
Rewriting
Part 6. Completion of Term Rewriting Systems

Temur Kutsia

RISC, JKU Linz



Word problem

Recall the word problem:

Given: A set of identities E and two terms s and t.

Decide: s ≈E t holds or not.

▸ The problem is undecidable for an arbitrary E.

▸ Try to construct a decision procedure for a given finite E.

▸ When E is finite and →E is convergent, the word problem is
decidable.



Word problem

Recall the word problem:

Given: A set of identities E and two terms s and t.

Decide: s ≈E t holds or not.

▸ The problem is undecidable for an arbitrary E.

▸ Try to construct a decision procedure for a given finite E.

▸ When E is finite and →E is convergent, the word problem is
decidable.



Word problem

Recall the word problem:

Given: A set of identities E and two terms s and t.

Decide: s ≈E t holds or not.

▸ The problem is undecidable for an arbitrary E.

▸ Try to construct a decision procedure for a given finite E.

▸ When E is finite and →E is convergent, the word problem is
decidable.



Word problem

Recall the word problem:

Given: A set of identities E and two terms s and t.

Decide: s ≈E t holds or not.

▸ The problem is undecidable for an arbitrary E.

▸ Try to construct a decision procedure for a given finite E.

▸ When E is finite and →E is convergent, the word problem is
decidable.



First Approach

Construction of a decision procedure.

Show Termination: Try to find a reduction order > which orients
all identities in E. If this succeeds, consider the TRS
R ∶= {s→ t ∣ s ≈ t ∈ E or t ≈ s ∈ E, and s > t}, and
continue with this system in the next step. Otherwise
fail.

Show Confluence: Decide confluence of the terminating TRS R,
by computing all critical pairs between rules in R and
testing them for confluence. If this step succeeds, the
rewrite relation →R yields a decision procedure for
the word problem for E. Otherwise fail.



First Approach

Construction of a decision procedure.

Show Termination: Try to find a reduction order > which orients
all identities in E. If this succeeds, consider the TRS
R ∶= {s→ t ∣ s ≈ t ∈ E or t ≈ s ∈ E, and s > t}, and
continue with this system in the next step. Otherwise
fail.

Show Confluence: Decide confluence of the terminating TRS R,
by computing all critical pairs between rules in R and
testing them for confluence. If this step succeeds, the
rewrite relation →R yields a decision procedure for
the word problem for E. Otherwise fail.



First Approach

Construction of a decision procedure.

Show Termination: Try to find a reduction order > which orients
all identities in E. If this succeeds, consider the TRS
R ∶= {s→ t ∣ s ≈ t ∈ E or t ≈ s ∈ E, and s > t}, and
continue with this system in the next step. Otherwise
fail.

Show Confluence: Decide confluence of the terminating TRS R,
by computing all critical pairs between rules in R and
testing them for confluence. If this step succeeds, the
rewrite relation →R yields a decision procedure for
the word problem for E. Otherwise fail.



Example When The Simple Approach Succeeds

Example 6.1

Let E ∶= {x + 0 ≈ x, x + s(y) ≈ s(x + y)}.

Show Termination: Use the lpo >lpo induced by + > s. We get a
terminating term rewriting system

R ∶= {x + 0→ x, x + s(y) → s(x + y)}.
Show Confluence: It is also confluent since there are no critical

pairs.



Example When The Simple Approach Succeeds

Example 6.1

Let E ∶= {x + 0 ≈ x, x + s(y) ≈ s(x + y)}.
Show Termination: Use the lpo >lpo induced by + > s. We get a

terminating term rewriting system
R ∶= {x + 0→ x, x + s(y) → s(x + y)}.

Show Confluence: It is also confluent since there are no critical
pairs.



Example When The Simple Approach Succeeds

Example 6.1

Let E ∶= {x + 0 ≈ x, x + s(y) ≈ s(x + y)}.
Show Termination: Use the lpo >lpo induced by + > s. We get a

terminating term rewriting system
R ∶= {x + 0→ x, x + s(y) → s(x + y)}.

Show Confluence: It is also confluent since there are no critical
pairs.



Example When The Simple Approach Does Not Succeed

Example 6.2

Let E ∶= {x + 0 ≈ x, x + s(y) ≈ s(x + y)}.

Show Termination: Now we use the lpo >lpo induced by s > +. We
get a terminating term rewriting system

R ∶= {x + 0→ x, s(x + y) → x + s(y)}.
Show Confluence: It is not confluent since the following critical

pair is not joinable:

s(x + 0)

x + s(0) s(x)



Example When The Simple Approach Does Not Succeed

Example 6.2

Let E ∶= {x + 0 ≈ x, x + s(y) ≈ s(x + y)}.
Show Termination: Now we use the lpo >lpo induced by s > +. We

get a terminating term rewriting system
R ∶= {x + 0→ x, s(x + y) → x + s(y)}.

