t)

N1(s, t)
, t� =

M2(s, t)

N2(s, t)

�

has a rational general solution (s(x), t(x)) with deg s(x) ≤ n and deg t(x) ≤ m if and only

if 


prem(Dn,n(s), N1s

� −M1, N2t
� −M2) = 0,

prem(Dm,m(t), N1s
� −M1, N2t

� −M2) = 0.
(2.24)

Proof. Suppose that the system (2.16) has a rational general solution (s(x), t(x)) with

deg s(x) ≤ n and deg t(x) ≤ m. Then (s(x), t(x)) is a solution of both Dn,n(s) and

Dm,m(t). By definition of rational general solutions of the system (2.16) we have




prem(Dn,n(s), N1s

� −M1, N2t
� −M2) = 0,

prem(Dm,m(t), N1s
� −M1, N2t

� −M2) = 0.
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Conversely, if these two conditions hold, then Dn,n(s) and Dm,m(t) belong to

I := {G ∈ K(x){s, t} | prem(G,M1s
� −N1,M2t

� −N2) = 0}.

Since I is a prime differential ideal, I has a generic zero. This generic zero is a zero

of Dn,n(s) and Dm,m(t). By Lemma 2.3.1, these two differential polynomials have only

rational solutions. Therefore, the generic zero of I must be rational.

Remark 2.3.1. If we know a degree bound of the rational solutions of the system (2.16),

then Theorem 2.3.2 gives us a criterion for the existence of a rational general solution of

the system (2.16). In fact, there is a generic degree bound presented in the next chapter

when we study the “invariant algebraic curves” of this associated system.

2.3.1 Application—Linear systems with rational general solutions

We have seen that the associated system of the algebraic ODE F (x, y, y�) = 0 is an

autonomous system. In this section, we consider the linear system of autonomous ODEs

of the form 


s� = as+ bt+ e

t� = cs+ dt+ h
(2.25)

where a, b, c, d, e, h are constants in K.

Q 8. When does the system has a rational general solution? What are the

possible degrees of the rational general solutions?

In fact, we prove that the rational solutions of that system are polynomials; moreover,

their degrees are at most 2. Before studying rational solutions of the system (2.25) we

need to introduce the notation of order of an irreducible polynomial in a rational function.

Definition 2.3.2. Let K be a field. Let s ∈ K(x) be a rational function in x. Suppose

that s has a complete decomposition as follows

s =
A

pα1
1 · · · pαn

n

where A ∈ K[x] and pi are distinct irreducible polynomials over K and gcd(A, pi) = 1 for

all i = 1, . . . , n. The power αi in this representation of s is called the order of s with

respect to pi, denoted by ordpi(s). By convention, if an irreducible polynomial p does not

effectively appear in the denominator of s, then we define ordp(s) = 0.

Lemma 2.3.3. Every rational solution of the linear system (2.25) is a polynomial solution.
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Proof. Suppose that (s(x), t(x)) is a rational solution of the linear system (2.25). If s(x)

or t(x) is not a polynomial, then we can assume without loss of generality that

s =
A

pα1
1 · · · pαn

n
,

where A ∈ K[x], pi are irreducible polynomials over K, gcd(A, pi) = 1 and αi > 0 for all

i = 1, . . . , n. Let

βi = ordpi(t) ≥ 0 ∀i = 1, . . . , n.

Since αi > 0, computing the derivative of s(x) we have

ordpi(s
�) = αi + 1 ∀i = 1, . . . , n.

On the other hand,

ordpi(as+ bt+ e) ≤ max{αi,βi}, ordpi(cs+ dt+ h) ≤ max{αi,βi}.

Let us compare the orders with respect to pi of the left and the right hand sides of the

linear system (2.25). There are two cases as follows.

• Either αi ≥ βi, then ordpi(as+ bt+ e) ≤ αi < ordpi(s
�), which is impossible;

• or 0 < αi < βi, then ordpi(cs+ dt+ h) ≤ βi < ordpi(t
�), which is also impossible.

Therefore, αi = 0 for all i = 1, . . . , n. Thus s is a polynomial. Replacing the role of s and

t we also prove that t is a polynomial. Therefore, (s(x), t(x)) is a polynomial solution.

Theorem 2.3.4. Every rational general solution of the linear system (2.25) is a couple

of polynomials of degree at most 2.

Proof. By Lemma 2.3.3, every rational solution of the linear system (2.25) is a polynomial

solution. In this case the Gao’s differential polynomials for checking polynomial general

solutions of the system are of simple forms s(n+1) and t(n+1) for some n. We can write the

linear system in the matrix form

�
s�

t�

�
=

�
a b

c d

��
s

t

�
+

�
e

h

�
.

