Rewriting
 Part 3.2 Equational Problems. Syntactic Unification

Temur Kutsia

RISC, JKU Linz

Validity and Satisfiability

Notation: $s \approx_{E} t$ iff $s \approx t$ belongs to the equational theory generated by E.

Validity and Satisfiability

Notation: $s \approx_{E} t$ iff $s \approx t$ belongs to the equational theory generated by E.
Validity problem:
Given: A set of identities E and terms s and t.
Decide: $s \approx_{E} t$.

Validity and Satisfiability

Notation: $s \approx_{E} t$ iff $s \approx t$ belongs to the equational theory generated by E.
Validity problem:
Given: A set of identities E and terms s and t.
Decide: $s \approx_{E} t$.
Satisfiability problem:
Given: A set of identities E and terms s and t.
Find: A substitution σ such that $\sigma(s) \approx_{E} \sigma(t)$.

Equational Problems

The following methods solve special cases:

- Term rewriting decides \approx_{E} if \rightarrow_{E} is convergent.
(Discussed in the previous lecture)

Equational Problems

The following methods solve special cases:

- Term rewriting decides \approx_{E} if \rightarrow_{E} is convergent.
(Discussed in the previous lecture)
- Congruence closure decided \approx_{E} when E is variable-free. (Discussed in the previous lecture)

Equational Problems

The following methods solve special cases:

- Term rewriting decides \approx_{E} if \rightarrow_{E} is convergent.
(Discussed in the previous lecture)
- Congruence closure decided \approx_{E} when E is variable-free. (Discussed in the previous lecture)
- Syntactic unification computes σ such that $\sigma(s)=\sigma(t)$. (Today)

Unification

Unification is the process of solving satisfiability problems:
Given: A set of identities E and two terms s and t.
Find: A substitution σ such that $\sigma(s) \approx_{E} \sigma(t)$.

Unification

Unification is the process of solving satisfiability problems:
Given: A set of identities E and two terms s and t.
Find: A substitution σ such that $\sigma(s) \approx_{E} \sigma(t)$.

- In syntactic unification, $E=\varnothing$.
- $r_{1} \approx_{\varnothing} r_{2}$ iff $r_{1}=r_{2}$.

Unification

Unification is the process of solving satisfiability problems:
Given: A set of identities E and two terms s and t.
Find: A substitution σ such that $\sigma(s) \approx_{E} \sigma(t)$.

- In syntactic unification, $E=\varnothing$.
- $r_{1} \approx_{\varnothing} r_{2}$ iff $r_{1}=r_{2}$.

Syntactic unification:
Given: Two terms s and t.
Find: A substitution σ such that $\sigma(s)=\sigma(t)$.

Unification

Syntactic unification:
Given: Two terms s and t.
Find: A substitution σ such that $\sigma(s)=\sigma(t)$.

- σ : a unifier of s and t.
- σ : a solution of the equation $s=?$.

Examples

$$
\begin{aligned}
f(x)=? f(a): & \text { exactly one unifier }\{x \mapsto a\} \\
x=? f(y): & \text { infinitely many unifiers } \\
& \{x \mapsto f(y)\},\{x \mapsto f(a), y \mapsto a\}, \ldots
\end{aligned}
$$

$f(x)=? g(y):$ no unifiers

$$
x=? f(x): \text { no unifiers }
$$

Examples

$x={ }^{?} f(y)$: infinitely many unifiers

$$
\{x \mapsto f(y)\},\{x \mapsto f(a), y \mapsto a\}, \ldots
$$

- Some solutions are better than the others: $\{x \mapsto f(y)\}$ is more general than $\{x \mapsto f(a), y \mapsto a\}$

Substitutions

Instantiation Quasi-Ordering

- A substitution σ is more general than ϑ, written $\sigma \lesssim \vartheta$, if there exists η such that $\eta \sigma=\vartheta$.
- ϑ is called an instance of σ.
- The relation \lesssim is quasi-ordering (reflexive and transitive binary relation), called instantiation quasi-ordering.
- ~ is the equivalence relation corresponding to \lesssim, i.e., the relation $\lesssim \cap \gtrsim$.

Example 3.2
Let $\sigma=\{x \mapsto y\}, \rho=\{x \mapsto a, y \mapsto a\}, \vartheta=\{y \mapsto x\}$.

- $\sigma \lesssim \rho$, because $\{y \mapsto a\} \sigma=\rho$.
- $\sigma \lesssim \vartheta$, because $\{y \mapsto x\} \sigma=\vartheta$.
- $\vartheta \lesssim \sigma$, because $\{x \mapsto y\} \vartheta=\sigma$.
- $\sigma \sim \vartheta$.