Show Confluence: It is not confluent since the following critical
pair is not joinable:

s(x + 0)

x + s(0) s(x)



Example When The Simple Approach Does Not Succeed

Example 6.2

Let E ∶= {x + 0 ≈ x, x + s(y) ≈ s(x + y)}.
Show Termination: Now we use the lpo >lpo induced by s > +. We

get a terminating term rewriting system
R ∶= {x + 0→ x, s(x + y) → x + s(y)}.

Show Confluence: It is not confluent since the following critical
pair is not joinable:

s(x + 0)

x + s(0) s(x)



Main Ideas Behind Completion

▸ If the critical pair ⟨s, t⟩ of R is not joinable, then there are
distinct normal forms ŝ, t̂ of s, t.

▸ Adding ŝ→ t̂ or t̂→ ŝ does not change the equational theory
generated by R, because ŝ ≈ t̂ is an equational consequence of
R.

▸ In the extended system, ⟨s, t⟩ is joinable.

▸ To obtain a terminating new system, we need ŝ > t̂ or t̂ > ŝ



The Basic Completion Procedure



The Basic Completion Procedure

The procedure shows three different types of behavior, depending
on particular input E and >:

1. It may terminate with failure because one of the nontrivial
input identities can not be ordered using >, or the normal
forms of the terms in one of the critical pairs are distinct and
can not be oriented by using >. Not much is gained. One can
restart the procedure with a different reduction order.

2. It may terminate successfully with output Rn because in nth
step of the iteration all critical pairs are joinable. Rn is a
finite convergent system equivalent to E. It can be used to
decide the word problem for E.

3. It may run forever since infinitely many new rules are
generated. In this case, R∞ ∶= ⋃i≥0Ri is an infinite
convergent system that is equivalent to E. Yields a
semidecision procedure for ≈E .



The Basic Completion Procedure

The procedure shows three different types of behavior, depending
on particular input E and >:

1. It may terminate with failure because one of the nontrivial
input identities can not be ordered using >, or the normal
forms of the terms in one of the critical pairs are distinct and
can not be oriented by using >. Not much is gained. One can
restart the procedure with a different reduction order.

2. It may terminate successfully with output Rn because in nth
step of the iteration all critical pairs are joinable. Rn is a
finite convergent system equivalent to E. It can be used to
decide the word problem for E.

3. It may run forever since infinitely many new rules are
generated. In this case, R∞ ∶= ⋃i≥0Ri is an infinite
convergent system that is equivalent to E. Yields a
semidecision procedure for ≈E .



The Basic Completion Procedure

The procedure shows three different types of behavior, depending
on particular input E and >:

1. It may terminate with failure because one of the nontrivial
input identities can not be ordered using >, or the normal
forms of the terms in one of the critical pairs are distinct and
can not be oriented by using >. Not much is gained. One can
restart the procedure with a different reduction order.

2. It may terminate successfully with output Rn because in nth
step of the iteration all critical pairs are joinable. Rn is a
finite convergent system equivalent to E. It can be used to
decide the word problem for E.

3. It may run forever since infinitely many new rules are
generated. In this case, R∞ ∶= ⋃i≥0Ri is an infinite
convergent system that is equivalent to E. Yields a
semidecision procedure for ≈E .



Example: The Procedure Terminates Successfully

Input:
E ∶= {f(f(x)) ≈ g(x)}, LPO >lpo induced by f > g.

R0 ∶= {f(f(x)) → g(x)} has a non-joinable critical pair:

f(f(f(x)))

f(g(x)) g(f(x))

R1 ∶= {f(f(x)) → g(x), f(g(x)) → g(f(x))} is confluent.

R2 = R1.

Output:
R2 ∶= {f(f(x)) → g(x), f(g(x)) → g(f(x))}.



Example: The Procedure Terminates Successfully

Input:
E ∶= {f(f(x)) ≈ g(x)}, LPO >lpo induced by f > g.

R0 ∶= {f(f(x)) → g(x)} has a non-joinable critical pair:

f(f(f(x)))

f(g(x)) g(f(x))

R1 ∶= {f(f(x)) → g(x), f(g(x)) → g(f(x))} is confluent.

R2 = R1.

Output:
R2 ∶= {f(f(x)) → g(x), f(g(x)) → g(f(x))}.



Example: The Procedure Terminates Successfully

Input:
E ∶= {f(f(x)) ≈ g(x)}, LPO >lpo induced by f > g.

R0 ∶= {f(f(x)) → g(x)} has a non-joinable critical pair:

f(f(f(x)))

f(g(x)) g(f(x))

R1 ∶= {f(f(x)) → g(x), f(g(x)) → g(f(x))} is confluent.