Hence �
s��

t��

�
=

�
a b

c d

�2�
s

t

�
+

�
a b

c d

��
e

h

�
,

...
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�
s(n+1)

t(n+1)

�
=

�
a b

c d

�n+1�
s

t

�
+

�
a b

c d

�n�
e

h

�
,

for n ∈ N. By Theorem 2.3.2, the system (2.25) has a polynomial general solution of

degree at most n if and only if




prem(s(n+1), s� − as− bt− e, t� − cs− dt− h) = 0

prem(t(n+1), s� − as− bt− e, t� − cs− dt− h) = 0.

or equivalently when

�
a b

c d

�n+1

= 0 and

�
a b

c d

�n�
e

h

�
= 0.

We will prove that these relations hold for n ≥ 2 if and only if

�
a b

c d

�2

= 0.

Then the conclusion of the theorem follows immediately.

Assume that

�
a b

c d

�2

= 0. Then

�
a b

c d

�n+1

= 0 and

�
a b

c d

�n�
e

h

�
= 0

for all n ≥ 2.

Conversely, let �
a b

c d

�n

= 0

for some n ≥ 1. Then ad− bc = 0 and the Jordan canonical form of the matrix

�
a b

c d

�

is either

�
0 0

0 a+ d

�
or

�
0 1

0 0

�
. In the first case, since

�
a b

c d

�n

= 0, we have

a+ d = 0. Thus �
a b

c d

�
=

�
0 0

0 0

�
.

In the second case, we have

�
a b

c d

�2

= 0.
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The above proof also tell us the necessary and sufficient conditions of the linear system

for having rational general solutions. Namely,

�
a b

c d

�2

= 0.

We can easily find all possibilities of the coefficients a, b, c, d. In fact,

�
a b

c d

�2

= 0 ⇐⇒





a2 + bc = 0

b(a+ d) = 0

c(a+ d) = 0

d2 + bc = 0.

Solving this algebraic system we obtain the following cases

• if b = 0, then a = d = 0;

• if b �= 0, then a = −d and c = −d2

b
.

Thus the explicit polynomial solutions of the linear system are given by the following table,

where C1, C2 are arbitrary constants. Note that the last line of the table also covers the

System Rational general solution�
0 0
0 0

� �
s(x) = ex+ C1

t(x) = hx+ C2

�
0 0
c 0

� 


s(x) = ex+ C1

t(x) = ce
x2

2
+ (cC1 + h)x+ C2




−d b

−d2

b
d







s(x) =

hb− ed

2
x2 + (bC1 + e)x+ C2

t(x) =
(hb− ed)d

2b
x2 + (dC1 + h)x+

d

b
C2 + C1

Table 2.1: Linear systems with rational general solutions

other symmetric cases, for instance

d = 0 �−→
�

0 b

0 0

�
; d = −a, b = −a2

c
�−→


 a −a2

c
c −a


 .

We can prove that the solutions in the table are rational general solutions of the corre-

sponding system. For instance, consider a simple system {s� = e, t� = h} , where e and h



2.3. A criterion for the existence of a rational general solution 31

are constants but not all zero. It turns out that the system has a solution given by

s(x) = ex+ C1, t(x) = hx+ C2,

where C1, C2 are arbitrary constants. The implicit defining polynomial of (s(x), t(x)) is

H(s, t) = hs− et− hC1 + eC2.

Since the coefficients of H(s, t) contain an arbitrary constant, namely −hC1 + eC2, it

follows from Lemma 2.2.5 that (s(x), t(x)) is a rational general solution.

Using a similar argument for the other systems in the table we prove that those

solutions are rational general solutions of the corresponding systems.





Chapter 3

Planar rational systems of

autonomous ODEs

3.1 Introduction to planar rational systems

In the previous chapter, we are motivated to studying the rational general solutions of the

systems of the form (2.16). From the point of view of differential algebra, the solution set

of the system (2.16) can be seen as an algebraic differential manifold (Ritt (1950), II, §1).
We have described them by means of prime differential ideals in a differential ring. By

studying the structure of such prime differential ideals, we are able to see, in the linear

cases, when the system (2.16) has a rational general solution and what they are.

On the other hand, we can also study the rational (general) solutions of the system

(2.16) from the point of view of algebraic geometry, i.e., by looking at the usual ideal of all

polynomials vanishing on a rational solution of the system. In this direction, a treatment

on the algebraic solutions of a polynomial system




s� = P (s, t),

t� = Q(s, t),
(3.1)

has already been studying by Darboux (1878). In his work, G. Darboux has introduced

the notion of an invariant algebraic curve, i.e., an algebraic relation between s(x) and

t(x) of a solution (s(x), t(x)) of the polynomial system (3.1). This notion is essential for

the Darboux’s theory of integrability of a polynomial system. By Darboux, the system

is integrable iff it has a first integral, i.e., a non-constant function such that its values on

every solution of the system is constant. Invariant algebraic curves are the main ingredient

to build up a first integral of the system.

Recall that the associated system in Chapter 2 is a rational system of autonomous

33
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ODEs of the form (2.16), i.e.,

�
s� =

M1(s, t)

N1(s, t)
, t� =

M2(s, t)

N2(s, t)

�
.

