Rewriting Part 3.2 Equational Problems. Syntactic Unification

Temur Kutsia

RISC, JKU Linz

Notation: $s \approx_E t$ iff $s \approx t$ belongs to the equational theory generated by E.

Validity and Satisfiability

Notation: $s \approx_E t$ iff $s \approx t$ belongs to the equational theory generated by E.

Validity problem:

Given: A set of identities E and terms s and t. Decide: $s \approx_E t$.

Notation: $s \approx_E t$ iff $s \approx t$ belongs to the equational theory generated by E.

Validity problem:

Given: A set of identities E and terms s and t. Decide: $s \approx_E t$.

Satisfiability problem:

Given: A set of identities E and terms s and t. Find: A substitution σ such that $\sigma(s) \approx_E \sigma(t)$.

The following methods solve special cases:

• Term rewriting decides \approx_E if \rightarrow_E is convergent. (Discussed in the previous lecture)

The following methods solve special cases:

- Term rewriting decides \approx_E if \rightarrow_E is convergent. (Discussed in the previous lecture)
- Congruence closure decided \approx_E when E is variable-free. (Discussed in the previous lecture)

The following methods solve special cases:

- Term rewriting decides \approx_E if \rightarrow_E is convergent. (Discussed in the previous lecture)
- Congruence closure decided \approx_E when E is variable-free. (Discussed in the previous lecture)
- Syntactic unification computes σ such that $\sigma(s) = \sigma(t)$. (Today)

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Unification is the process of solving satisfiability problems: Given: A set of identities E and two terms s and t. Find: A substitution σ such that $\sigma(s) \approx_E \sigma(t)$.

Unification is the process of solving satisfiability problems: Given: A set of identities E and two terms s and t. Find: A substitution σ such that $\sigma(s) \approx_E \sigma(t)$.

- In syntactic unification, $E = \emptyset$.
- $r_1 \approx_{\varnothing} r_2$ iff $r_1 = r_2$.

Unification is the process of solving satisfiability problems: Given: A set of identities E and two terms s and t. Find: A substitution σ such that $\sigma(s) \approx_E \sigma(t)$.

- In syntactic unification, $E = \emptyset$.
- $r_1 \approx_{\varnothing} r_2$ iff $r_1 = r_2$.

Syntactic unification:

Given: Two terms s and t.

Find: A substitution σ such that $\sigma(s) = \sigma(t)$.

Syntactic unification:

Given: Two terms s and t.

Find: A substitution σ such that $\sigma(s) = \sigma(t)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- σ : a unifier of s and t.
- σ : a solution of the equation $s = {}^{?} t$.

Examples

$$\begin{split} f(x) &= {}^{?} f(a) : & \text{exactly one unifier } \{x \mapsto a\} \\ & x = {}^{?} f(y) : & \text{infinitely many unifiers} \\ & \{x \mapsto f(y)\}, \{x \mapsto f(a), y \mapsto a\}, \dots \\ f(x) &= {}^{?} g(y) : & \text{no unifiers} \\ & x = {}^{?} f(x) : & \text{no unifiers} \end{split}$$

です。 1000 日 100 日 100

Examples

$$x = {}^{?} f(y)$$
: infinitely many unifiers
 $\{x \mapsto f(y)\}, \{x \mapsto f(a), y \mapsto a\}, \dots$

 Some solutions are better than the others: {x → f(y)} is more general than {x → f(a), y → a}

Instantiation Quasi-Ordering

- A substitution σ is more general than ϑ, written σ ≤ ϑ, if there exists η such that ησ = ϑ.
- ϑ is called an instance of σ .
- ► The relation ≤ is quasi-ordering (reflexive and transitive binary relation), called instantiation quasi-ordering.
- ▶ ~ is the equivalence relation corresponding to \leq , i.e., the relation $\leq \cap \geq$.

$${\rm Let} \ \sigma = \{x \mapsto y\}, \ \rho = \{x \mapsto a, y \mapsto a\}, \ \vartheta = \{y \mapsto x\}.$$

- $\sigma \leq \rho$, because $\{y \mapsto a\}\sigma = \rho$.
- $\sigma \lesssim \vartheta$, because $\{y \mapsto x\}\sigma = \vartheta$.
- $\bullet \ \vartheta \lesssim \sigma \text{, because } \{x \mapsto y\} \vartheta = \sigma.$
- $\sigma \sim \vartheta$.

