Chapter 2

Rational solutions of autonomous first-order AODEs

An algebraic ordinary differential equation $(A O D E)$ is a polynomial relation between a function $y(x)$, some (finitely many) of its derivatives $y^{\prime}(x), y^{\prime \prime}(x), \ldots$ and the variable of differentiation x. So there is a polynomial F (say, over the field \mathbb{Q}) such that the AODE looks like

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

F defines the differential equation; but often, by abuse of notation, F itself is called the AODE. W.l.o.g. we may consider F to be irreducible; other wise factor F and solve the AODEs defined by the factors.
The highest n s.t. $y^{(n)}$ actually appears in F is called the order of the AODE F. An AODE is autonomous iff it is independent from x; i.e., it is of the form

$$
F\left(y, y^{\prime}, \ldots, y^{(n)}\right)=0 .
$$

A rational function $y(x) \in \overline{\mathbb{Q}}[x](\overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q}, i.e., the field of algebraic numbers) satisfying $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0$ is called a rational solution of the AODE F.

Let I be an ideal in $\mathbb{Q}(x)\left[y, y^{\prime}, y^{\prime \prime}, \ldots\right]$. I is a differential ideal iff derivation does not lead out of I; i.e., if $F \in I$ then also $F^{\prime} \in I$.

In this chapter we deal with the problem of deciding the existence of rational solutions of AODEs of order 1. If the AODE has rational solutions, we want to find a rational general solution; i.e., a rational solution containing a transcendental constant c.

The radical differential ideal $\{F\}$ can be decomposed

$$
\{F\}=\underbrace{(\{F\}: S)}_{\text {general component }} \cap \underbrace{\{F, S\}}_{\text {singular component }}
$$

where S is the separant of F (derivative of F w.r.t. $y^{(n)}$).
If F is irreducible, the general component $\{F\}: S$ is a prime differential ideal; its generic zero is called a general solution of the AODE $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0$.
(compare [Ritt50])

Problem: Rational general solution of AODE of order 1

given: an AODE $F\left(x, y, y^{\prime}\right)=0, F$ irreducible in $\overline{\mathbb{Q}}\left[x, y, y^{\prime}\right]$
decide: does this AODE have a rational general solution
find: if so, find it
Example: $F \equiv y^{\prime 2}+3 y^{\prime}-2 y-3 x=0$.
general solution: $y=\frac{1}{2}\left((x+c)^{2}+3 c\right)$, where c is an arbitrary constant.
The separant of F is $S=2 y^{\prime}+3$. So the singular solution of F is $y=-\frac{3}{2} x-\frac{9}{8}$.
We will solve the problem by rationally parametrizing the plane algebraic curve defined by $F(u, v)=0$. So let us briefly recall some facts about such parametrizations.

An algebraic variety \mathcal{V} is the zero locus of a (finite) set of polynomials F, or of the ideal $I=\langle F\rangle$.
A rational parametrization of \mathcal{V} is a rational map \mathcal{P} from a full (affine, projective) space covering \mathcal{V}; i.e. $\mathcal{V}=\overline{\operatorname{im}(\mathcal{P})}$ (Zariski closure).
A variety having a rational parametrization is called unirational; and rational if \mathcal{P} has a rational inverse.

The singular cubic $y^{2}-x^{3}-x^{2}=0$

has the rational, in fact polynomial, parametrization $x(t)=t^{2}-1, \quad y(t)=t^{3}-t$. So this is a unirational curve.

Some facts:

- a parametrization of a variety is a generic point or generic zero of the variety; i.e. a polynomial vanishes on the variety if and only if it vanishes on this generic point
- so only irreducible varieties can be rational
- a rationally invertible parametrization \mathcal{P} is called a proper parametrization; every rational curve or surface has a proper parametrization (Lüroth, Castelnuovo); but not so in higher dimensions

For details on parametrizations of algebraic curves we refer to

- J.R. Sendra, F. Winkler, S. Pérez-Díaz, Rational Algebraic Curves - A Computer Algebra Approach, Springer-Verlag Heidelberg (2008)

The algebro-geometric method:

- A rational solution of $F\left(y, y^{\prime}\right)=0$ corresponds to a proper (because of the degree bounds) rational parametrization of the algebraic curve $F(y, z)=0$.
- Conversely, from a proper rational parametrization $(f(x), g(x))$ of the curve $F(y, z)=0$ we get a rational solution of $F\left(y, y^{\prime}\right)=0$ if and only if there is a linear rational function $T(x)$ such that $f(T(x))^{\prime}=g(T(x))$.
If $T(x)$ exists, then a rational solution of $F\left(y, y^{\prime}\right)=0$ is: $y=f(T(x))$.
The rational general solution of $F\left(y, y^{\prime}\right)=0$ is (for an arbitrary constant c): $y=f(T(x+c))$

Feng and Gao (in [FeG06] and also in their paper in ISSAC'2004) described a complete algorithm along these lines

- R. Feng, X-S. Gao,
"Rational general solutions of algebraic ordinary differential equations", Proc. ISSAC2004. ACM Press, New York, 155-162, 2004.
- R. Feng, X-S. Gao,
"A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs",
J. Symb. Comp., 41, 739-762, 2006.

This is based on degree bounds derived in

- J.R. Sendra, F. Winkler,
"Tracing index of rational curve parametrizations", Computer Aided Geometric Design, 18:771-795, 2001.

