
Rewriting
Part 3.2 Equational Problems. Syntactic Unification

Temur Kutsia

RISC, JKU Linz



Validity and Satisfiability

Notation: s ≈E t iff s ≈ t belongs to the equational theory
generated by E.

Validity problem:

Given: A set of identities E and terms s and t.
Decide: s ≈E t.

Satisfiability problem:

Given: A set of identities E and terms s and t.
Find: A substitution σ such that σ(s) ≈E σ(t).



Validity and Satisfiability

Notation: s ≈E t iff s ≈ t belongs to the equational theory
generated by E.

Validity problem:

Given: A set of identities E and terms s and t.
Decide: s ≈E t.

Satisfiability problem:

Given: A set of identities E and terms s and t.
Find: A substitution σ such that σ(s) ≈E σ(t).



Validity and Satisfiability

Notation: s ≈E t iff s ≈ t belongs to the equational theory
generated by E.

Validity problem:

Given: A set of identities E and terms s and t.
Decide: s ≈E t.

Satisfiability problem:

Given: A set of identities E and terms s and t.
Find: A substitution σ such that σ(s) ≈E σ(t).



Equational Problems

The following methods solve special cases:

▸ Term rewriting decides ≈E if →E is convergent.
(Discussed in the previous lecture)

▸ Congruence closure decided ≈E when E is variable-free.
(Discussed in the previous lecture)

▸ Syntactic unification computes σ such that σ(s) = σ(t).
(Today)



Equational Problems

The following methods solve special cases:

▸ Term rewriting decides ≈E if →E is convergent.
(Discussed in the previous lecture)

▸ Congruence closure decided ≈E when E is variable-free.
(Discussed in the previous lecture)

▸ Syntactic unification computes σ such that σ(s) = σ(t).
(Today)



Equational Problems

The following methods solve special cases:

▸ Term rewriting decides ≈E if →E is convergent.
(Discussed in the previous lecture)

▸ Congruence closure decided ≈E when E is variable-free.
(Discussed in the previous lecture)

▸ Syntactic unification computes σ such that σ(s) = σ(t).
(Today)



Unification

Unification is the process of solving satisfiability problems:

Given: A set of identities E and two terms s and t.

Find: A substitution σ such that σ(s) ≈E σ(t).

▸ In syntactic unification, E = ∅.
▸ r1 ≈∅ r2 iff r1 = r2.

Syntactic unification:

Given: Two terms s and t.

Find: A substitution σ such that σ(s) = σ(t).



Unification

Unification is the process of solving satisfiability problems:

Given: A set of identities E and two terms s and t.

Find: A substitution σ such that σ(s) ≈E σ(t).

▸ In syntactic unification, E = ∅.
▸ r1 ≈∅ r2 iff r1 = r2.

Syntactic unification:

Given: Two terms s and t.

Find: A substitution σ such that σ(s) = σ(t).



Unification

Unification is the process of solving satisfiability problems:

Given: A set of identities E and two terms s and t.

Find: A substitution σ such that σ(s) ≈E σ(t).

▸ In syntactic unification, E = ∅.
▸ r1 ≈∅ r2 iff r1 = r2.

Syntactic unification:

Given: Two terms s and t.

Find: A substitution σ such that σ(s) = σ(t).



Unification

Syntactic unification:

Given: Two terms s and t.

Find: A substitution σ such that σ(s) = σ(t).

▸ σ: a unifier of s and t.

▸ σ: a solution of the equation s =? t.



Examples

f(x) =? f(a) ∶ exactly one unifier {x↦ a}
x =? f(y) ∶ infinitely many unifiers

{x↦ f(y)},{x↦ f(a), y ↦ a}, . . .
f(x) =? g(y) ∶ no unifiers

x =? f(x) ∶ no unifiers



Examples

x =? f(y) ∶ infinitely many unifiers

{x↦ f(y)},{x↦ f(a), y ↦ a}, . . .

▸ Some solutions are better than the others: {x↦ f(y)} is
more general than {x↦ f(a), y ↦ a}



Substitutions

Instantiation Quasi-Ordering

▸ A substitution σ is more general than ϑ, written σ ≲ ϑ, if
there exists η such that ησ = ϑ.

▸ ϑ is called an instance of σ.

