
1 Computer Analysis

Chapter 1

Integration of rational functions

The problem we consider in this section is the integration of rational functions with
rational coefficients, i.e. to compute

∫
p(x)

q(x)
dx,

where p(x), q(x) ∈ Q[x], gcd(p, q) = 1, and q(x) is monic. We exclude the trivial case
q = 1.

From classical calculus we know that this integral can be expressed as

∫
p(x)

q(x)
dx =

g(x)

q(x)
+ c1 · log(x− α1) + · · ·+ cn · log(x− αn), (1.1)

where g(x) ∈ Q[x], α1, . . . , αn are the different roots of q in C, and c1, . . . , cn ∈
Q(α1, . . . , αn). This requires factorization of q over C into its linear factors, decomposing
p/q into its complete partial fraction decomposition, and computation in the potentially ex-
tremely high degree algebraic extension Q(α1, . . . , αn). Then the solution (1.1) is achieved
by integration by parts and C. Hermite’s reduction method.

However, as we will see in the sequel, complete factorization of the denominator can
be avoided, resulting in a considerable decrease in computational complexity. Instead of
factoring q we will only use its squarefree factors.

The material for this chapter is taken from Chapter 4 of the book
Franz Winkler,
Polynomial Algorithms in Computer Algebra
Springer-Verlag Wien New York, 1996
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1.1 Squarefree factorization and partial fraction decomposition

A Euclidean domain in which quotient and remainder are computable by algorithms
quot and rem admits an algorithm for computing the greatest common divisor g of any
two elements a, b. This algorithm has originally been stated by Euclid for the domain of
the integers. In fact, it can be easily extended to compute not only the gcd but also the
coefficients s, t in the linear combination g = s · a+ t · b, i.e. the Bezout cofactors.

Q[x] is such a Euclidean domain. So the algorithm E EUCLID computes the gcd and
the Bezout cofactors of two polynomials.

algorithm E EUCLID(in: a, b; out: g, s, t);
[a, b are non-zero elements of Q[x]; g is the greatest
common divisor of a, b and g = s · a+ t · b]
(1) (r0, r1, s0, s1, t0, t1) := (a, b, 1, 0, 0, 1);

i := 1;
(2) while ri 6= 0 do

{qi := quot(ri−1, ri);
(ri+1, si+1, ti+1) := (ri−1, si−1, ti−1)− qi · (ri, si, ti);
i := i+ 1};

(3) (g, s, t) := (ri−1, si−1, ti−1); return ⊔⊓

Theorem 1.1.1. Let a, b be non-zero polynomials in Q[x] with deg(a) ≥ deg(b) > 0. Let
g, s, t be the result of applying E EUCLID to a and b. Then deg(s) < deg(b)− deg(g) and
deg(t) < deg(a)− deg(g).

Proof: Let r0, r1, . . . , rk−1, rk = 0 be the sequence of remainders computed by E EUCLID,
and similarly q1, . . . , qk−1 the sequence of quotients and s0, s1, . . . , sk, t0, t1, . . . , tk the
sequence of linear coefficients. Obviously deg(qi) = deg(ri−1)− deg(ri) for 1 ≤ i ≤ k − 1.

For k = 2 the statement obviously holds. If k > 2, then for 2 ≤ i ≤ k − 1 we
have deg(ri) = deg(r1) −

∑i

l=2
deg(ql) < deg(r1) −

∑i−1

l=2
deg(ql), deg(si) ≤

∑i−1

l=2
deg(ql)

and deg(ti) ≤
∑i−1

l=1
deg(ql). So deg(ri) + deg(si) < deg(r1) and deg(ri) + deg(ti) <

deg(r1) + deg(q1) for 2 ≤ i ≤ k − 1. For i = k − 1 we get the desired result. ⊔⊓

Corollary. Let a, b be non-zero, relatively prime polynomials in Q[x]. Let c ∈ Q[x] such
that deg(c) < deg(a · b). Then c can be represented uniquely as c = u · a + v · b, where
deg(u) < deg(b) and deg(v) < deg(a).

Proof: By Theorem 1.1.1 we can write 1 = u · a + v · b, where deg(u) < deg(b) and
deg(v) < deg(a).