The rational system (2.16) and the polynomial system defined by P = M1N2 and Q =

M2N1 have the same invariant algebraic curves and the same first integrals. Therefore, the

Darboux’s theory is applied to study rational (general) solutions of the system (2.16). In

fact, we apply the theory of rational parametrization of algebraic curves for the invariant

algebraic curves of the system in order to obtain an explicit rational (general) solution of

the system.

Goal 1. The goal of this chapter is to study the existence of a rational general

solution of the system (2.16) and in the affirmative case we determine an

explicit one.

The fact is that any rational solution of the system (2.16) is corresponding to an invariant

algebraic curve of the system. Furthermore, this curve is rational. Therefore, we first need

to determine the invariant algebraic curves of the system. Then we apply the theory of

rational parametrization of algebraic curves for those invariant algebraic curves. In the

end, we give an explicit procedure to computing a rational general solution of the system

(2.16). The result of this chapter is based on Ngô and Winkler (2011)

Before going to details, we notice that the polynomial system (3.1) has been discussed

in the context of holomorphic singular foliations of the complex projective plane CP2

(Darboux (1878); Jouanolou (1979); Lins Neto (1988); Carnicer (1994)). Most of the time

we stay in the affine plane but in some discussions we need a result—the degree bound

of an invariant algebraic curve—that holds in the complex projective plane. Therefore, in

this chapter, we also mention the description of the system (3.1) in the complex projective

plane.

Note that, one can derive from the system (2.16) and the polynomial system (3.1) to

the single differential equation
dt

ds
=

Q(s, t)

P (s, t)
, (3.2)

or the 1-form

Q(s, t)ds− P (s, t)dt = 0, (3.3)

or the polynomial vector field

D := P
∂

∂s
+Q

∂

∂t
. (3.4)

However, the correspondence is not one-to-one. Hence, from the equation (3.2), we can

not construct the system (2.16) or the polynomial system (3.1). But it is enough to have
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the form (3.2) or (3.3) or (3.4) for studying the invariant algebraic curves of the system

(2.16) or of the polynomial system (3.1).

3.2 Invariant algebraic curves of a planar rational system

In this section, we present the notion of invariant algebraic curves of the system (2.16)

and a method to determining these curves.

Let P = M1N2 and Q = M2N1, be two polynomials in K[s, t]; denote that D =

P
∂

∂s
+ Q

∂

∂t
. Suppose that (s(x), t(x)) is a solution of the system (2.16) such that there

exists an irreducible polynomial G(s, t) with G(s(x), t(x)) = 0. Then we have

DG = GK,

where K is some polynomial of degree at most m− 1 and m = max{deg(P ), deg(Q)}.

Definition 3.2.1. An algebraic curve G(s, t) = 0 is called an invariant algebraic curve of

the system (2.16) iff

DG = GK,

for some polynomial K. The polynomial K is called the cofactor of G.

By definition, the invariant algebraic curves of the rational system (2.16) and that of

the polynomial (3.1), where P = M1N2 and Q = M2N1, are the same. Therefore, when

we are interested in the invariant algebraic curves of those systems, we will consider the

analysis on polynomial systems.

Definition 3.2.2. An invariant algebraic curve G(s, t) = 0 of the system (2.16) is called

a general invariant algebraic curve iff G(s, t) is a monic polynomial w.r.t. a lexicographic

order of terms in s, t and there exists a coefficient of G such that it is transcendental over

K.

In this case, G(s, t) = 0 can be seen as either one curve over K(c), where c is a

transcendental constant over K, or a family of curves over K. By Lemma 2.2.5, general

invariant algebraic curves would be the algebraic curves of a potential general solution of

the system (2.16).

Lemma 3.2.1. Let G(s, t) =
�l

i=1G
ni
i be the decomposition of G(s, t) into relatively prime

irreducible factors over K. Then G(s, t) = 0 is an invariant algebraic curve of the system

(2.16) with cofactor K(s, t) if and only if the curve Gi(s, t) = 0 is an invariant algebraic

curve of that system with cofactor Ki for all i = 1, · · · , l and K =
�l

i=1 niKi.



36 Chapter 3. Planar rational systems of autonomous ODEs

Proof. Suppose that G(s, t) = 0 is an invariant algebraic curve, i.e., we have

DG =

l�

i=1

niG
ni−1
i DGi

�

j �=i

G
nj

j = G ·K,

where K is the cofactor of G. It implies that Gi devides DGi
�

j �=iG
nj

j . Since Gi and Gj

are relatively prime for i �= j, we must have that Gi devides DGi. In other words, Gi = 0

is an invariant algebraic curve for all i = 1, . . . , l.

Conversely, let Gi = 0 be an invariant algebraic curve with cofactor Ki. Then

DG =

l�

i=1

niG
ni−1
i DGi

�

j �=i

G
nj

j

=

l�

i=1

Gni
i

�
l�

i=1

niKi

�
.