▸ The relation ≲ is quasi-ordering (reflexive and transitive binary
relation), called instantiation quasi-ordering.

▸ ∼ is the equivalence relation corresponding to ≲, i.e., the
relation ≲ ∩ ≳.

Example 3.2

Let σ = {x↦ y}, ρ = {x↦ a, y ↦ a}, ϑ = {y ↦ x}.

▸ σ ≲ ρ, because {y ↦ a}σ = ρ.

▸ σ ≲ ϑ, because {y ↦ x}σ = ϑ.

▸ ϑ ≲ σ, because {x↦ y}ϑ = σ.

▸ σ ∼ ϑ.



Substitutions

Definition 3.2 (Variable Renaming)

A substitution σ = {x1 ↦ y1, x2 ↦ y2, . . . , xn ↦ yn} is called
variable renaming iff {x1, . . . , xn} = {y1, . . . , yn}.
(Permuting the domain variables.)

Example 3.3

▸ {x↦ y, y ↦ z, z ↦ x} is a variable renaming.

▸ {x↦ a}, {x↦ y}, and {x↦ z, y ↦ z, z ↦ x} are not.



Substitutions

Definition 3.3 (Idempotent Substitution)

A substitution σ is idempotent iff σσ = σ.

Example 3.4

Let σ = {x↦ f(z), y ↦ z}, ϑ = {x↦ f(y), y ↦ z}.

▸ σ is idempotent.

▸ ϑ is not: ϑϑ = σ ≠ ϑ.



Substitutions

Lemma 3.2
σ ∼ ϑ iff there exists a variable renaming ρ such that ρσ = ϑ.

Proof.
Exercise.

Example 3.5

▸ σ = {x↦ y}.

▸ ϑ = {y ↦ x}.

▸ σ ∼ ϑ.

▸ {x↦ y, y ↦ x}σ = ϑ.



Substitutions

Lemma 3.2
σ ∼ ϑ iff there exists a variable renaming ρ such that ρσ = ϑ.

Proof.
Exercise.

Example 3.5

▸ σ = {x↦ y}.

▸ ϑ = {y ↦ x}.

▸ σ ∼ ϑ.

▸ {x↦ y, y ↦ x}σ = ϑ.



Substitutions

Theorem 3.4
σ is idempotent iff Dom(σ) ∩ VRan(σ) = ∅.

Proof.
Exercise.



Substitutions

Definition 3.4 (Unification Problem, Unifier, MGU)

▸ Unification problem: A finite set of equations
Γ = {s1 =? t1, . . . , sn =? tn}.

▸ Unifier or solution of Γ: A substitution σ such that
σ(si) = σ(ti) for all 1 ≤ i ≤ n.

▸ U(Γ): The set of all unifiers of Γ. Γ is unifiable iff U(Γ) ≠ ∅.
▸ σ is a most general unifier (mgu) of Γ iff it is a least element

of U(Γ):
▸ σ ∈ U(Γ), and
▸ σ ≲ ϑ for every ϑ ∈ U(Γ).



Substitutions

Definition 3.4 (Unification Problem, Unifier, MGU)

▸ Unification problem: A finite set of equations
Γ = {s1 =? t1, . . . , sn =? tn}.

▸ Unifier or solution of Γ: A substitution σ such that
σ(si) = σ(ti) for all 1 ≤ i ≤ n.

▸ U(Γ): The set of all unifiers of Γ. Γ is unifiable iff U(Γ) ≠ ∅.
▸ σ is a most general unifier (mgu) of Γ iff it is a least element

of U(Γ):
▸ σ ∈ U(Γ), and
▸ σ ≲ ϑ for every ϑ ∈ U(Γ).



Substitutions

Definition 3.4 (Unification Problem, Unifier, MGU)

▸ Unification problem: A finite set of equations
Γ = {s1 =? t1, . . . , sn =? tn}.

▸ Unifier or solution of Γ: A substitution σ such that
σ(si) = σ(ti) for all 1 ≤ i ≤ n.

▸ U(Γ): The set of all unifiers of Γ. Γ is unifiable iff U(Γ) ≠ ∅.

▸ σ is a most general unifier (mgu) of Γ iff it is a least element
of U(Γ):

▸ σ ∈ U(Γ), and
▸ σ ≲ ϑ for every ϑ ∈ U(Γ).