Substitutions

Definition 3.2 (Variable Renaming)
A substitution $\sigma=\left\{x_{1} \mapsto y_{1}, x_{2} \mapsto y_{2}, \ldots, x_{n} \mapsto y_{n}\right\}$ is called variable renaming iff $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$.
(Permuting the domain variables.)
Example 3.3

- $\{x \mapsto y, y \mapsto z, z \mapsto x\}$ is a variable renaming.
- $\{x \mapsto a\},\{x \mapsto y\}$, and $\{x \mapsto z, y \mapsto z, z \mapsto x\}$ are not.

Substitutions

Definition 3.3 (Idempotent Substitution)
A substitution σ is idempotent iff $\sigma \sigma=\sigma$.
Example 3.4
Let $\sigma=\{x \mapsto f(z), y \mapsto z\}, \vartheta=\{x \mapsto f(y), y \mapsto z\}$.

- σ is idempotent.
- ϑ is not: $\vartheta \vartheta=\sigma \neq \vartheta$.

Substitutions

Lemma 3.2
$\sigma \sim \vartheta$ iff there exists a variable renaming ρ such that $\rho \sigma=\vartheta$.
Proof.
Exercise.

Substitutions

Lemma 3.2
$\sigma \sim \vartheta$ iff there exists a variable renaming ρ such that $\rho \sigma=\vartheta$.
Proof.
Exercise.

Example 3.5

- $\sigma=\{x \mapsto y\}$.
- $\vartheta=\{y \mapsto x\}$.
- $\sigma \sim \vartheta$.
- $\{x \mapsto y, y \mapsto x\} \sigma=\vartheta$.

Substitutions

Theorem 3.4
σ is idempotent iff $\mathcal{D o m}(\sigma) \cap \mathcal{V} \mathcal{R} a n(\sigma)=\varnothing$.
Proof.
Exercise.

Substitutions

Definition 3.4 (Unification Problem, Unifier, MGU)

- Unification problem: A finite set of equations

$$
\Gamma=\left\{s_{1}=? t_{1}, \ldots, s_{n}=?{ }^{?} t_{n}\right\} .
$$

Substitutions

Definition 3.4 (Unification Problem, Unifier, MGU)

- Unification problem: A finite set of equations

$$
\Gamma=\left\{s_{1}=? t_{1}, \ldots, s_{n}=?{ }^{?} t_{n}\right\} .
$$

- Unifier or solution of Γ : A substitution σ such that $\sigma\left(s_{i}\right)=\sigma\left(t_{i}\right)$ for all $1 \leq i \leq n$.

Substitutions

Definition 3.4 (Unification Problem, Unifier, MGU)

- Unification problem: A finite set of equations

$$
\Gamma=\left\{s_{1}=? t_{1}, \ldots, s_{n}=?{ }^{?} t_{n}\right\} .
$$

- Unifier or solution of Γ : A substitution σ such that $\sigma\left(s_{i}\right)=\sigma\left(t_{i}\right)$ for all $1 \leq i \leq n$.
- $\mathcal{U}(\Gamma)$: The set of all unifiers of Γ. Γ is unifiable iff $\mathcal{U}(\Gamma) \neq \varnothing$.

Substitutions

Definition 3.4 (Unification Problem, Unifier, MGU)

- Unification problem: A finite set of equations

$$
\Gamma=\left\{s_{1}=? t_{1}, \ldots, s_{n}=?{ }^{?} t_{n}\right\} .
$$

- Unifier or solution of Γ : A substitution σ such that $\sigma\left(s_{i}\right)=\sigma\left(t_{i}\right)$ for all $1 \leq i \leq n$.
- $\mathcal{U}(\Gamma)$: The set of all unifiers of Γ. Γ is unifiable iff $\mathcal{U}(\Gamma) \neq \varnothing$.
- σ is a most general unifier (mgu) of Γ iff it is a least element of $\mathcal{U}(\Gamma)$:
- $\sigma \in \mathcal{U}(\Gamma)$, and
- $\sigma \lesssim \vartheta$ for every $\vartheta \in \mathcal{U}(\Gamma)$.

Unifiers

Example 3.6
$\sigma:=\{x \mapsto y\}$ is an mgu of $x=?$
For any other unifier ϑ of $x={ }^{?} y, \sigma \lesssim \vartheta$ because

- $\vartheta(x)=\vartheta(y)=\vartheta \sigma(x)$.
- $\vartheta(y)=\vartheta \sigma(y)$.
- $\vartheta(z)=\vartheta \sigma(z)$ for any other variable z.