Obviously h = (h · u) · a + (h · v) · b. If h · u or h · v do not satisfy the degree
bounds, then we set u′ := rem(h · u, b) and v′ := h · v + quot(h · u, b) · a. Now we have
h = u′ · a+ v′ · b and deg(u′) < deg(b). From comparing coefficients of like powers we also
see that deg(v′) < deg(a). This proves the existence of u and v.

If u1, v1 and u2, v2 are two pairs of linear coefficients satisfying the degree contraints,
then (u1 − u2) · a = (v2 − v1) · b. So a divides v2 − v1. This is only possible if v2 − v1 = 0.
Thus, the linear coefficients u, v are uniquely determined. ⊔⊓
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By a few GCD computations we can determine the squarefree factorization of a poly-
nomial in Q[x]. For a proof of the following theorem we refer to [Win96], Theorem 4.4.1.

Theorem 1.1.2. Let K be a field of characteristic 0, and a(x) a non-constant polynomial
in K[x]. Then a is squarefree if and only if gcd(a, a′) = 1 (where a′ denotes the derivative
of a w.r.t x).

From this theorem we easily derive an algorithm for determining the squarefree fac-
torization of a polynomial a(x) in Q[x]:

a(x) =

s∏

i=1

ai(x)
i ,

for squarefree, pairwise relatively prime factors ai(x). Details are given in [Win 96].

Example 1.1.3. Let us determine the squarefree factorization of the polynomial

a(x) = x5 + 6x4 + 11x3 + 2x2 − 12x− 8 = (x+ 1)(x− 1)
︸ ︷︷ ︸

a1

·( 1
︸︷︷︸

a2

)2 · (x+ 2
︸ ︷︷ ︸

a3

)3

in Q[x] by computation in Maple 16:
> a:= expand((x+1)*(x-1)*(x+2)ˆ3);

a := x5 + 6x4 + 11x3 + 2x2 − 12x− 8

> b0:= a;
b0 := x5 + 6x4 + 11x3 + 2x2 − 12x− 8

> b1 := gcd(b0,diff(b0,x));

b1 := x2 + 4x+ 4

> factor(b1);
(x+ 2)2

> c1 := simplify(b0/b1);

c1 := x3 + 2x2 − x− 2

> factor(c1);
(x− 1)(x+ 1)(x+ 2)

> b2 := gcd(b1,diff(b1,x));
b2 := x+ 2

> c2 := simplify(b1/b2);
c2 := x+ 2

> a1 := simplify(c1/c2);
a1 := x2 − 1
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> b3 := gcd(b2,diff(b2,x));
b3 := 1

> c3 := simplify(b2/b3);
c3 := x+ 2

> a2 := simplify(c2/c3);
a2 := 1

> b4 := gcd(b3,diff(b3,x));
b4 := 1

> c4 := simplify(b3/b4);
c3 := 1

> a3 := simplify(c3/c4);
a3 := x+ 2

So we have determined the squarefree factors a1, a2, a3 of a. ⊔⊓

Definition 1.1.4. Let p(x)/q(x) be a proper rational function over in Q(x); i.e.,
p, q ∈ Q[x], gcd(p, q) = 1, and deg(p) < deg(q). Let q = q1 · q22 · · · qkk be the square-
free factorization of q. Let a1(x), . . . , ak(x) ∈ K[x] be such that

p(x)

q(x)
=

k∑

i=1

ai(x)

qi(x)i
with deg(ai) < deg(qii) for 1 ≤ i ≤ k. (1.1.1)

Then the right hand side of (1.1.1) is called the incomplete squarefree partial fraction
decomposition (ispfd) of p/q.
Let bij(x) ∈ Q[x], 1 ≤ j ≤ i ≤ k, be such that

p(x)

q(x)
=

k∑

i=1

i∑

j=1

bij(x)

qi(x)j
with deg(bij) < deg(qi) for 1 ≤ j ≤ i ≤ n. (1.1.2)

Then the right hand side of (1.1.2) is called the (complete) squarefree partial fraction
decomposition (spfd) of p/q. ⊔⊓

Both the incomplete and the complete squarefree partial fraction decomposition of a
proper rational function are uniquely determined. For any proper rational function p/q
the ispfd can be computed by the following algorithm.