Substitutions

Definition 3.4 (Unification Problem, Unifier, MGU)

▸ Unification problem: A finite set of equations
Γ = {s1 =? t1, . . . , sn =? tn}.

▸ Unifier or solution of Γ: A substitution σ such that
σ(si) = σ(ti) for all 1 ≤ i ≤ n.

▸ U(Γ): The set of all unifiers of Γ. Γ is unifiable iff U(Γ) ≠ ∅.
▸ σ is a most general unifier (mgu) of Γ iff it is a least element

of U(Γ):
▸ σ ∈ U(Γ), and
▸ σ ≲ ϑ for every ϑ ∈ U(Γ).



Unifiers

Example 3.6

σ ∶= {x↦ y} is an mgu of x =? y.
For any other unifier ϑ of x =? y, σ ≲ ϑ because

▸ ϑ(x) = ϑ(y) = ϑσ(x).

▸ ϑ(y) = ϑσ(y).

▸ ϑ(z) = ϑσ(z) for any other variable z.

σ′ ∶= {x↦ z, y ↦ z} is a unifier but not an mgu of x =? y.

▸ σ′ = {y ↦ z}σ.

▸ {z ↦ y}σ′ = {x↦ y, z ↦ y} ≠ σ.

σ′′ = {x↦ y, z1 ↦ z2, z2 ↦ z1} is an mgu of x =? y.

▸ σ = {z1 ↦ z2, z2 ↦ z1}σ′′.
▸ σ′′ is not idempotent.



Unifiers

Example 3.6

σ ∶= {x↦ y} is an mgu of x =? y.
For any other unifier ϑ of x =? y, σ ≲ ϑ because

▸ ϑ(x) = ϑ(y) = ϑσ(x).

▸ ϑ(y) = ϑσ(y).

▸ ϑ(z) = ϑσ(z) for any other variable z.

σ′ ∶= {x↦ z, y ↦ z} is a unifier but not an mgu of x =? y.

▸ σ′ = {y ↦ z}σ.

▸ {z ↦ y}σ′ = {x↦ y, z ↦ y} ≠ σ.

σ′′ = {x↦ y, z1 ↦ z2, z2 ↦ z1} is an mgu of x =? y.

▸ σ = {z1 ↦ z2, z2 ↦ z1}σ′′.
▸ σ′′ is not idempotent.



Unifiers

Example 3.6

σ ∶= {x↦ y} is an mgu of x =? y.
For any other unifier ϑ of x =? y, σ ≲ ϑ because

▸ ϑ(x) = ϑ(y) = ϑσ(x).

▸ ϑ(y) = ϑσ(y).

▸ ϑ(z) = ϑσ(z) for any other variable z.

σ′ ∶= {x↦ z, y ↦ z} is a unifier but not an mgu of x =? y.

▸ σ′ = {y ↦ z}σ.

▸ {z ↦ y}σ′ = {x↦ y, z ↦ y} ≠ σ.

σ′′ = {x↦ y, z1 ↦ z2, z2 ↦ z1} is an mgu of x =? y.

▸ σ = {z1 ↦ z2, z2 ↦ z1}σ′′.
▸ σ′′ is not idempotent.



Unification

Question: How to compute an mgu of an unification problem?



Rule-Based Formulation of Unification

▸ Unification algorithm in a rule-base way.

▸ Repeated transformation of a set of equations.

▸ The left-to-right search for disagreements: modeled by term
decomposition.



The Inference System U

▸ A set of equations in solved form:

{x1 ≈ t1, . . . , xn ≈ tn}

where each xi occurs exactly once.

▸ For each idempotent substitution there exists exactly one set
of equations in solved form.

▸ Notation:
▸ [σ] for the solved form set for an idempotent substitution σ.
▸ σS for the idempotent substitution corresponding to a solved

form set S.



The Inference System U

▸ System: The symbol � or a pair P ;S where
▸ P is a set of unification problems,
▸ S is a set of equations in solved form.

▸ � represents failure.

▸ A unifier (or a solution) of a system P ;S: A substitution that
unifies each of the equations in P and S.

▸ � has no unifiers.



The Inference System U

Example 3.7

▸ System: {g(a) =? g(y), g(z) =? g(g(x))};{x ≈ g(y)}.