4	•	< D	•	•	÷	•	ъ	•	3	590

Definition 3.2 (Variable Renaming)

A substitution $\sigma = \{x_1 \mapsto y_1, x_2 \mapsto y_2, \dots, x_n \mapsto y_n\}$ is called variable renaming iff $\{x_1, \dots, x_n\} = \{y_1, \dots, y_n\}$. (Permuting the domain variables.)

•
$$\{x \mapsto y, y \mapsto z, z \mapsto x\}$$
 is a variable renaming.

•
$$\{x \mapsto a\}$$
, $\{x \mapsto y\}$, and $\{x \mapsto z, y \mapsto z, z \mapsto x\}$ are not.

Definition 3.3 (Idempotent Substitution) A substitution σ is idempotent iff $\sigma\sigma = \sigma$.

Example 3.4 Let $\sigma = \{x \mapsto f(z), y \mapsto z\}, \ \vartheta = \{x \mapsto f(y), y \mapsto z\}.$

- σ is idempotent.
- ϑ is not: $\vartheta \vartheta = \sigma \neq \vartheta$.

Lemma 3.2 $\sigma \sim \vartheta$ iff there exists a variable renaming ρ such that $\rho\sigma = \vartheta$. Proof.

Exercise.

Lemma 3.2 $\sigma \sim \vartheta$ iff there exists a variable renaming ρ such that $\rho\sigma = \vartheta$.

Proof.

Exercise.

- $\blacktriangleright \ \sigma = \{ x \mapsto y \}.$
- $\vartheta = \{y \mapsto x\}.$
- $\blacktriangleright \ \sigma \sim \vartheta.$
- $\{x \mapsto y, y \mapsto x\}\sigma = \vartheta$.

Theorem 3.4 σ is idempotent iff $\mathcal{D}om(\sigma) \cap \mathcal{VR}an(\sigma) = \emptyset$.

Proof. Exercise.

Definition 3.4 (Unification Problem, Unifier, MGU)

• Unification problem: A finite set of equations $\Gamma = \{s_1 = {}^? t_1, \dots, s_n = {}^? t_n\}.$

Definition 3.4 (Unification Problem, Unifier, MGU)

- Unification problem: A finite set of equations $\Gamma = \{s_1 = {}^{?} t_1, \dots, s_n = {}^{?} t_n\}.$
- Unifier or solution of Γ : A substitution σ such that $\sigma(s_i) = \sigma(t_i)$ for all $1 \le i \le n$.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Definition 3.4 (Unification Problem, Unifier, MGU)

- Unification problem: A finite set of equations $\Gamma = \{s_1 = {}^{?} t_1, \dots, s_n = {}^{?} t_n\}.$
- Unifier or solution of Γ : A substitution σ such that $\sigma(s_i) = \sigma(t_i)$ for all $1 \le i \le n$.
- $\mathcal{U}(\Gamma)$: The set of all unifiers of Γ . Γ is unifiable iff $\mathcal{U}(\Gamma) \neq \emptyset$.

Definition 3.4 (Unification Problem, Unifier, MGU)

- Unification problem: A finite set of equations $\Gamma = \{s_1 = {}^{?} t_1, \dots, s_n = {}^{?} t_n\}.$
- Unifier or solution of Γ : A substitution σ such that $\sigma(s_i) = \sigma(t_i)$ for all $1 \le i \le n$.
- $\mathcal{U}(\Gamma)$: The set of all unifiers of Γ . Γ is unifiable iff $\mathcal{U}(\Gamma) \neq \emptyset$.
- σ is a most general unifier (mgu) of Γ iff it is a least element of U(Γ):

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

- $\sigma \in \mathcal{U}(\Gamma)$, and
- $\sigma \leq \vartheta$ for every $\vartheta \in \mathcal{U}(\Gamma)$.

Unifiers

Example 3.6

 $\sigma \coloneqq \{x \mapsto y\}$ is an mgu of $x = {}^{?} y$. For any other unifier ϑ of $x = {}^{?} y$, $\sigma \lesssim \vartheta$ because

•
$$\vartheta(x) = \vartheta(y) = \vartheta\sigma(x).$$

•
$$\vartheta(y) = \vartheta \sigma(y).$$

•
$$\vartheta(z) = \vartheta \sigma(z)$$
 for any other variable z.