Hence, G = 0 is an invariant algebraic curve with cofactor K =
�l

i=1 niKi.

Therefore, from now on, we only consider the irreducible invariant algebraic curves of

the system (2.16). Computing an irreducible invariant algebraic curve G(s, t) = 0 of the

system (2.16) can be performed via undetermined coefficients method as long as an upper

bound for the degree of the polynomial G(s, t) is setting up.

Let H = gcd(P,Q), P = P1H and Q = Q1H. Then every invariant algebraic curve of

the system 


s� = P1(s, t),

t� = Q1(s, t),
(3.5)

is an invariant algebraic curve of the system (2.16). Conversely, suppose that G(s, t) = 0

is an irreducible invariant algebraic curve of the system (2.16). Then

(GsP1 +GtQ1)H = GK

for some polynomial K. Since G(s, t) is irreducible, either G|H or G|(GsP1 + GtQ1). In

the latter case, G(s, t) = 0 is an invariant algebraic curve of the system (3.5). In the first

case, G(s, t) is an irreducible factor of H(s, t) and for any parametrization (s(x), t(x)) of

G(s, t) = 0 we have

P (s(x), t(x)) = 0 = Q(s(x), t(x)).

In this case, a parametrization (s(x), t(x)) of G(s, t) = 0 is a solution of the system (2.16)

only if s(x) and t(x) are constants, i.e., any point of the curve G(s, t) = 0 gives a trivial

rational solution of the system (2.16).
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Example 3.2.1. Consider the polynomial differential system




s� = st,

t� = s+ t2.
(3.6)

We first ask for the invariant algebraic curves of degree 1. Consider the graded lexico-

graphic order with s > t. Then there are two case distinctions, namely,

G(s, t) = t+ c, G(s, t) = s+ bt+ c.

The first polynomial can not define an invariant algebraic curve because

GsP +GtQ = s+ t2

is not divisible by G. Now we consider the second polynomial, and the remainder of the

division of GsP +GtQ by G is

(−c− b2)t− bc.

It follows that G(s, t) = s + bt + c defines an invariant algebraic curve if and only if

b = c = 0. Therefore, G(s, t) = s is an invariant algebraic curve of degree 1.

Similarly, we ask for the invariant algebraic curves of degree 2. Again take the graded

lexicographic order with s > t. There are three case distinctions, namely,

G(s, t) = t2 + ds+ et+ f, G(s, t) = st+ ct2 + ds+ et+ f,

G(s, t) = s2 + bst+ ct2 + ds+ et+ f.

If G(s, t) = t2 + ds+ et+ f , then the remainder of the division of GsP +GtQ by G is

(2− d)st+ (de+ e)s+ (e2 − 2f)t+ ef.

So we need to have d = 2 and e = f = 0. Hence, G(s, t) = t2+2s is an invariant algebraic

curve of the system. With the same procedure we can see that G(s, t) = st+ct2+ds+et+f

is not an invariant algebraic curve for any choice of its coefficients; and G(s, t) = s2+bst+

ct2 + ds + et + f is an invariant algebraic curve if and only if b = e = f = 0 and d = 2c,

i.e., G(s, t) = s2 + ct2 + 2cs, where c is an arbitrary constant.

The family of irreducible curves s2 + ct2 + 2cs = 0 corresponds to the level curves of

the surface z = s2

2s+t2
. Later, the function s2

2s+t2
is a rational first integral of the given

polynomial system. Hence, we have two ways of visualizing this family of curves as in

Figure 3.1.

Of course, we can keep on increasing the degree of the curve for computing the irre-
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Figure 3.1: Family of irreducible invariant algebraic curves: s2 + ct2 + 2cs = 0

ducible invariant algebraic curves of this system. In this example, however, we will see that

a theorem by Darboux guarantees that the system has no irreducible invariant algebraic

curve of degree higher than 2.

The method consists of two steps: computing a normal form of DG in the ideal

generated by G w.r.t. an ordering and then solving the result algebraic system on the

coefficients of G. In Man (1993), one can find a discussion on the efficiency of different im-

plementations of computing invariant algebraic curves in some computer algebra systems

(MACSYMA and REDUCE).

3.3 Rational solutions of planar rational systems of first-

order autonomous ODEs

In this section, we give an algorithm to determine a rational solution of the system (2.16).

A rational solution of the system (2.16) is a pair of rational functions C(x) = (s(x), t(x))

satisfying the system (2.16).

Definition 3.3.1. A rational solution (s(x), t(x)) of (2.16) is said to be trivial if both

s(x) and t(x) are constants.

A trivial solution of (2.16) can be easily found by intersecting the two algebraic curves

M1(s, t) = 0 and M2(s, t) = 0. Otherwise, a non-trivial rational solution (s(x), t(x)) of

(2.16) defines a rational curve. Let us see what properties of that algebraic curve are.