▸ Its unifier: {x↦ g(a), y ↦ a, z ↦ g(g(a))}.



The Inference System U

Six transformation rules on systems:1

Trivial:

{s =? s} ⊎ P ′;S⇔ P ′;S.
Decomposition:

{f(s1, . . . , sn) =? f(t1, . . . , tn)} ⊎ P ′;S⇔
{s1 =? t1, . . . , sn =? tn} ∪ P ′;S, where n ≥ 0.

Symbol Clash:

{f(s1, . . . , sn) =? g(t1, . . . , tm)} ⊎ P ′;S⇔ �, if f ≠ g.

1
⊎ stands for disjoint union.



The Inference System U

Orient:

{t =? x} ⊎ P ′;S⇔ {x =? t} ∪ P ′;S, if t ∉ V.
Occurs Check:

{x =? t} ⊎ P ′;S⇔ � if x ∈ Var(t) but x ≠ t.
Variable Elimination:

{x =? t} ⊎ P ′;S⇔ P ′{x↦ t};{x↦ t}(S) ∪ {x ≈ t},
if x ∉ Var(t).



Unification with U

In order to unify s and t:

1. Create an initial system {s =? t};∅.

2. Apply successively rules from U.

The system U is essentially the Herbrand’s Unification Algorithm.



Properties of U: Termination

Lemma 3.3
For any finite set of equations P , every sequence of
transformations in U

P ;∅⇔ P1;S1⇔ P2;S2⇔ ⋯

terminates either with � or with ∅;S, with S in solved form.



Properties of U: Termination

Proof.
Complexity measure on the set P of equations: ⟨n1, n2, n3⟩,
ordered lexicographically on triples of naturals, where

n1 = The number of distinct variables in P .

n2 = The number of symbols in P .

n3 = The number of equations in P of the form t =? x where t
is not a variable.



Properties of U: Termination

Proof [Cont.]

Each rule in U strictly reduces the complexity measure.

Rule n1 n2 n3
Trivial ≥ >
Decomposition = >
Orient = = >
Variable Elimination >



Properties of U: Termination

Proof [Cont.]

▸ A rule can always be applied to a system with non-empty P .

▸ The only systems to which no rule can be applied are � and
∅;S.

▸ Whenever an equation is added to S, the variable on the
left-hand side is eliminated from the rest of the system, i.e.
S1, S2, . . . are in solved form.

Corollary 3.1

If P ;∅⇔+ ∅;S then σS is idempotent.



Properties of U: Correctness

Notation: Γ for systems.

Lemma 3.4
For any transformation P ;S⇔ Γ, a substitution ϑ unifies P ;S iff
it unifies Γ.



Properties of U: Correctness

Proof.
Occurs Check: If x ∈ Var(t) and x ≠ t, then

▸ x contains fewer symbols than t,

▸ ϑ(x) contains fewer symbols than ϑ(t) (for any ϑ).

Therefore, ϑ(x) and ϑ(t) can not be unified.

Variable Elimination: From ϑ(x) = ϑ(t), by structural induction
on u:

ϑ(u) = ϑ{x↦ t}(u)

for any term, equation, or set of equations u. Then

ϑ(P ′) = ϑ{x↦ t}(P ′), ϑ(S′) = ϑ{x↦ t}(S′).



Properties of U: Correctness

Theorem 3.5 (Soundness)

If P ;∅⇔+ ∅;S, then σS unifies any equation in P .

Proof.
By induction on the length of derivation, using the previous lemma
and the fact that σS unifies S.



Properties of U: Correctness

Theorem 3.5 (Soundness)

If P ;∅⇔+ ∅;S, then σS unifies any equation in P .

Proof.
By induction on the length of derivation, using the previous lemma
and the fact that σS unifies S.



Properties of U: Correctness

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P , then any maximal sequence of
transformations P ;∅⇔ ⋯ ends in a system ∅;S such that σS ≲ ϑ.

Proof.
Such a sequence must end in ∅;S where ϑ unifies S (why?).
For every binding x↦ t in σS , ϑσS(x) = ϑ(t) = ϑ(x) and for every
x ∉ Dom(σS), ϑσS(x) = ϑ(x). Hence, ϑ = ϑσS .

Corollary 3.2

If P has no unifiers, then any maximal sequence of transformations
from P ;∅ must have the form P ;∅⇔ ⋯⇔ �.