Unifiers

Example 3.6

 $\sigma \coloneqq \{x \mapsto y\}$ is an mgu of $x = {}^{?} y$. For any other unifier ϑ of $x = {}^{?} y$, $\sigma \lesssim \vartheta$ because

•
$$\vartheta(x) = \vartheta(y) = \vartheta\sigma(x).$$

•
$$\vartheta(y) = \vartheta \sigma(y)$$
.

• $\vartheta(z) = \vartheta \sigma(z)$ for any other variable z.

 $\sigma'\coloneqq \{x\mapsto z, y\mapsto z\} \text{ is a unifier but not an mgu of } x=^? y.$

•
$$\sigma' = \{y \mapsto z\}\sigma.$$

•
$$\{z \mapsto y\}\sigma' = \{x \mapsto y, z \mapsto y\} \neq \sigma.$$

Unifiers

Example 3.6

 $\sigma := \{x \mapsto y\}$ is an mgu of $x = {}^{?} y$. For any other unifier ϑ of $x = {}^{?} y$, $\sigma \lesssim \vartheta$ because

•
$$\vartheta(x) = \vartheta(y) = \vartheta\sigma(x).$$

•
$$\vartheta(y) = \vartheta \sigma(y)$$
.

•
$$\vartheta(z) = \vartheta \sigma(z)$$
 for any other variable z.

$$\begin{split} \sigma' &\coloneqq \{x \mapsto z, y \mapsto z\} \text{ is a unifier but not an mgu of } x = \stackrel{?}{y}. \\ & \bullet \ \sigma' = \{y \mapsto z\}\sigma. \end{split}$$

•
$$\{z \mapsto y\}\sigma' = \{x \mapsto y, z \mapsto y\} \neq \sigma.$$

$$\sigma'' = \{x \mapsto y, z_1 \mapsto z_2, z_2 \mapsto z_1\} \text{ is an mgu of } x = ? y.$$

•
$$\sigma = \{z_1 \mapsto z_2, z_2 \mapsto z_1\}\sigma''.$$

• σ'' is not idempotent.

э

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・

Question: How to compute an mgu of an unification problem?

Rule-Based Formulation of Unification

- Unification algorithm in a rule-base way.
- Repeated transformation of a set of equations.
- The left-to-right search for disagreements: modeled by term decomposition.

• A set of equations in solved form:

$$\{x_1 \approx t_1, \ldots, x_n \approx t_n\}$$

where each x_i occurs exactly once.

- For each idempotent substitution there exists exactly one set of equations in solved form.
- Notation:
 - $[\sigma]$ for the solved form set for an idempotent substitution σ .
 - + σ_S for the idempotent substitution corresponding to a solved form set S.

- System: The symbol \perp or a pair P; S where
 - P is a set of unification problems,
 - S is a set of equations in solved form.
- ▶ ⊥ represents failure.
- A unifier (or a solution) of a system P; S: A substitution that unifies each of the equations in P and S.
- \perp has no unifiers.

- System: $\{g(a) = {}^{?}g(y), g(z) = {}^{?}g(g(x))\}; \{x \approx g(y)\}.$
- Its unifier: $\{x \mapsto g(a), y \mapsto a, z \mapsto g(g(a))\}$.

Six transformation rules on systems:¹

Trivial:

$$\{s = {}^? s\} \uplus P'; S \Leftrightarrow P'; S.$$

Decomposition:

$$\{f(s_1,\ldots,s_n) = {}^? f(t_1,\ldots,t_n)\} \uplus P'; S \Leftrightarrow$$
$$\{s_1 = {}^? t_1,\ldots,s_n = {}^? t_n\} \cup P'; S, \text{ where } n \ge 0.$$

Symbol Clash:

$$\{f(s_1,\ldots,s_n) = g(t_1,\ldots,t_m)\} \uplus P'; S \Leftrightarrow \bot, \text{ if } f \neq g.$$

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 1 \uplus stands for disjoint union.