R2 = R1.

Output:
R2 ∶= {f(f(x)) → g(x), f(g(x)) → g(f(x))}.



Example: The Procedure Terminates Successfully

Input:
E ∶= {f(f(x)) ≈ g(x)}, LPO >lpo induced by f > g.

R0 ∶= {f(f(x)) → g(x)} has a non-joinable critical pair:

f(f(f(x)))

f(g(x)) g(f(x))

R1 ∶= {f(f(x)) → g(x), f(g(x)) → g(f(x))} is confluent.

R2 = R1.

Output:
R2 ∶= {f(f(x)) → g(x), f(g(x)) → g(f(x))}.



Example: The Procedure Terminates with Failure

Input:
E ∶= {x∗ (y + z) ≈ (x∗ y) + (x∗ z), (u+ v) ∗w ≈ (u∗w) + (v ∗w)},
LPO >lpo induced by ∗ > +.

R0 ∶= {x ∗ (y + z) → (x ∗ y) + (x ∗ z), (u + v) ∗w → (u ∗w) + (v ∗w)}
has a non-joinable critical pair:

(u + v) ∗ (y + z)

((u + v) ∗ y) + ((u + v) ∗ z) (u ∗ (y + z)) + (v ∗ (y + z))

((u ∗ y)+(v ∗ y))+((u ∗ z)+(v ∗ z)) ((u ∗ y)+(u ∗ z))+((v ∗ y)+(v ∗ z))≠
/>

/<

∗ ∗

The procedure fails.



Example: The Procedure Terminates with Failure

Input:
E ∶= {x∗ (y + z) ≈ (x∗ y) + (x∗ z), (u+ v) ∗w ≈ (u∗w) + (v ∗w)},
LPO >lpo induced by ∗ > +.

R0 ∶= {x ∗ (y + z) → (x ∗ y) + (x ∗ z), (u + v) ∗w → (u ∗w) + (v ∗w)}
has a non-joinable critical pair:

(u + v) ∗ (y + z)

((u + v) ∗ y) + ((u + v) ∗ z) (u ∗ (y + z)) + (v ∗ (y + z))

((u ∗ y)+(v ∗ y))+((u ∗ z)+(v ∗ z)) ((u ∗ y)+(u ∗ z))+((v ∗ y)+(v ∗ z))≠
/>

/<

∗ ∗

The procedure fails.



Example: The Procedure Terminates with Failure

Input:
E ∶= {x∗ (y + z) ≈ (x∗ y) + (x∗ z), (u+ v) ∗w ≈ (u∗w) + (v ∗w)},
LPO >lpo induced by ∗ > +.

R0 ∶= {x ∗ (y + z) → (x ∗ y) + (x ∗ z), (u + v) ∗w → (u ∗w) + (v ∗w)}
has a non-joinable critical pair:

(u + v) ∗ (y + z)

((u + v) ∗ y) + ((u + v) ∗ z) (u ∗ (y + z)) + (v ∗ (y + z))

((u ∗ y)+(v ∗ y))+((u ∗ z)+(v ∗ z)) ((u ∗ y)+(u ∗ z))+((v ∗ y)+(v ∗ z))≠
/>

/<

∗ ∗

The procedure fails.



Example: The Procedure Does Not Terminate

Input:
E ∶= {x + 0 ≈ x, x + s(y) ≈ s(x + y)}, LPO >lpo induced by s > +.

R0 ∶= {x + 0→ x, s(x + y) → x + s(y)}.
R1 ∶= R0 ∪ {x + s(0) → s(x)}.

R1 is not confluent since the following critical pair is not joinable:

s(x + s(0))

x + s(s(0)) s(s(x))

At each step of the iteration a new rule of the form x + sn(0) → sn(0) is
generated. The procedure does not stop.



Example: The Procedure Does Not Terminate

Input:
E ∶= {x + 0 ≈ x, x + s(y) ≈ s(x + y)}, LPO >lpo induced by s > +.

R0 ∶= {x + 0→ x, s(x + y) → x + s(y)}.
R1 ∶= R0 ∪ {x + s(0) → s(x)}.

R1 is not confluent since the following critical pair is not joinable:

s(x + s(0))

x + s(s(0)) s(s(x))

At each step of the iteration a new rule of the form x + sn(0) → sn(0) is
generated. The procedure does not stop.



Example: The Procedure Does Not Terminate

Input:
E ∶= {x + 0 ≈ x, x + s(y) ≈ s(x + y)}, LPO >lpo induced by s > +.

R0 ∶= {x + 0→ x, s(x + y) → x + s(y)}.
R1 ∶= R0 ∪ {x + s(0) → s(x)}.