Properties of U: Correctness

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P , then any maximal sequence of
transformations P ;∅⇔ ⋯ ends in a system ∅;S such that σS ≲ ϑ.

Proof.
Such a sequence must end in ∅;S where ϑ unifies S (why?).
For every binding x↦ t in σS , ϑσS(x) = ϑ(t) = ϑ(x) and for every
x ∉ Dom(σS), ϑσS(x) = ϑ(x). Hence, ϑ = ϑσS .

Corollary 3.2

If P has no unifiers, then any maximal sequence of transformations
from P ;∅ must have the form P ;∅⇔ ⋯⇔ �.



Properties of U: Correctness

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P , then any maximal sequence of
transformations P ;∅⇔ ⋯ ends in a system ∅;S such that σS ≲ ϑ.

Proof.
Such a sequence must end in ∅;S where ϑ unifies S (why?).
For every binding x↦ t in σS , ϑσS(x) = ϑ(t) = ϑ(x) and for every
x ∉ Dom(σS), ϑσS(x) = ϑ(x). Hence, ϑ = ϑσS .

Corollary 3.2

If P has no unifiers, then any maximal sequence of transformations
from P ;∅ must have the form P ;∅⇔ ⋯⇔ �.



Observations

▸ U computes an idempotent mgu.

▸ The choice of rules in computations via U is “don’t care”
nondeterminism (the word “any” in Completeness Theorem).

▸ Any control strategy will result to an mgu for unifiable terms,
and failure for non-unifiable terms.

▸ Any practical algorithm that proceeds by performing
transformations of U in any order is

▸ sound and complete,
▸ generates mgus for unifiable terms.

▸ Not all transformation sequences have the same length.

▸ Not all transformation sequences end in exactly the same mgu.



Matching

Definition 3.5
Matcher, Matching Problem

▸ A substitution σ is a matcher of s to t if σ(s) = t.
▸ A matching equation between s and t is represented as s ≲? t.
▸ A matching problem is a finite set of matching equations.



Matching vs Unification

Example 3.8

f(x, y) ≲? f(g(z), c) f(x, y) =? f(g(z), c)
{x↦ g(z), y ↦ c} {x↦ g(z), y ↦ c}

f(x, y) ≲? f(g(z), x) f(x, y) =? f(g(z), x)
{x↦ g(z), y ↦ x} {x↦ g(z), y ↦ g(z)}
f(x, a) ≲? f(b, y) f(x, a) =? f(b, y)
No matcher {x↦ b, y ↦ a}
f(x,x) ≲? f(x, a) f(x,x) =? f(x, a)
No matcher {x↦ a}
x ≲? f(x) x =? f(x)
{x↦ f(x)} No unifier



Matching vs Unification

Example 3.8

f(x, y) ≲? f(g(z), c) f(x, y) =? f(g(z), c)
{x↦ g(z), y ↦ c} {x↦ g(z), y ↦ c}
f(x, y) ≲? f(g(z), x) f(x, y) =? f(g(z), x)
{x↦ g(z), y ↦ x} {x↦ g(z), y ↦ g(z)}

f(x, a) ≲? f(b, y) f(x, a) =? f(b, y)
No matcher {x↦ b, y ↦ a}
f(x,x) ≲? f(x, a) f(x,x) =? f(x, a)
No matcher {x↦ a}
x ≲? f(x) x =? f(x)
{x↦ f(x)} No unifier



Matching vs Unification

Example 3.8

f(x, y) ≲? f(g(z), c) f(x, y) =? f(g(z), c)
{x↦ g(z), y ↦ c} {x↦ g(z), y ↦ c}
f(x, y) ≲? f(g(z), x) f(x, y) =? f(g(z), x)
{x↦ g(z), y ↦ x} {x↦ g(z), y ↦ g(z)}
f(x, a) ≲? f(b, y) f(x, a) =? f(b, y)
No matcher {x↦ b, y ↦ a}

f(x,x) ≲? f(x, a) f(x,x) =? f(x, a)
No matcher {x↦ a}
x ≲? f(x) x =? f(x)
{x↦ f(x)} No unifier