Lemma 3.3.1. Let C(x) = (s(x), t(x)) be a non-trivial rational solution of the system

(2.16). Let G(s, t) be the defining polynomial of the curve parametrized by C(x). Then

GsM1N2 +GtM2N1 = GK,

where Gs and Gt are the partial derivatives of G w.r.t. s and t; K is some polynomial.
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Proof. Since G(s, t) is the defining polynomial of the curve parametrized by (s(x), t(x)),

we have

G(s(x), t(x)) = 0.

Differentiating this equation with respect to x we obtain

Gs(s(x), t(x)) · s�(x) +Gt(s(x), t(x)) · t�(x) = 0.

R(x) = (s(x), t(x)) is a solution of the system, so we have

Gs(s(x), t(x)) ·
M1(s(x), t(x))

N1(s(x), t(x))
+Gt(s(x), t(x)) ·

M2(s(x), t(x))

N2(s(x), t(x))
= 0.

Hence, the polynomial GsM1N2+GtM2N1 is in the ideal of the curve generated by G(s, t).

In other words, we have

GsM1N2 +GtM2N1 = GK

for some polynomial K.

Every non-trivial rational solution of the system (2.16) determines a rational curve,

which is also an invariant algebraic curve of the system. Therefore, we first look for the

invariant algebraic curves of the system and then parametrize them to obtain rational solu-

tions. Of course, if none of the invariant algebraic curves is rational, then we immediately

conclude that there is no rational solution.

Definition 3.3.2. An invariant algebraic curve G(s, t) = 0 of the rational system (2.16)

is called a rational invariant algebraic curve iff G(s, t) = 0 is a rational curve.

Lemma 3.3.2. Let G(s, t) = 0 be an irreducible rational invariant algebraic curve of the

system (2.16). Let (s(x), t(x)) be a rational parametrization of the curve G(s, t) = 0. Then

we have

s�(x) ·M2(s(x), t(x))N1(s(x), t(x)) = t�(x) ·M1(s(x), t(x))N2(s(x), t(x)).

Moreover, if G � N1 and G � N2, then

s�(x) · M2(s(x), t(x))

N2(s(x), t(x))
= t�(x) · M1(s(x), t(x))

N1(s(x), t(x))
.

Proof. Since G(s(x), t(x)) = 0, we have

Gs(s(x), t(x))s
�(x) +Gt(s(x), t(x))t

�(x) = 0.
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Moreover, G(s, t) = 0 is an invariant algebraic curve, so we have

Gs(s(x), t(x))M1(s(x), t(x))N2(s(x), t(x))+Gt(s(x), t(x))M2(s(x), t(x))N1(s(x), t(x)) = 0.

Note that the irreducibility of G implies (Gs(s(x), t(x)), Gt(s(x), t(x))) �= (0, 0). Therefore,

�����
s�(x) t�(x)

M1(s(x), t(x)) ·N2(s(x), t(x)) M2(s(x), t(x)) ·N1(s(x), t(x))

����� = 0.

Moreover, if G � N1 and G � N2, then N1(s(x), t(x)) �= 0 and N2(s(x), t(x)) �= 0. Hence,

s�(x) · M2(s(x), t(x))

N2(s(x), t(x))
= t�(x) · M1(s(x), t(x))

N1(s(x), t(x))
.

The lemma tells us that not every rational parametrization of a rational invariant

algebraic curve will provide a rational solution of the system. But they are good candidates

for rational solutions of the system. Therefore, we still have to determine whether any of

the infinitely many rational parametrizations leads to a solution of the system. We know

that a rational parametrization of a curve is completely determined by reparametrization

of a proper parametrization of the curve (see Appendix A).

Q 9. Which reparametrizations of a proper rational parametrization of an

invariant algebraic curve lead to solutions of the system (2.16)?

Definition 3.3.3. A rational invariant algebraic curve of the system (2.16) is called a

rational solution curve iff it possesses a rational parametrization which is a solution of the

system.

From now on, we are only interested in non-trivial rational solutions of the system

(2.16). Let us recall that if (s(x), t(x)) is a rational parametrization of an algebraic curve

G(s, t) = 0, then at least one of the components of (s(x), t(x)) must be non-constant.

The following theorem provides a necessary and sufficient condition for a rational

invariant algebraic curve to be a rational solution curve.

Theorem 3.3.3. Let G(s, t) = 0 be a rational invariant algebraic curve of the system

(2.16) such that G � N1 and G � N2. Let (s(x), t(x)) be a proper rational parametrization

of G(s, t) = 0. Then G(s, t) = 0 is a rational solution curve of the system (2.16) if and

only if one of the following differential equations has a rational solution T (x):

1. T � =
1

s�(T )
· M1(s(T ), t(T ))

N1(s(T ), t(T ))
when s�(x) �= 0,

2. T � =
1

t�(T )
· M2(s(T ), t(T ))

N2(s(T ), t(T ))
when t�(x) �= 0.
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If there is such a rational solution T (x), then the rational solution of the system (2.16)

corresponding to G(s, t) = 0 is given by (s(T (x)), t(T (x))).