R1 is not confluent since the following critical pair is not joinable:

s(x + s(0))

x + s(s(0)) s(s(x))

At each step of the iteration a new rule of the form x + sn(0) → sn(0) is
generated. The procedure does not stop.



Example: The Procedure Does Not Terminate

Input:
E ∶= {x + 0 ≈ x, x + s(y) ≈ s(x + y)}, LPO >lpo induced by s > +.

R0 ∶= {x + 0→ x, s(x + y) → x + s(y)}.
R1 ∶= R0 ∪ {x + s(0) → s(x)}.

R1 is not confluent since the following critical pair is not joinable:

s(x + s(0))

x + s(s(0)) s(s(x))

At each step of the iteration a new rule of the form x + sn(0) → sn(0) is
generated. The procedure does not stop.



Drawbacks of the Basic Completion

▸ In practice, the basic completion procedure generates a huge
number of rules.

▸ All of them should be taken into account when computing
critical pairs.

▸ It makes both time and space requirement often unacceptably
high.



Addressing the Drawbacks

▸ All implementations of completion “simplify” rules by
reducing them with the help of other rules.

▸ If both sides of a rule reduce to the same term, the rule can
be removed.

▸ Yields smaller rules.

▸ Improved completion procedure.

Example 6.3

R ∶= {f(f(x, y), z) → f(x, f(y, z)), f(x, f(y, z)) → f(x, z)}

f(f(x, y), z) f(x, f(y, z))

f(x, z)
Simpler rules:
R = {f(f(x, y), z) → f(x, z), f(x, f(y, z)) → f(x, z)}.



Addressing the Drawbacks

▸ All implementations of completion “simplify” rules by
reducing them with the help of other rules.

▸ If both sides of a rule reduce to the same term, the rule can
be removed.

▸ Yields smaller rules.

▸ Improved completion procedure.

Example 6.3

R ∶= {f(f(x, y), z) → f(x, f(y, z)), f(x, f(y, z)) → f(x, z)}

f(f(x, y), z) f(x, f(y, z))

f(x, z)

Simpler rules:
R = {f(f(x, y), z) → f(x, z), f(x, f(y, z)) → f(x, z)}.



Addressing the Drawbacks

▸ All implementations of completion “simplify” rules by
reducing them with the help of other rules.

▸ If both sides of a rule reduce to the same term, the rule can
be removed.

▸ Yields smaller rules.

▸ Improved completion procedure.

Example 6.3

R ∶= {f(f(x, y), z) → f(x, f(y, z)), f(x, f(y, z)) → f(x, z)}

f(f(x, y), z) f(x, f(y, z))

f(x, z)
Simpler rules:
R = {f(f(x, y), z) → f(x, z), f(x, f(y, z)) → f(x, z)}.



An Improved Completion Procedure

▸ Described as a set of inference rules.

▸ Specific completion procedure is obtained by fixing a strategy
for application of the rules.

▸ Works on pairs (E,R), where E is a set of identities and R is
a set of rewrite rules.

▸ E contains input identities and not-yet-oriented critical pairs
with the input reduction ordering >.

▸ R is a set of rewrite rules oriented with input ordering >.

▸ Goal: To transform an initial pair (E0,∅) into (∅,R) such
that R is convergent and equivalent to E.



An Improved Completion Procedure



An Improved Completion Procedure

▸ In the L-Simplify-rule, s
⊐Ð→R u says that s is reduced by a

rule l → r ∈ R such that l can not be reduced by s→ t.

▸ If R ∶= {f(x,x) → x, f(x, y) → x}, then L-Simplify-rule
can be applied to f(x,x) → x.

▸ If R ∶= {f(x, y) → x, f(x, y) → y}, then L-Simplify-rule
can not be applied.

▸ Notation: (E,R) ⊢C (E′,R′) means that (E,R) can be
transformed into (E′,R′) by one of the inference rules.



An Improved Completion Procedure

▸ In the L-Simplify-rule, s
⊐Ð→R u says that s is reduced by a

rule l → r ∈ R such that l can not be reduced by s→ t.

▸ If R ∶= {f(x,x) → x, f(x, y) → x}, then L-Simplify-rule
can be applied to f(x,x) → x.

▸ If R ∶= {f(x, y) → x, f(x, y) → y}, then L-Simplify-rule
can not be applied.

▸ Notation: (E,R) ⊢C (E′,R′) means that (E,R) can be
transformed into (E′,R′) by one of the inference rules.



An Improved Completion Procedure

▸ In the L-Simplify-rule, s
⊐Ð→R u says that s is reduced by a

rule l → r ∈ R such that l can not be reduced by s→ t.

▸ If R ∶= {f(x,x) → x, f(x, y) → x}, then L-Simplify-rule
can be applied to f(x,x) → x.