Orient:

$$\{t = {}^? x\} \uplus P'; S \Leftrightarrow \{x = {}^? t\} \cup P'; S, \text{ if } t \notin \mathcal{V}.$$

Occurs Check:

$${x = ? t} \uplus P'; S \Leftrightarrow \bot \text{ if } x \in \mathcal{V}ar(t) \text{ but } x \neq t.$$

Variable Elimination:

 $\{x = {}^? t\} \uplus P'; S \Leftrightarrow P'\{x \mapsto t\}; \{x \mapsto t\}(S) \cup \{x \approx t\},$ if $x \notin \mathcal{V}ar(t)$.

In order to unify s and t:

- 1. Create an initial system $\{s = {}^{?}t\}; \emptyset$.
- 2. Apply successively rules from $\mathfrak U.$

The system ${\mathfrak U}$ is essentially the Herbrand's Unification Algorithm.

Lemma 3.3

For any finite set of equations P, every sequence of transformations in $\mathfrak U$

 $P; \varnothing \Leftrightarrow P_1; S_1 \Leftrightarrow P_2; S_2 \Leftrightarrow \cdots$

terminates either with \perp or with \emptyset ; S, with S in solved form.

Proof.

Complexity measure on the set P of equations: (n_1, n_2, n_3) , ordered lexicographically on triples of naturals, where

 n_1 = The number of distinct variables in P.

 n_2 = The number of symbols in P.

 n_3 = The number of equations in P of the form $t = {}^? x$ where t is not a variable.

Proof [Cont.]

Each rule in ${\mathfrak U}$ strictly reduces the complexity measure.

Rule	n_1	n_2	n_3
Trivial	\geq	>	
Decomposition	=	>	
Orient	=	=	>
Variable Elimination	>		

Proof [Cont.]

- \blacktriangleright A rule can always be applied to a system with non-empty P.
- The only systems to which no rule can be applied are \bot and $\varnothing;S.$
- Whenever an equation is added to S, the variable on the left-hand side is eliminated from the rest of the system, i.e. S₁, S₂,... are in solved form.

Corollary 3.1 If $P; \emptyset \Leftrightarrow^+ \emptyset; S$ then σ_S is idempotent.

Notation: Γ for systems.

Lemma 3.4 For any transformation $P; S \Leftrightarrow \Gamma$, a substitution ϑ unifies P; S iff it unifies Γ .

Proof.

Occurs Check: If $x \in Var(t)$ and $x \neq t$, then

- x contains fewer symbols than t,
- $\vartheta(x)$ contains fewer symbols than $\vartheta(t)$ (for any ϑ).

Therefore, $\vartheta(x)$ and $\vartheta(t)$ can not be unified.

Variable Elimination: From $\vartheta(x) = \vartheta(t)$, by structural induction on *u*:

 $\vartheta(u) = \vartheta\{x \mapsto t\}(u)$

for any term, equation, or set of equations u. Then

 $\vartheta(P') = \vartheta\{x \mapsto t\}(P'), \qquad \vartheta(S') = \vartheta\{x \mapsto t\}(S').$

・ロット 御マ キョット キョン

Theorem 3.5 (Soundness)

If $P; \emptyset \Leftrightarrow^+ \emptyset; S$, then σ_S unifies any equation in P.

Theorem 3.5 (Soundness)

If $P; \emptyset \Leftrightarrow^+ \emptyset; S$, then σ_S unifies any equation in P.

Proof.

By induction on the length of derivation, using the previous lemma and the fact that σ_S unifies S.

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P, then any maximal sequence of transformations $P; \emptyset \Leftrightarrow \cdots$ ends in a system $\emptyset; S$ such that $\sigma_S \leq \vartheta$.

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P, then any maximal sequence of transformations $P; \emptyset \Leftrightarrow \cdots$ ends in a system $\emptyset; S$ such that $\sigma_S \leq \vartheta$.

Proof.

Such a sequence must end in \emptyset ; S where ϑ unifies S (why?). For every binding $x \mapsto t$ in σ_S , $\vartheta \sigma_S(x) = \vartheta(t) = \vartheta(x)$ and for every $x \notin \mathcal{D}om(\sigma_S)$, $\vartheta \sigma_S(x) = \vartheta(x)$. Hence, $\vartheta = \vartheta \sigma_S$.

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P, then any maximal sequence of transformations $P; \emptyset \Leftrightarrow \cdots$ ends in a system $\emptyset; S$ such that $\sigma_S \leq \vartheta$.

Proof.