algorithm ISPFD(in: p, q; out: D);
[p/q is a proper rational function in K(x),

D = [[a1, q1], . . . , [ak, qk]] is the ispfd of p/q, i.e. p/q =
∑k

i=1
(ai/q

i
i)

with deg(ai) < deg(qii) for 1 ≤ i ≤ k.]
(1) [q1, . . . , qk] := SQFR FACTOR(q);
(2) c0 := p; d0 := q; i := 1;



5 Computer Analysis

(3) while i < k do
{ di := di−1/q

i
i;

determine ci, ai such that deg(ci) < deg(di), deg(ai) < deg(qii),
and ci · qii + ai · di = ci−1 };

ak := ck−1; return ⊔⊓

Theorem 1.1.5. The algorithm ISPFD is correct.

Proof: Immediately before execution of the body of the while statement for i, the relation

p

q
=

a1
q1

+ · · ·+ ai−1

qi−1

i−1

+
ci−1

di−1

, where di−1 = qii · · · qkk ,

holds, as can easily be seen by induction on i.
The polynomials ci and ai in step (3) can be computed by application of the Corollary

to Theorem 1.1.1. ⊔⊓

Once we have the incomplete spfd we can rather easily get the complete spfd by
successive division. Namely if ai = s · qi + t, then

ai
qii

=
s

qi−1

i

+
t

qii
.

Example 1.1.6. Consider the proper rational function

p(x)

q(x)
=

4x8 − 3x7 + 25x6 − 11x5 + 18x4 − 9x3 + 8x2 − 3x+ 1

3x9 − 2x8 + 7x7 − 4x6 + 5x5 − 2x4 + x3
.

The squarefree factorization of q(x) is

q(x) = (3x2 − 2x+ 1)(x2 + 1)2x3,

Application of ISPFD yields the incomplete spfd

p(x)

q(x)
=

4x

3x2 − 2x+ 1
+

−x3 + 2x+ 2

(x2 + 1)2
+

x2 − x+ 1

x3
.

By successive division of the numerators by the corresponding qi’s we finally get the com-
plete spfd

p(x)

q(x)
=

4x

3x2 − 2x+ 1
+

−x

x2 + 1
+

3x+ 2

(x2 + 1)2
+

1

x
+

−1

x2
+

1

x3
. ⊔⊓
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1.2 The integration algorithm

The problem we consider in this section is the integration of rational functions with
rational coefficients, i.e. to compute

∫
p(x)

q(x)
dx =

g(x)

q(x)
+ c1 · log(x− α1) + · · ·+ cn · log(x− αn), (1.1)

where p(x), q(x) ∈ Q[x], gcd(p, q) = 1, and q(x) is monic. We exclude the trivial case
q = 1.

First we compute the squarefree factorization of the denominator q, i.e.

q = f1 · f2
2 · · · · · f r

r ,

where the fi ∈ Q[x] are squarefree, fr 6= 1, gcd(fi, fj) = 1 for i 6= j. Based on this
squarefree factorization we compute the squarefree partial fraction decomposition of p/q,
i.e.

p

q
= g0 +

r∑

i=1

i∑

j=1

gij

f j
i

= g0 +
g11
f1

+
g21
f2

+
g22
f2
2

+ · · ·+ gr1
fr

+ · · ·+ grr
f r
r

, (1.2.1)

where g0, gij ∈ Q[x], deg(gij) < deg(fi), for all 1 ≤ j ≤ i ≤ r. Integrating g0 is no problem,
so let us consider the individual terms in (1.2.1).

Now let g
fn

be one of the non-trivial terms in (1.2.1) with n ≥ 2, i.e. f is squarefree

and deg(g) < deg(f). We reduce the computation of

∫
g(x)

f(x)n
dx

to the computation of an integral of the form
∫

h(x)

f(x)n−1
dx, where deg(h) < deg(f).

This is achieved by a reduction process due to C. Hermite.
Since f is squarefree, we have gcd(f, f ′) = 1. By the extended Euclidean algorithm

E EUCLID and the corollary to Theorem 1.1.1 compute c, d ∈ Q[x] such that

g = c · f + d · f ′, where deg(c), deg(d) < deg(f).