▸ If R ∶= {f(x, y) → x, f(x, y) → y}, then L-Simplify-rule
can not be applied.

▸ Notation: (E,R) ⊢C (E′,R′) means that (E,R) can be
transformed into (E′,R′) by one of the inference rules.



An Improved Completion Procedure

▸ In the L-Simplify-rule, s
⊐Ð→R u says that s is reduced by a

rule l → r ∈ R such that l can not be reduced by s→ t.

▸ If R ∶= {f(x,x) → x, f(x, y) → x}, then L-Simplify-rule
can be applied to f(x,x) → x.

▸ If R ∶= {f(x, y) → x, f(x, y) → y}, then L-Simplify-rule
can not be applied.

▸ Notation: (E,R) ⊢C (E′,R′) means that (E,R) can be
transformed into (E′,R′) by one of the inference rules.



Termination

Lemma 6.1 (Termination)

If R ⊆> and (E,R) ⊢C (E′,R′), then R′ ⊆>.

Proof.
All rules are oriented wrt the reduction order >.



Soundness

Lemma 6.2 (Soundness)

If (E1,R1) ⊢C (E2,R2), then ≈E1∪R1 =≈E2∪R2 .

Proof.

Trivial for the first three rules.

For Simplify-Identity, E1 = E ∪ {s ≈ t}, E2 = E ∪ {u ≈ t},
R1 = R = R2, and s→R u. We have u ≈E1∪R1 t, which implies
≈E2∪R2⊆≈E1∪R1 . Conversely, u ≈ t ∈ E2, s→R u, and R = R2 imply
that s ≈E2∪R2 t and, hence, ≈E1∪R1⊆≈E2∪R2 .

For R-Simplify, we have E1 = E = E2, R1 = R ∪ {s→ t},
R2 = R ∪ {s→ u}, and t→R u. s→ t ∈ R1, t→R u, and R ⊆ R1

imply s ≈E1∪R1 u. s→ u ∈ R2, t→R u, and R ⊆ R2 imply
s ≈E2∪R2 u. Hence, ≈E1∪R1 =≈E2∪R2 .

For L-Simplify the proof is similar.



Soundness

Lemma 6.2 (Soundness)

If (E1,R1) ⊢C (E2,R2), then ≈E1∪R1 =≈E2∪R2 .

Proof.

Trivial for the first three rules.

For Simplify-Identity, E1 = E ∪ {s ≈ t}, E2 = E ∪ {u ≈ t},
R1 = R = R2, and s→R u. We have u ≈E1∪R1 t, which implies
≈E2∪R2⊆≈E1∪R1 . Conversely, u ≈ t ∈ E2, s→R u, and R = R2 imply
that s ≈E2∪R2 t and, hence, ≈E1∪R1⊆≈E2∪R2 .

For R-Simplify, we have E1 = E = E2, R1 = R ∪ {s→ t},
R2 = R ∪ {s→ u}, and t→R u. s→ t ∈ R1, t→R u, and R ⊆ R1

imply s ≈E1∪R1 u. s→ u ∈ R2, t→R u, and R ⊆ R2 imply
s ≈E2∪R2 u. Hence, ≈E1∪R1 =≈E2∪R2 .

For L-Simplify the proof is similar.



Soundness

Lemma 6.2 (Soundness)

If (E1,R1) ⊢C (E2,R2), then ≈E1∪R1 =≈E2∪R2 .

Proof.

Trivial for the first three rules.

For Simplify-Identity, E1 = E ∪ {s ≈ t}, E2 = E ∪ {u ≈ t},
R1 = R = R2, and s→R u. We have u ≈E1∪R1 t, which implies
≈E2∪R2⊆≈E1∪R1 . Conversely, u ≈ t ∈ E2, s→R u, and R = R2 imply
that s ≈E2∪R2 t and, hence, ≈E1∪R1⊆≈E2∪R2 .

For R-Simplify, we have E1 = E = E2, R1 = R ∪ {s→ t},
R2 = R ∪ {s→ u}, and t→R u. s→ t ∈ R1, t→R u, and R ⊆ R1

imply s ≈E1∪R1 u. s→ u ∈ R2, t→R u, and R ⊆ R2 imply
s ≈E2∪R2 u. Hence, ≈E1∪R1 =≈E2∪R2 .

For L-Simplify the proof is similar.



Soundness

Lemma 6.2 (Soundness)

If (E1,R1) ⊢C (E2,R2), then ≈E1∪R1 =≈E2∪R2 .

Proof.

Trivial for the first three rules.