Matching vs Unification

Example 3.8

f(x, y) ≲? f(g(z), c) f(x, y) =? f(g(z), c)
{x↦ g(z), y ↦ c} {x↦ g(z), y ↦ c}
f(x, y) ≲? f(g(z), x) f(x, y) =? f(g(z), x)
{x↦ g(z), y ↦ x} {x↦ g(z), y ↦ g(z)}
f(x, a) ≲? f(b, y) f(x, a) =? f(b, y)
No matcher {x↦ b, y ↦ a}
f(x,x) ≲? f(x, a) f(x,x) =? f(x, a)
No matcher {x↦ a}

x ≲? f(x) x =? f(x)
{x↦ f(x)} No unifier



Matching vs Unification

Example 3.8

f(x, y) ≲? f(g(z), c) f(x, y) =? f(g(z), c)
{x↦ g(z), y ↦ c} {x↦ g(z), y ↦ c}
f(x, y) ≲? f(g(z), x) f(x, y) =? f(g(z), x)
{x↦ g(z), y ↦ x} {x↦ g(z), y ↦ g(z)}
f(x, a) ≲? f(b, y) f(x, a) =? f(b, y)
No matcher {x↦ b, y ↦ a}
f(x,x) ≲? f(x, a) f(x,x) =? f(x, a)
No matcher {x↦ a}
x ≲? f(x) x =? f(x)
{x↦ f(x)} No unifier



How to Solve Matching Problems

▸ s =? t and s ≲? t coincide, if t is ground.

▸ When t is not ground in s ≲? t, simply regard all variables in t
as constants and use the unification algorithm.

▸ Alternatively, modify the rules in U to work directly with the
matching problem.



Matched Form

▸ A set of equations {x1 ≈ t1, . . . , xn ≈ tn} is in matched from,
if all x’s are pairwise distinct.

▸ The notation σS extends to matched forms.

▸ If S is in matched form, then

σS(x) = { t, if x ≈ t ∈ S
x, otherwise



The Inference System M

▸ Matching system: The symbol � or a pair P ;S, where
▸ P is set of matching problems.
▸ S is set of equations in matched form.

▸ A matcher (or a solution) of a system P ;S: A substitution
that solves each of the matching equations in P and S.

▸ � has no matchers.



The Inference System M

Five transformation rules on matching systems:2

Decomposition:

{f(s1, . . . , sn) ≲? f(t1, . . . , tn)} ⊎ P ′;S⇔
{s1 ≲? t1, . . . , sn ≲? tn} ∪ P ′;S, where n ≥ 0.

Symbol Clash:

{f(s1, . . . , sn) ≲? g(t1, . . . , tm)} ⊎ P ′;S⇔ �, if f ≠ g.

2
⊎ stands for disjoint union.



The Inference System M

Symbol-Variable Clash:

{f(s1, . . . , sn) ≲? x} ⊎ P ′;S⇔ �.
Merging Clash:

{x ≲? t1} ⊎ P ′;{x ≈ t2} ⊎ S′⇔ �, if t1 ≠ t2.
Elimination:

{x ≲? t} ⊎ P ′;S⇔ P ′;{x ≈ t} ∪ S,
if S does not contain x ≈ t′ with t ≠ t′.



Matching with M

In order to match s to t

1. Create an initial system {s ≲? t};∅.

2. Apply successively the rules from M.



Matching with M

Example 3.9

Match f(x, f(a, x)) to f(g(a), f(a, g(a))):

{f(x, f(a, x)) ≲? f(g(a), f(a, g(a)))};∅⇔Decomposition

{x ≲? g(a), f(a, x) ≲? f(a, g(a))};∅⇔Elimination

{f(a, x) ≲? f(a, g(a))};{x ≈ g(a)}⇔Decomposition

{a ≲? a, x ≲? g(a)};{x ≈ g(a)}⇔Decomposition

{x ≲? g(a)};{x ≈ g(a)}⇔Merge

∅;{x ≈ g(a)}

Matcher: {x↦ g(a)}.



Matching with M

Example 3.10

Match f(x,x) to f(x, a):

{f(x,x) ≲? f(x, a)};∅⇔Decomposition

{x ≲? x,x ≲? a};∅⇔Elimination

{x ≲? a};{x ≈ x}⇔Merging Clash

�

No matcher.