By integration by parts we can now reduce
∫

g

fn
=

∫
c · f + d · f ′

fn
=

∫
c

fn−1
+

∫
d · f ′

fn
=

∫
c

fn−1
− d

(n− 1) · fn−1
+

∫
d′

(n− 1) · fn−1
=

− d

(n− 1) · fn−1
+

∫

h
︷ ︸︸ ︷

c+ d′/(n− 1)

fn−1
,
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where deg(h) < deg(f).

Now we collect all the rational partial results and the remaining integrals and put
everything over a common denominator, so that we get polynomials g(x), h(x) ∈ Q[x] such
that ∫

p

q
=

g

f2 · f2
3 · · · f r−1

r
︸ ︷︷ ︸

q

+

∫
h

f1 · · · · · fr
︸ ︷︷ ︸

q∗

, (1.2.2)

where deg(g) < deg(q) and deg(h) < deg(q∗).

We could also determine g and h in (1.2.2) by first choosing undetermined coefficients
for these polynomials, differentiating (4.6.3), and then solving the resulting linear system
for the undetermined coefficients. However, the Hermite reduction process is usually faster.
Let us prove that the decomposition in (4.6.3) is unique.

Lemma 1.2.1. Let p, q, u, v ∈ Q[x], gcd(p, q) = 1, gcd(u, v) = 1, and p/q = (u/v)′ (so
u/v is the integral of p/q). Let w ∈ Q[x] be a squarefree factor of q. Then w divides v,
and the multiplicity of w in q is strictly greater than the multiplicity of w in v.

Proof: Clearly we can restrict ourselves to w being irreducible (otherwise apply the lemma
for all irreducible factors of w). Now, since

(u

v

)
′

=
u′v − uv′

v2
=

p

q
,

w must divide v. Assume now that v = wrŵ with gcd(w, ŵ) = 1. We show that wr does
not divide u′v − uv′. Suppose it does. Since wr divides u′v and gcd(w, u) = 1, wr would
have to divide v′ = rwr−1w′ŵ + wrŵ′. Hence, w would have to divide w′ŵ. But this is
impossible since w is irreducible. Therefore wr+1 must divide the reduced denominator of
(u/v)′. ⊔⊓

Theorem 1.2.2. The solution g, h to equation (1.2.2) is unique.

Proof: Suppose there were two solutions. By subtraction we would get a solution for p = 0,

∫

0dx =
g

q
+

∫
h

q∗
dx.

So (g/q)′ = −h/q∗. By Lemma 1.2.1, every factor in the denominator of h/q∗ must have
multiplicity at least 2. This is impossible, since q∗ is squarefree. ⊔⊓

The integral
∫
h/q∗ can be computed in the following well–known way: Let q∗(x) =

(x− α1) · · · (x− αn), where α1, . . . , αn are the distinct roots of q∗. Then

∫
h(x)

q∗(x)
dx =

n∑

i=1

∫
ci

x− αi

dx =

n∑

i=1

ci log(x− αi)

with ci =
h(αi)

q∗′(αi)
, 1 ≤ i ≤ n.

(1.2.3)
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No part of the sum of logarithms in (1.2.3) can be a rational function, as we can see from
the following theorem in [Hardy 1916], p. 14.

Theorem 1.2.3. Let α1, . . . , αn be distinct elements of C and c1, . . . , cn ∈ C. If
∑n

i=1
ci log(x− αi) is a rational function, then ci = 0 for all 1 ≤ i ≤ n. ⊔⊓

Example 1.2.4. Let us integrate x/(x2 − 2) according to (1.2.3).
∫

x

x2 − 2
dx =

∫
1/2

x−
√
2
dx +

∫
1/2

x+
√
2
dx =

1

2
(log(x−

√
2) + log(x+

√
2)) =

1

2
log(x2 − 2).

So obviously we do not always need the full splitting field of q∗ in order to express the inte-
gral of h/q∗. In fact, whenever we have two logarithms with the same constant coefficient,
we can combine these logarithms. ⊔⊓

The following theorem, which has been independently discovered by M. Rothstein
[Rothstein 1976] and B. Trager [Trager 1976], answers the question of what is the smallest
field in which we can express the integral of h/q∗.