For Simplify-Identity, E1 = E ∪ {s ≈ t}, E2 = E ∪ {u ≈ t},
R1 = R = R2, and s→R u. We have u ≈E1∪R1 t, which implies
≈E2∪R2⊆≈E1∪R1 . Conversely, u ≈ t ∈ E2, s→R u, and R = R2 imply
that s ≈E2∪R2 t and, hence, ≈E1∪R1⊆≈E2∪R2 .

For R-Simplify, we have E1 = E = E2, R1 = R ∪ {s→ t},
R2 = R ∪ {s→ u}, and t→R u. s→ t ∈ R1, t→R u, and R ⊆ R1

imply s ≈E1∪R1 u. s→ u ∈ R2, t→R u, and R ⊆ R2 imply
s ≈E2∪R2 u. Hence, ≈E1∪R1 =≈E2∪R2 .

For L-Simplify the proof is similar.



Soundness

Lemma 6.2 (Soundness)

If (E1,R1) ⊢C (E2,R2), then ≈E1∪R1 =≈E2∪R2 .

Proof.

Trivial for the first three rules.

For Simplify-Identity, E1 = E ∪ {s ≈ t}, E2 = E ∪ {u ≈ t},
R1 = R = R2, and s→R u. We have u ≈E1∪R1 t, which implies
≈E2∪R2⊆≈E1∪R1 . Conversely, u ≈ t ∈ E2, s→R u, and R = R2 imply
that s ≈E2∪R2 t and, hence, ≈E1∪R1⊆≈E2∪R2 .

For R-Simplify, we have E1 = E = E2, R1 = R ∪ {s→ t},
R2 = R ∪ {s→ u}, and t→R u. s→ t ∈ R1, t→R u, and R ⊆ R1

imply s ≈E1∪R1 u. s→ u ∈ R2, t→R u, and R ⊆ R2 imply
s ≈E2∪R2 u. Hence, ≈E1∪R1 =≈E2∪R2 .

For L-Simplify the proof is similar.



Completion Procedure

Definition 6.1 (Completion Procedure)

A completion procedure is a program that accepts as input a finite
set of identities and a reduction order >, and uses the inference
rules to generate a (finite or infinite) sequence

(E0,R0) ⊢C (E1,R1) ⊢C (E2,R2) ⊢C (E3,R3) ⊢C ⋯,

where R0 ∶= ∅. The sequence is called a run of the procedure on
input E0 and >.



Completion Procedure

▸ To treat finite and infinite runs simultaneously, we extend
every finite run (E0,R0) ⊢C ⋯ ⊢C (En,Rn) to an infinite one
by setting (En+i,Rn+i) ∶= (En,Rn) for all i ≥ 1.

▸ Result of the run: persistent identities and rules:

Eω ∶= ⋃
i≥0
⋂
j≥i

Ej and Rω ∶= ⋃
i≥0
⋂
j≥i

Rj .

▸ If the run is finite, then Eω = En and Rω = Rn.

▸ If the run is infinite, persistent identities (rules) are those that
belong to some Ei (Ri) and are never removed in later
inference steps.



Completion Procedure

▸ To treat finite and infinite runs simultaneously, we extend
every finite run (E0,R0) ⊢C ⋯ ⊢C (En,Rn) to an infinite one
by setting (En+i,Rn+i) ∶= (En,Rn) for all i ≥ 1.

▸ Result of the run: persistent identities and rules:

Eω ∶= ⋃
i≥0
⋂
j≥i

Ej and Rω ∶= ⋃
i≥0
⋂
j≥i

Rj .

▸ If the run is finite, then Eω = En and Rω = Rn.

▸ If the run is infinite, persistent identities (rules) are those that
belong to some Ei (Ri) and are never removed in later
inference steps.



Completion Procedure

▸ To treat finite and infinite runs simultaneously, we extend
every finite run (E0,R0) ⊢C ⋯ ⊢C (En,Rn) to an infinite one
by setting (En+i,Rn+i) ∶= (En,Rn) for all i ≥ 1.

▸ Result of the run: persistent identities and rules:

Eω ∶= ⋃
i≥0
⋂
j≥i

Ej and Rω ∶= ⋃
i≥0
⋂
j≥i

Rj .

▸ If the run is finite, then Eω = En and Rω = Rn.

▸ If the run is infinite, persistent identities (rules) are those that
belong to some Ei (Ri) and are never removed in later
inference steps.



Completion Procedure

▸ To treat finite and infinite runs simultaneously, we extend
every finite run (E0,R0) ⊢C ⋯ ⊢C (En,Rn) to an infinite one
by setting (En+i,Rn+i) ∶= (En,Rn) for all i ≥ 1.

▸ Result of the run: persistent identities and rules:

Eω ∶= ⋃
i≥0
⋂
j≥i

Ej and Rω ∶= ⋃
i≥0
⋂
j≥i

Rj .

▸ If the run is finite, then Eω = En and Rω = Rn.