Proof. Assume that (s̄(x), t̄(x)) is a rational solution of the system (2.16) corresponding

to G(s, t) = 0, i.e., 



s̄�(x) =
M1(s̄(x), t̄(x))

N1(s̄(x), t̄(x))
,

t̄�(x) =
M2(s̄(x), t̄(x))

N2(s̄(x), t̄(x))
.

Since (s(x), t(x)) is a proper parametrization of G(s, t) = 0, there exists a rational function

T (x) such that

s̄(x) = s(T (x)), t̄(x) = t(T (x)).

It implies that 


s̄�(x) = s�(T (x)) · T �(x),

t̄�(x) = t�(T (x)) · T �(x).

Therefore,

T �(x) · s�(T (x)) = M1(s̄(x), t̄(x))

N1(s̄(x), t̄(x))

and

T �(x) · t�(T (x)) = M2(s̄(x), t̄(x))

N2(s̄(x), t̄(x))
.

When s(x) or t(x) are non-constants, we have

T �(x) =
1

s�(T (x))
· M1(s̄(x), t̄(x))

N1(s̄(x), t̄(x))
or T �(x) =

1

t�(T (x))
· M2(s̄(x), t̄(x))

N2(s̄(x), t̄(x))
,

respectively. Conversely, assume w.l.o.g. that s(x) is non-constant and T (x) is a rational

solution of the first differential equation. By Lemma 3.3.2 we have

s�(T ) · M2(s(T ), t(T ))

N2(s(T ), t(T ))
= t�(T ) · M1(s(T ), t(T ))

N1(s(T ), t(T ))
.

If t�(T ) = 0, then
M2(s(T ), t(T ))

N2(s(T ), t(T ))
= 0 and t(x) = c, for some constant c. It is obvious

that (s(T (x)), c) is a rational solution of the system (2.16). Hence G(s, t) = 0 is a rational

solution curve. If t�(T ) �= 0, then

1

t�(T )
· M2(s(T ), t(T ))

N2(s(T ), t(T ))
=

1

s�(T )
· M1(s(T ), t(T ))

N1(s(T ), t(T ))
.

Therefore, T (x) is also a rational solution of the second differential equation. It follows

that (s(T (x)), t(T (x))) is a rational solution of the system (2.16). Hence G(s, t) = 0 is a
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rational solution curve.

We note that if s(x) and t(x) are both non-constant, the two differential equations

in Theorem 3.3.3 are the same because the expressions on the right hand side are equal

by Lemma 3.3.2. According to Theorem 3.3.3, assuming that we are in case (1), we need

to compute a rational solution of the autonomous differential equation of order 1 and of

degree 1 in T �

T �(x) =
1

s�(T )
· M1(s(T ), t(T ))

N1(s(T ), t(T ))
.

Those features of the differential equation are inherited by the associated system. In what

follows, we see that it is simple to deal with the rational solvability of this differential

equation.

In the next theorem, we prove that the rational solvability of this differential equa-

tion does not depend on the choice of a proper parametrization of the rational invariant

algebraic curve G(s, t) = 0.

Theorem 3.3.4. Let G(s, t) be a rational invariant algebraic curve of the system (2.16)

such that G � N1 and G � N2. Let P1(x) = (s1(x), t1(x)) and P2(x) = (s2(x), t2(x)) be

two proper rational parametrizations of the curve G(s, t) = 0 such that s�1(x) �= 0 and

s�2(x) �= 0. Then the two autonomous differential equations

T �
1 =

1

s�1(T1)
· M1(s1(T1), t1(T1))

N1(s1(T1), t1(T1))
(3.7)

and

T �
2 =

1

s�2(T2)
· M1(s2(T2), t2(T2))

N2(s2(T2), t2(T2))
(3.8)

have the same rational solvability, i.e., one of them has a rational solution if and only if

the other one has. Moreover, we can choose T1 and T2 such that

P1(T1) = P2(T2).

Proof. Suppose that (3.7) has a rational solution T1(x). Then the rational solution of

(2.16) corresponding to G(s, t) = 0 is (s1(T1(x)), t1(T1(x))). Since (s2(x), t2(x)) is a proper

rational parametrization of the same curve G(s, t) = 0, there exists a rational function

T2(x) such that

s2(T2(x)) = s1(T1(x)), t2(T2(x)) = t1(T1(x)).

Hence,

s�2(T2(x))T
�
2(x) = s�1(T1(x))T

�
1(x) =

M1(s1(T1), t1(T1))

N1(s1(T1), t1(T1))
=

M1(s2(T2), t2(T2))

N1(s2(T2), t2(T2))
.
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This means that T2(x) is a rational solution of (3.8).