Theorem 1.2.5. Let p, q ∈ Q[x] be relatively prime, q monic and squarefree, and deg(p) <
deg(q). Let

∫
p

q
=

n∑

i=1

ci log vi, (1.2.4)

where the ci are distinct non–zero constants and the vi are monic squarefree pairwise
relatively prime elements of Q[x]. Then the ci are the distinct roots of the polynomial

r(c) = resx(p− c · q′, q) ∈ Q[c],

and
vi = gcd(p− ci · q′, q), for 1 ≤ i ≤ n.

Proof: Let ui = (
∏n

j=1
vj)/vi, for 1 ≤ i ≤ n. Then by differentiation of (1.2.4) we get

p ·
n∏

i=1

vi = q ·
n∑

i=1

civ
′

iui.

So q|
∏n

i=1
vi and on the other hand each vi|Bv′iui, which implies that each vi|q. Hence,

q =

n∏

i=1

vi, and p =

n∑

i=1

civ
′

iui.

Consequently, for each j, 1 ≤ j ≤ n, we have

vj =gcd(0, vj) = gcd(p−
n∑

i=1

civ
′

iui, vj) =

gcd(p− cjv
′

juj , vj) = gcd(p− cj

n∑

i=1

v′iui, vj) =

gcd(p− cjq
′, vj),



9 Computer Analysis

and for l 6= j we have

gcd(p− cjq
′, vl) = gcd(p− cjv

′

lul, vl) = gcd((cl − cj)v
′

lul, vl) = 1.

Thus we conclude that

vi = gcd(p− ciq
′, q), for 1 ≤ i ≤ n. (1.2.5)

(1.2.5) implies that resx(p − ciq
′, q) = 0 for all 1 ≤ i ≤ n. Conversely, if c ∈ Q

and resx(p − cq′, q) = 0, then gcd(p − cq′, q) = s(x) ∈ Q[x] with deg(s) > 0. Thus, any
irreducible factor t(x) of s(x) divides p− cq′ =

∑n

i=1
civ

′

iui − c
∑n

i=1
v′iui. Since t divides

one and only one vj , we get t|(cj − c)v′juj , which implies that cj − c = 0. Thus, the cj are
exactly the distinct roots of r(c). ⊔⊓

Example 1.2.4. (continued) We apply Theorem 1.2.5.
r(c) = resx(p − cq′, q) = resx(x − c(2x), x2 − 2) = −2(2c − 1)2. There is only one root
of r(c), namely c1 = 1/2. We get the argument of the corresponding logarithm as v1 =
gcd(x− 1

2
(2x), x2 − 2) = x2 − 2. So

∫
x

x2 − 2
dx =

1

2
log(x2 − 2). ⊔⊓

Example 1.2.6. Let us consider integrating the rational function

p(x)

q(x)
=

4x8 − 3x7 + 25x6 − 11x5 + 18x4 − 9x3 + 8x2 − 3x+ 1

3x9 − 2x8 + 7x7 − 4x6 + 5x5 − 2x4 + x3
.

The squarefree factorization of q(x) is

q(x) = (3x2 − 2x+ 1)(x2 + 1)2x3,

so the squarefree partial fraction decomposition of p/q is

p(x)

q(x)
=

4x

3x2 − 2x+ 1
+

−x

x2 + 1
+

3x+ 2

(x2 + 1)2
+

1

x
+

−1

x2
+

1

x3
.

Now let us consider the third term of this decomposition, i.e. we determine
∫

3x+ 2

(x2 + 1)2
dx .

By the extended Euclidean algorithm we can write

3x+ 2 = 2 · (x2 + 1) + (−x+
3

2
) · (2x).

Integration by parts yields
∫

3x+ 2

(x2 + 1)2
dx =

∫
2

x2 + 1
dx +

∫
(−x+ 3

2
) · (2x)

(x2 + 1)2
dx =

∫
2

x2 + 1
dx +

(−x+ 3

2
) · (−1)

x2 + 1
−

∫
1

x2 + 1
dx =

x− 3

2

x2 + 1
+

∫
1

x2 + 1
dx .

The remaining integral is purely logarithmic, namely
∫

1

x2 + 1
dx =

i

2
· log(1− ix)− i

2
· log(1 + ix) = arctan(x). ⊔⊓