▸ If the run is infinite, persistent identities (rules) are those that
belong to some Ei (Ri) and are never removed in later
inference steps.



Success, Failure, Correctness

Definition 6.2 (Success, Failure, Correctness)

A run on input E0 of a completion procedure

▸ succeeds iff Eω = ∅ and Rω is convergent and equivalent to
E0,

▸ fails iff Eω ≠ ∅,

▸ is correct iff every run that does not fail succeeds.



Success, Failure, Correctness

For the basic completion procedure,

▸ failure occurs if an input identity can not be oriented, or the
normal forms of a critical pair are distinct (can not be
removed by Delete) and can not be oriented using >.

▸ The other two cases (terminates successfully, does not
terminate) are successful in terms of Definition 6.2.



Success, Failure, Correctness

An arbitrary completion procedure may also have infinite failing
runs.

Example 6.4

Input:
E0 = {h(x, y) ≈ f(x), h(x, y) ≈ f(y), f(g(f(x))) ≈ f(g(x))}
>lpo induced by g > h > f > a.

The procedure generates an infinite run with

Eω = {f(x) ≈ f(y)}
Rω = {h(x, y) → f(x), h(x, y) → f(y)}∪

{fgnf(x) → fgn(x) ∣ n ≥ 1}.



Success, Failure, Correctness

▸ It makes sense not to terminate with failure if a reduced and
nonorientable identity is encountered.

▸ One simply defers the orientation of this identity until new
rules are obtained.

▸ If the new set of rules allows one to simplify the identity to an
orientable or trivial one, then one can apply Orient or
Delete.

▸ Otherwise, the treatment of this identity is deferred again.



Success, Failure, Correctness

Example 6.5
Input:

E0 = {h(x, y) ≈ f(x), h(x, y) ≈ f(y), g(x, y) ≈ h(x, y), g(x, y) ≈ a}
>lpo induced by g > h > f > a.

Apply Orient 4 times:

E4 = ∅
R4 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a}

Apply Deduce twice:

E6 = {f(x) ≈ f(y), h(x, y) ≈ a}
R6 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a}



Success, Failure, Correctness

Example 6.5
Input:

E0 = {h(x, y) ≈ f(x), h(x, y) ≈ f(y), g(x, y) ≈ h(x, y), g(x, y) ≈ a}
>lpo induced by g > h > f > a.

Apply Orient 4 times:

E4 = ∅
R4 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a}

Apply Deduce twice:

E6 = {f(x) ≈ f(y), h(x, y) ≈ a}
R6 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a}



Success, Failure, Correctness

Example 6.5
Input:

E0 = {h(x, y) ≈ f(x), h(x, y) ≈ f(y), g(x, y) ≈ h(x, y), g(x, y) ≈ a}
>lpo induced by g > h > f > a.

Apply Orient 4 times:

E4 = ∅
R4 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a}

Apply Deduce twice:

E6 = {f(x) ≈ f(y), h(x, y) ≈ a}
R6 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a}



Success, Failure, Correctness

Example 6.5
Input:

E0 = {h(x, y) ≈ f(x), h(x, y) ≈ f(y), g(x, y) ≈ h(x, y), g(x, y) ≈ a}
>lpo induced by g > h > f > a.

E6 = {f(x) ≈ f(y), h(x, y) ≈ a}
R6 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a}

Apply Orient:

E7 = {f(x) ≈ f(y)}
R7 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a, h(x, y) → a}



Success, Failure, Correctness

Example 6.5
Input:

E0 = {h(x, y) ≈ f(x), h(x, y) ≈ f(y), g(x, y) ≈ h(x, y), g(x, y) ≈ a}
>lpo induced by g > h > f > a.

E6 = {f(x) ≈ f(y), h(x, y) ≈ a}
R6 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a}

Apply Orient:

E7 = {f(x) ≈ f(y)}
R7 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a, h(x, y) → a}



Success, Failure, Correctness

Example 6.5
Input:

E0 = {h(x, y) ≈ f(x), h(x, y) ≈ f(y), g(x, y) ≈ h(x, y), g(x, y) ≈ a}
>lpo induced by g > h > f > a.

E7 = {f(x) ≈ f(y)}
R7 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a, h(x, y) → a}

Apply Deduce: (The basic completion would fail here, since the critical
pair f(x) ≈ f(y) is unoriantable.)

E8 = {f(x) ≈ f(y), f(x) ≈ a}
R8 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a, h(x, y) → a}



Success, Failure, Correctness

Example 6.5
Input:

E0 = {h(x, y) ≈ f(x), h(x, y) ≈ f(y), g(x, y) ≈ h(x, y), g(x, y) ≈ a}
>lpo induced by g > h > f > a.