Such a sequence must end in \emptyset ; *S* where ϑ unifies *S* (why?). For every binding $x \mapsto t$ in σ_S , $\vartheta \sigma_S(x) = \vartheta(t) = \vartheta(x)$ and for every $x \notin \mathcal{D}om(\sigma_S)$, $\vartheta \sigma_S(x) = \vartheta(x)$. Hence, $\vartheta = \vartheta \sigma_S$.

Corollary 3.2

If P has no unifiers, then any maximal sequence of transformations from $P; \emptyset$ must have the form $P; \emptyset \Leftrightarrow \dots \Leftrightarrow \bot$.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Observations

- Il computes an idempotent mgu.
- The choice of rules in computations via \$\mathcal{L}\$ is "don't care" nondeterminism (the word "any" in Completeness Theorem).
- Any control strategy will result to an mgu for unifiable terms, and failure for non-unifiable terms.
- \blacktriangleright Any practical algorithm that proceeds by performing transformations of ${\mathfrak U}$ in any order is
 - sound and complete,
 - generates mgus for unifiable terms.
- Not all transformation sequences have the same length.
- Not all transformation sequences end in exactly the same mgu.

Matching

Definition 3.5

Matcher, Matching Problem

- A substitution σ is a matcher of s to t if $\sigma(s) = t$.
- A matching equation between s and t is represented as $s \leq^{?} t$.

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・

• A matching problem is a finite set of matching equations.

$$f(x,y) \leq^{?} f(g(z),c) \qquad f(x,y) =^{?} f(g(z),c)$$
$$\{x \mapsto g(z), y \mapsto c\} \qquad \{x \mapsto g(z), y \mapsto c\}$$

$f(x,y) \lesssim^? f(g(z),c)$	f(x,y) = f(g(z),c)
$\{x \mapsto g(z), y \mapsto c\}$	$\{x \mapsto g(z), y \mapsto c\}$
$f(x,y) \lesssim^? f(g(z),x)$	f(x,y) = f(g(z),x)
$\{x \mapsto g(z), y \mapsto x\}$	$\{x \mapsto g(z), y \mapsto g(z)\}$

$f(x,y) \lesssim^? f(g(z),c)$	f(x,y) = f(g(z),c)
$\{x \mapsto g(z), y \mapsto c\}$	$\{x \mapsto g(z), y \mapsto c\}$
$f(x,y) \lesssim^? f(g(z),x)$	f(x,y) = f(g(z),x)
$\{x \mapsto g(z), y \mapsto x\}$	$\{x \mapsto g(z), y \mapsto g(z)\}$
$f(x,a) \lesssim^? f(b,y)$	f(x,a) = f(b,y)
No matcher	$\{x\mapsto b, y\mapsto a\}$

Example 3.8

$f(x,y) \lesssim^? f(g(z),c)$	f(x,y) = f(g(z),c)
$\{x \mapsto g(z), y \mapsto c\}$	$\{x \mapsto g(z), y \mapsto c\}$
$f(x,y) \lesssim^? f(g(z),x)$	f(x,y) = f(g(z),x)
$\{x \mapsto g(z), y \mapsto x\}$	$\{x \mapsto g(z), y \mapsto g(z)\}$
$f(x,a) \lesssim^? f(b,y)$	$f(x,a) = {}^? f(b,y)$
No matcher	$\{x \mapsto b, y \mapsto a\}$
$f(x,x) \lesssim^? f(x,a)$	f(x,x) = f(x,a)
No matcher	$\{x \mapsto a\}$