Theorem 3.3.5. Suppose that s(x) is a non-constant rational function and N1(s(x), t(x)) �=
0. Then every rational solution of

T � =
1

s�(T )
· M1(s(T ), t(T ))

N1(s(T ), t(T ))

is of the form T (x) =
ax+ b

cx+ d
, where a, b, c and d are constants. In particular, every non-

trivial rational solution of the system (2.16) is proper in the sense of proper parametriza-

tion.

Proof. Assume that T (x) is a non-constant rational solution of the above differential

equation. Then, by Theorem 3.7 in Feng and Gao (2006), (T (x), T �(x)) forms a proper

parametrization of the algebraic curve H(T, U) = 0 defined by the numerator of

s�(T ) ·N1(s(T ), t(T )) · U −M1(s(T ), t(T )).

Using the degree bound of proper parametrizations in Sendra and Winkler (2001) and

observing that the degree of H(T, U) with respect to U is 1, we see that the degree of

T (x) must be 1. Therefore, by Theorem 3.3.3, a non-trivial rational solution of the system

(2.16) is a composition of a proper parametrization with a non-constant linear rational

function, hence a proper parametrization.

Remark 3.3.1. There is another way of seeing this result. By Theorem 3.7 in Feng and

Gao (2006), if T (x) is a non-constant rational function, then we haveK(x) = K(T (x), T �(x)).

If T �(x) = f(T (x)), where f(T ) is a non-zero rational function in K(T ), then

K(x) = K(T (x), T �(x)) = K(T (x), f(T (x))) = K(T (x)).

Therefore, T (x) is a linear rational function in x.

By this theorem we can always decide whether the differential equation for T (x) has a

rational solution. Therefore, we can decide whether an invariant algebraic curveG(s, t) = 0

is a rational solution curve.

Note that if (s(x), t(x)) is a rational solution of the system (2.16), then, because of

the autonomy of (2.16),

(s(x+ c̃), t(x+ c̃))

is also a rational solution of the system. In fact, this is the only way to generate rational

solutions from the same rational solution curve.
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Theorem 3.3.6. Let (s1(x), t1(x)) and (s2(x), t2(x)) be non-trivial rational solutions of

the differential system (2.16) corresponding to the same rational invariant algebraic curve.

Then there exists a constant c̃ such that

(s1(x+ c̃), t1(x+ c̃)) = (s2(x), t2(x)).

Proof. As a corollary of Theorem 3.3.3 and Theorem 3.3.5, we have proven that these

solutions are proper. Since (s1(x), t1(x)) and (s2(x), t2(x)) are rational parametrizations

of the same invariant algebraic curve, there exists a linear rational function T (x) such that

(s2(x), t2(x)) = (s1(T (x)), t1(T (x))).

Hence





s�1(T (x))T
�(x) = s�2(x) =

M1(s2(x), t2(x))

N1(s2(x), t2(x))
=

M1(s1(T (x)), t1(T (x)))

N1(s1(T (x)), t1(T (x)))
= s�1(T (x))

t�1(T (x))T
�(x) = t�2(x) =

M2(s2(x), t2(x))

N2(s2(x), t2(x))
=

M2(s1(T (x)), t1(T (x)))

N2(s1(T (x)), t1(T (x)))
= t�1(T (x)).

(3.9)

It follows that T �(x) = 1. Therefore, T (x) = x + c̃ for some constant c̃. In fact, we can

compute the precise transformation T (x) = (P−1
1 ◦ P2)(x), where P1(x) = (s1(x), t1(x))

and P2(x) = (s2(x), t2(x)).

Remark 3.3.2. Let (s(x), t(x)) be a rational solution of the autonomous system (2.16).

Then for any constant c̃, (s(x + c̃), t(x + c̃)) is also a rational solution of that system.

In a sense, the latter solution is more general because we can evaluate any value for

the constant c̃. From the point of view of parametrization, however, these two rational

solutions parametrize the same algebraic curve. Later on, when we map this solution curve

into a solution curve of the differential equation F (x, y, y�) = 0, the constant c̃ will be

eliminated and it plays no role in generating a rational general solution of F (x, y, y�) = 0.

Therefore, we can simply skip that arbitrary constant, appearing in the shifting way, of a

the general solution of (2.16).

3.4 Algorithm and examples

We give our algorithm to compute a rational solution of the system (2.16) from an irre-

ducible invariant algebraic curve of the system. If we apply the algorithm to a general

invariant algebraic curve, then, in the affirmative case, its output is a rational general

solution.
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Algorithm RATSOLVE

Input: The system (2.16) and an irreducible invariant algebraic curve G(s, t) = 0 of
the system such that G � N1 and G � N2.
Output: The corresponding rational solution of (2.16), if any.

1. if G(s, t) = 0 is not a rational curve, then return “there is no rational solution
corresponding to G(s, t) = 0.”

2. else compute a proper rational parametrization (s(x), t(x)) of G(s, t) = 0.