Properties of M: Termination

Theorem 3.7
For any finite set of matching problems P , every sequence of
transformations in M of the form P ;∅⇔ P1;S1⇔ P2;S2⇔ ⋯
terminates either with � or with ∅;S, with S in matched form.

Proof.

▸ Termination is obvious, since every rule strictly decreases the
size of the first component of the matching system.

▸ A rule can always be applied to a system with non-empty P .

▸ The only systems to which no rule can be applied are � and
∅;S.

▸ Whenever x ≈ t is added to S, there is no other equation
x ≈ t′ in S. Hence, S1, S2, . . . are in matched form.



Properties of M: Termination

Theorem 3.7
For any finite set of matching problems P , every sequence of
transformations in M of the form P ;∅⇔ P1;S1⇔ P2;S2⇔ ⋯
terminates either with � or with ∅;S, with S in matched form.

Proof.

▸ Termination is obvious, since every rule strictly decreases the
size of the first component of the matching system.

▸ A rule can always be applied to a system with non-empty P .

▸ The only systems to which no rule can be applied are � and
∅;S.

▸ Whenever x ≈ t is added to S, there is no other equation
x ≈ t′ in S. Hence, S1, S2, . . . are in matched form.



Properties of M: Correctness

The following lemma is straightforward:

Lemma 3.5
For any transformation of matching systems P ;S⇔ Γ, a
substitution ϑ is a matcher for P ;S iff it is a matcher for Γ.



Properties of M: Correctness

Theorem 3.8 (Soundness)

If P ;∅⇔+ ∅;S, then σS solves all matching equations in P .

Proof.
By induction on the length of derivations, using the previous lemma
and the fact that σS solves the matching problems in S.



Properties of M: Correctness

Theorem 3.8 (Soundness)

If P ;∅⇔+ ∅;S, then σS solves all matching equations in P .

Proof.
By induction on the length of derivations, using the previous lemma
and the fact that σS solves the matching problems in S.



Properties of M: Correctness

Let v({s1 ≈ t1, . . . , sn ≈ tn}) be Var({s1, . . . , sn}).

Theorem 3.9 (Completeness)

If ϑ is a matcher of P , then any maximal sequence of
transformations P ;∅⇔ ⋯ ends in a system ∅;S such that
σS = ϑ∣v(P ).

Proof.
Such a sequence must end in ∅;S where ϑ is a matcher of S.
v(S) = v(P ). For every equation x ≈ t ∈ S, either t = x or
x↦ t ∈ σS . Therefore, for any such x, σS(x) = t = ϑ(x). Hence,
σS = ϑ∣v(P ).

Corollary 3.3

If P has no matchers, then any maximal sequence of
transformations from P ;∅ must have the form P ;∅⇔ ⋯⇔ �.



Properties of M: Correctness

Let v({s1 ≈ t1, . . . , sn ≈ tn}) be Var({s1, . . . , sn}).

Theorem 3.9 (Completeness)

If ϑ is a matcher of P , then any maximal sequence of
transformations P ;∅⇔ ⋯ ends in a system ∅;S such that
σS = ϑ∣v(P ).

Proof.
Such a sequence must end in ∅;S where ϑ is a matcher of S.
v(S) = v(P ). For every equation x ≈ t ∈ S, either t = x or
x↦ t ∈ σS . Therefore, for any such x, σS(x) = t = ϑ(x). Hence,
σS = ϑ∣v(P ).

Corollary 3.3

If P has no matchers, then any maximal sequence of
transformations from P ;∅ must have the form P ;∅⇔ ⋯⇔ �.



Properties of M: Correctness

Let v({s1 ≈ t1, . . . , sn ≈ tn}) be Var({s1, . . . , sn}).

Theorem 3.9 (Completeness)

If ϑ is a matcher of P , then any maximal sequence of
transformations P ;∅⇔ ⋯ ends in a system ∅;S such that
σS = ϑ∣v(P ).

Proof.
Such a sequence must end in ∅;S where ϑ is a matcher of S.
v(S) = v(P ). For every equation x ≈ t ∈ S, either t = x or
x↦ t ∈ σS . Therefore, for any such x, σS(x) = t = ϑ(x). Hence,
σS = ϑ∣v(P ).

Corollary 3.3

If P has no matchers, then any maximal sequence of
transformations from P ;∅ must have the form P ;∅⇔ ⋯⇔ �.


	*
	Matching