・ロト ・回ト ・ヨト ・ヨト

Example 3.8

	2
$f(x,y) \lesssim^? f(g(z),c)$	$f(x,y) \stackrel{?}{=} f(g(z),c)$
$\{x \mapsto g(z), y \mapsto c\}$	$\{x \mapsto g(z), y \mapsto c\}$
$f(x,y) \lesssim^? f(g(z),x)$	f(x,y) = f(g(z),x)
$\{x \mapsto g(z), y \mapsto x\}$	$\{x \mapsto g(z), y \mapsto g(z)\}$
$f(x,a) \lesssim^? f(b,y)$	f(x,a) = f(b,y)
No matcher	$\{x \mapsto b, y \mapsto a\}$
f(x, y) < f(x, y)	ŋ
$J(x,x) \gtrsim J(x,a)$	f(x,x) = f(x,a)
$f(x,x) \gtrsim f(x,a)$ No matcher	$f(x,x) = f(x,a)$ $\{x \mapsto a\}$
$\frac{f(x,x) \leq f(x,a)}{\text{No matcher}}$ $\frac{x \leq^{?} f(x)}{x \leq x \leq$	$f(x,x) = f(x,a)$ $\frac{\{x \mapsto a\}}{x = f(x)}$
$ \frac{\int (x,x) \leq f(x,a)}{\text{No matcher}} \\ \frac{x \leq^{?} f(x)}{\{x \mapsto f(x)\}} $	$f(x,x) = f(x,a)$ $\frac{\{x \mapsto a\}}{x = f(x)}$ No unifier

æ

・ロト ・回ト ・ヨト ・ヨト

How to Solve Matching Problems

- $s = {}^{?} t$ and $s \leq {}^{?} t$ coincide, if t is ground.
- When t is not ground in s ≤? t, simply regard all variables in t as constants and use the unification algorithm.
- Alternatively, modify the rules in \$\mathcal{L}\$ to work directly with the matching problem.

Matched Form

- A set of equations $\{x_1 \approx t_1, \ldots, x_n \approx t_n\}$ is in matched from, if all x's are pairwise distinct.
- The notation σ_S extends to matched forms.
- \blacktriangleright If S is in matched form, then

$$\sigma_S(x) = \begin{cases} t, & \text{if } x \approx t \in S \\ x, & \text{otherwise} \end{cases}$$

- Matching system: The symbol \perp or a pair P; S, where
 - P is set of matching problems.
 - ► S is set of equations in matched form.
- A matcher (or a solution) of a system P; S: A substitution that solves each of the matching equations in P and S.

(日)

• \perp has no matchers.

Five transformation rules on matching systems:²

Decomposition:

$$\{f(s_1, \dots, s_n) \leq^? f(t_1, \dots, t_n)\} \uplus P'; S \Leftrightarrow \{s_1 \leq^? t_1, \dots, s_n \leq^? t_n\} \cup P'; S, \text{ where } n \ge 0.$$

Symbol Clash:

$$\{f(s_1,\ldots,s_n) \leq^? g(t_1,\ldots,t_m)\} \uplus P'; S \Leftrightarrow \bot, \text{ if } f \neq g.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

²[±] stands for disjoint union.

Symbol-Variable Clash:

 $\{f(s_1,\ldots,s_n) \leq^? x\} \uplus P'; S \Leftrightarrow \bot.$

Merging Clash:

$$\{x \leq^{?} t_1\} \uplus P'; \{x \approx t_2\} \uplus S' \Leftrightarrow \bot, \text{ if } t_1 \neq t_2.$$

Elimination:

 $\{x \leq^? t\} \uplus P'; S \Leftrightarrow P'; \{x \approx t\} \cup S,$

if S does not contain $x \approx t'$ with $t \neq t'$.

In order to match \boldsymbol{s} to \boldsymbol{t}

- 1. Create an initial system $\{s \leq^? t\}; \emptyset$.
- 2. Apply successively the rules from $\mathfrak{M}.$

Matching with ${\mathfrak M}$

Example 3.9 Match f(x, f(a, x)) to f(g(a), f(a, g(a))):

$$\{f(x, f(a, x)) \leq^? f(g(a), f(a, g(a)))\}; \emptyset \Leftrightarrow_{\text{Decomposition}}$$

$$\{x \leq^? g(a), f(a, x) \leq^? f(a, g(a))\}; \emptyset \Leftrightarrow_{\text{Elimination}}$$

$$\{f(a, x) \leq^? f(a, g(a))\}; \{x \approx g(a)\} \Leftrightarrow_{\text{Decomposition}}$$

$$\{a \leq^? a, x \leq^? g(a)\}; \{x \approx g(a)\} \Leftrightarrow_{\text{Decomposition}}$$

$$\{x \leq^? g(a)\}; \{x \approx g(a)\} \Leftrightarrow_{\text{Merge}}$$

$$\emptyset; \{x \approx g(a)\}$$

Matcher: $\{x \mapsto g(a)\}$.