3. if s�(x) �≡ 0, then find the rational solution of the autonomous differential equa-
tion

T � =
1

s�(T )
· M1(s(T ), t(T ))

N1(s(T ), t(T ))
.

4. else find the rational solution of the autonomous differential equation

T � =
1

t�(T )
· M2(s(T ), t(T ))

N2(s(T ), t(T ))
.

5. if there exists T (x) (a linear rational function), then return

(s(T (x)), t(T (x)))

6. else return “there is no rational solution corresponding to G(s, t) = 0.”

Example 3.4.1. Consider the rational differential system





s� =
−2(−(t− 1)2 + s2)(t− 1)2

((t− 1)2 + s2)2
,

t� =
−4(t− 1)3s

((t− 1)2 + s2)2
.

(3.10)

First we compute the set of invariant algebraic curves of degree less than or equal to 2,

�
t− 1 = 0, s+

√
−1(t− 1) = 0, s−

√
−1(t− 1) = 0, s2 + t2 + (−1− c)t+ c = 0

�
,

where c is an arbitrary constant.

For computing rational solutions of the system we will not consider the two invariant

algebraic curves s+
√
−1(t− 1) = 0 and s−

√
−1(t− 1) = 0 because they are divisors of

the denominators of the system.

The invariant algebraic curve t − 1 = 0 can be parametrized by (x, 1). The corre-

sponding differential equation for reparametrization is T � = 0. Hence, T (x) = c, where
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c is an arbitrary constant. This implies that s(x) = c, t(x) = 1 is a rational solution

corresponding to the rational solution line t− 1 = 0.

It remains to consider the general invariant algebraic curve s2+ t2+(−1− c)t+ c = 0.

This determines a rational curve in A2(K(c)), having the proper rational parametrization

P(x) =

�
(c− 1)x

1 + x2
,
cx2 + 1

1 + x2

�
.

By the algorithm RATSOLVE, the corresponding autonomous differential equation for repara-

metrization is T � =
−2T 2

c− 1
. Hence T (x) =

c− 1

2x
. Now we subsitute T (x) into P(x) to obtain

a rational (general) solution of the system (3.10), namely,

s(x) =
2(c− 1)2x

4x2 + (c− 1)2
, t(x) =

c(c− 1)2 + 4x2

4x2 + (c− 1)2
.

Later, we can prove that the system has no irreducible invariant algebraic curve of degree

higher than 2 (by Darboux’s theorem).

Remark 3.4.1. Proper rational parametrizations of a rational curve are not unique. We

can also parametrize the curve s2 + t2 + (−1− c)t+ c = 0 by

P1(x) =

�−ci+ (i+ ic)x− ix2

1 + c− 2x
,

c− x2

1 + c− 2x

�
,

where i is the imaginary unit. In this case, we obtain another rational general solution,

namely,

s(x) =
(2ix− c+ 1)(c− 1)2

4x(ix− c+ 1)
, t(x) =

i(4x2 + 4i(c− 1)x+ (c− 1)3)

4x(ix− c+ 1)
.

This solution is transformable into the first one by the change of variable

ϕ(x) = x+
i(c− 1)

2
.

Here we give another example for a complete algorithm combining the two algorithms

GENERALSOLVER and RATSOLVE.

Example 3.4.2. Considering the differential equation

F (x, y, y�) ≡ y�2 + 3y� − 2y − 3x = 0. (3.11)
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The corresponding algebraic surface z2 + 3z − 2y − 3x = 0 can be parametrized by

P0(s, t) =

�
t

s
+

2s+ t2

s2
,−1

s
− 2s+ t2

s2
,
t

s

�
.

This is a proper parametrization and the corresponding associated system is




s� = st,

t� = s+ t2.

We compute the set of irreducible invariant algebraic curves of the system and obtain

{s = 0, t2 + 2s = 0, s2 + ct2 + 2cs = 0 | c is an arbitrary constant}.

The general invariant algebraic curve s2 + ct2 + 2cs = 0 can be parametrized by

Q(x) =

�
− 2cx2

x2 + c
,− 2cx

x2 + c

�
.

By the algorithm RATSOLVE, we have to solve an auxiliary differential equation for the

reparametrization, namely:

T � =
1

Q1(T )�
Q1(T )Q2(T ) = −T 2.

Hence, T (x) =
1

x
. So the rational general solution of the associated system is

s(x) = Q1(T (x)) = − 2c

1 + cx2
, t(x) = Q2(T (x)) = − 2cx

1 + cx2
.

We observe that

χ1(s(x), t(x)) = x− 1

c
.

Therefore, according to algorithm GENERALSOLVER, the rational general solution of (3.11)

is

y = χ2

�
s

�
x+

1

c

�
, t

�
x+

1

c

��
=

1

2
x2 +

1

c
x+

1

2c2
+

3

2c
,

which, after a change of parameter, can be written as

y =
1

2
((x+ c)2 + 3c).