E7 = {f(x) ≈ f(y)}
R7 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a, h(x, y) → a}

Apply Deduce: (The basic completion would fail here, since the critical
pair f(x) ≈ f(y) is unoriantable.)

E8 = {f(x) ≈ f(y), f(x) ≈ a}
R8 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a, h(x, y) → a}



Success, Failure, Correctness

Example 6.5
Input:

E0 = {h(x, y) ≈ f(x), h(x, y) ≈ f(y), g(x, y) ≈ h(x, y), g(x, y) ≈ a}
>lpo induced by g > h > f > a.

E8 = {f(x) ≈ f(y), f(x) ≈ a}
R8 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a, h(x, y) → a}

Apply Orient

E9 = {f(x) ≈ f(y)}
R9 = {h(x, y) → f(x), h(x, y) → f(y), g(x, y) → h(x, y)

g(x, y) → a, h(x, y) → a, f(x) → a}



Success, Failure, Correctness

Example 6.5
Input:

E0 = {h(x, y) ≈ f(x), h(x, y) ≈ f(y), g(x, y) ≈ h(x, y), g(x, y) ≈ a}
>lpo induced by g > h > f > a.

E8 = {f(x) ≈ f(y), f(x) ≈ a}
R8 = {h(x, y) → f(x), h(x, y) → f(y),

g(x, y) → h(x, y), g(x, y) → a, h(x, y) → a}

Apply Orient

E9 = {f(x) ≈ f(y)}
R9 = {h(x, y) → f(x), h(x, y) → f(y), g(x, y) → h(x, y)

g(x, y) → a, h(x, y) → a, f(x) → a}



Success, Failure, Correctness

Example 6.5
Input:

E0 = {h(x, y) ≈ f(x), h(x, y) ≈ f(y), g(x, y) ≈ h(x, y), g(x, y) ≈ a}
>lpo induced by g > h > f > a.

E9 = {f(x) ≈ f(y)}
R9 = {h(x, y) → f(x), h(x, y) → f(y), g(x, y) → h(x, y)

g(x, y) → a, h(x, y) → a, f(x) → a}

Apply Simplify-Identity twice

E11 = {a ≈ a}
R11 = {h(x, y) → f(x), h(x, y) → f(y), g(x, y) → h(x, y)

g(x, y) → a, h(x, y) → a, f(x) → a}



Success, Failure, Correctness

Example 6.5
Input:

E0 = {h(x, y) ≈ f(x), h(x, y) ≈ f(y), g(x, y) ≈ h(x, y), g(x, y) ≈ a}
>lpo induced by g > h > f > a.

E9 = {f(x) ≈ f(y)}
R9 = {h(x, y) → f(x), h(x, y) → f(y), g(x, y) → h(x, y)

g(x, y) → a, h(x, y) → a, f(x) → a}

Apply Simplify-Identity twice

E11 = {a ≈ a}
R11 = {h(x, y) → f(x), h(x, y) → f(y), g(x, y) → h(x, y)

g(x, y) → a, h(x, y) → a, f(x) → a}



Success, Failure, Correctness

Example 6.5
Input:

E0 = {h(x, y) ≈ f(x), h(x, y) ≈ f(y), g(x, y) ≈ h(x, y), g(x, y) ≈ a}
>lpo induced by g > h > f > a.

E11 = {a ≈ a}
R11 = {h(x, y) → f(x), h(x, y) → f(y), g(x, y) → h(x, y)

g(x, y) → a, h(x, y) → a, f(x) → a}

Apply Delete

E12 = ∅
R12 = {h(x, y) → f(x), h(x, y) → f(y), g(x, y) → h(x, y)

g(x, y) → a, h(x, y) → a, f(x) → a}

Hence, we manage to simplify and delete an unorientable identity.



Success, Failure, Correctness

Example 6.5
Input:

E0 = {h(x, y) ≈ f(x), h(x, y) ≈ f(y), g(x, y) ≈ h(x, y), g(x, y) ≈ a}
>lpo induced by g > h > f > a.

E11 = {a ≈ a}
R11 = {h(x, y) → f(x), h(x, y) → f(y), g(x, y) → h(x, y)

g(x, y) → a, h(x, y) → a, f(x) → a}

Apply Delete

E12 = ∅
R12 = {h(x, y) → f(x), h(x, y) → f(y), g(x, y) → h(x, y)

g(x, y) → a, h(x, y) → a, f(x) → a}

Hence, we manage to simplify and delete an unorientable identity.



Fairness

Definition 6.3 (Fairness)

A run of a completion procedure is called fair iff

CP (Rω) ⊆ ⋃
i≥0

Ei.

A completion procedure is fair iff every non-failing run is fair.

Theorem 6.1
Every fair completion procedure is correct.


	*