Example 3.10 Match f(x,x) to f(x,a): $\{f(x,x) \leq^{?} f(x,a)\}; \emptyset \Leftrightarrow_{\text{Decomposition}}$ $\{x \leq^{?} x, x \leq^{?} a\}; \emptyset \Leftrightarrow_{\text{Elimination}}$ $\{x \leq^{?} a\}; \{x \approx x\} \Leftrightarrow_{\text{Merging Clash}}$ \downarrow

No matcher.

Theorem 3.7

For any finite set of matching problems P, every sequence of transformations in \mathfrak{M} of the form $P; \emptyset \Leftrightarrow P_1; S_1 \Leftrightarrow P_2; S_2 \Leftrightarrow \cdots$ terminates either with \bot or with $\emptyset; S$, with S in matched form.

Theorem 3.7

For any finite set of matching problems P, every sequence of transformations in \mathfrak{M} of the form $P; \emptyset \Leftrightarrow P_1; S_1 \Leftrightarrow P_2; S_2 \Leftrightarrow \cdots$ terminates either with \bot or with $\emptyset; S$, with S in matched form.

Proof.

- Termination is obvious, since every rule strictly decreases the size of the first component of the matching system.
- \blacktriangleright A rule can always be applied to a system with non-empty P.
- The only systems to which no rule can be applied are \bot and $\varnothing;S.$
- Whenever $x \approx t$ is added to S, there is no other equation $x \approx t'$ in S. Hence, S_1, S_2, \ldots are in matched form.

A D F A B F A B F A B F

The following lemma is straightforward:

Lemma 3.5

For any transformation of matching systems $P; S \Leftrightarrow \Gamma$, a substitution ϑ is a matcher for P; S iff it is a matcher for Γ .

Theorem 3.8 (Soundness)

If $P; \emptyset \Leftrightarrow^+ \emptyset; S$, then σ_S solves all matching equations in P.

Theorem 3.8 (Soundness)

If $P; \emptyset \Leftrightarrow^+ \emptyset; S$, then σ_S solves all matching equations in P.

Proof.

By induction on the length of derivations, using the previous lemma and the fact that σ_S solves the matching problems in S.

Let
$$v(\{s_1 \approx t_1, \ldots, s_n \approx t_n\})$$
 be $Var(\{s_1, \ldots, s_n\})$.

Theorem 3.9 (Completeness)

If ϑ is a matcher of P, then any maximal sequence of transformations $P; \emptyset \Leftrightarrow \cdots$ ends in a system $\emptyset; S$ such that $\sigma_S = \vartheta|_{v(P)}$.

Let
$$v(\{s_1 \approx t_1, \ldots, s_n \approx t_n\})$$
 be $Var(\{s_1, \ldots, s_n\})$.

Theorem 3.9 (Completeness)

If ϑ is a matcher of P, then any maximal sequence of transformations $P; \emptyset \Leftrightarrow \cdots$ ends in a system $\emptyset; S$ such that $\sigma_S = \vartheta|_{v(P)}$.

Proof.

Such a sequence must end in $\emptyset; S$ where ϑ is a matcher of S. v(S) = v(P). For every equation $x \approx t \in S$, either t = x or $x \mapsto t \in \sigma_S$. Therefore, for any such x, $\sigma_S(x) = t = \vartheta(x)$. Hence, $\sigma_S = \vartheta|_{v(P)}$.

Let
$$v(\{s_1 \approx t_1, \ldots, s_n \approx t_n\})$$
 be $Var(\{s_1, \ldots, s_n\})$.

Theorem 3.9 (Completeness)

If ϑ is a matcher of P, then any maximal sequence of transformations $P; \emptyset \Leftrightarrow \cdots$ ends in a system $\emptyset; S$ such that $\sigma_S = \vartheta|_{v(P)}$.

Proof.

Such a sequence must end in $\emptyset; S$ where ϑ is a matcher of S. v(S) = v(P). For every equation $x \approx t \in S$, either t = x or $x \mapsto t \in \sigma_S$. Therefore, for any such x, $\sigma_S(x) = t = \vartheta(x)$. Hence, $\sigma_S = \vartheta|_{v(P)}$.

Corollary 3.3

If P has no matchers, then any maximal sequence of transformations from $P; \emptyset$ must have the form $P; \emptyset \Leftrightarrow \dots \Leftrightarrow \bot$.

э

A D F A B F A B F A B F