Unifiers

Example 3.6
$\sigma:=\{x \mapsto y\}$ is an mgu of $x=?$
For any other unifier ϑ of $x=? ~ y, \sigma \lesssim \vartheta$ because

- $\vartheta(x)=\vartheta(y)=\vartheta \sigma(x)$.
- $\vartheta(y)=\vartheta \sigma(y)$.
- $\vartheta(z)=\vartheta \sigma(z)$ for any other variable z.
$\sigma^{\prime}:=\{x \mapsto z, y \mapsto z\}$ is a unifier but not an mgu of $x=?$.
- $\sigma^{\prime}=\{y \mapsto z\} \sigma$.
- $\{z \mapsto y\} \sigma^{\prime}=\{x \mapsto y, z \mapsto y\} \neq \sigma$.

Unifiers

Example 3.6

$\sigma:=\{x \mapsto y\}$ is an mgu of $x=?$
For any other unifier ϑ of $x=?$

- $\vartheta(x)=\vartheta(y)=\vartheta \sigma(x)$.
- $\vartheta(y)=\vartheta \sigma(y)$.
- $\vartheta(z)=\vartheta \sigma(z)$ for any other variable z.
$\sigma^{\prime}:=\{x \mapsto z, y \mapsto z\}$ is a unifier but not an mgu of $x=?$.
- $\sigma^{\prime}=\{y \mapsto z\} \sigma$.
- $\{z \mapsto y\} \sigma^{\prime}=\{x \mapsto y, z \mapsto y\} \neq \sigma$.
$\sigma^{\prime \prime}=\left\{x \mapsto y, z_{1} \mapsto z_{2}, z_{2} \mapsto z_{1}\right\}$ is an mgu of $x={ }^{?} y$.
- $\sigma=\left\{z_{1} \mapsto z_{2}, z_{2} \mapsto z_{1}\right\} \sigma^{\prime \prime}$.
- $\sigma^{\prime \prime}$ is not idempotent.

Unification

Question: How to compute an mgu of an unification problem?

Rule-Based Formulation of Unification

- Unification algorithm in a rule-base way.
- Repeated transformation of a set of equations.
- The left-to-right search for disagreements: modeled by term decomposition.

The Inference System \mathfrak{U}

- A set of equations in solved form:

$$
\left\{x_{1} \approx t_{1}, \ldots, x_{n} \approx t_{n}\right\}
$$

where each x_{i} occurs exactly once.

- For each idempotent substitution there exists exactly one set of equations in solved form.
- Notation:
- $[\sigma]$ for the solved form set for an idempotent substitution σ.
- σ_{S} for the idempotent substitution corresponding to a solved form set S.

The Inference System \mathfrak{U}

- System: The symbol \perp or a pair $P ; S$ where
- P is a set of unification problems,
- S is a set of equations in solved form.
- \perp represents failure.
- A unifier (or a solution) of a system $P ; S$: A substitution that unifies each of the equations in P and S.
- \perp has no unifiers.

The Inference System \mathfrak{U}

Example 3.7

- System: $\{g(a)=? g(y), g(z)=? g(g(x))\} ;\{x \approx g(y)\}$.
- Its unifier: $\{x \mapsto g(a), y \mapsto a, z \mapsto g(g(a))\}$.

The Inference System \mathfrak{U}

Six transformation rules on systems: ${ }^{1}$

Trivial:

$$
\{s=? s\} \uplus P^{\prime} ; S \Leftrightarrow P^{\prime} ; S .
$$

Decomposition:

$$
\begin{aligned}
& \left\{f\left(s_{1}, \ldots, s_{n}\right)=^{?} f\left(t_{1}, \ldots, t_{n}\right)\right\} \uplus P^{\prime} ; S \Leftrightarrow \\
& \quad\left\{s_{1}={ }^{?} t_{1}, \ldots, s_{n}={ }^{?} t_{n}\right\} \cup P^{\prime} ; S, \text { where } n \geq 0 .
\end{aligned}
$$

Symbol Clash:

$$
\left\{f\left(s_{1}, \ldots, s_{n}\right)=? g\left(t_{1}, \ldots, t_{m}\right)\right\} \uplus P^{\prime} ; S \Leftrightarrow \perp, \text { if } f \neq g .
$$

The Inference System \mathfrak{U}

Orient:

$$
\left\{t={ }^{?} x\right\} \uplus P^{\prime} ; S \Leftrightarrow\{x=? t\} \cup P^{\prime} ; S \text {, if } t \notin \mathcal{V} .
$$

Occurs Check:

$$
\left\{x=^{?} t\right\} \uplus P^{\prime} ; S \Leftrightarrow \perp \text { if } x \in \mathcal{V} \text { ar }(t) \text { but } x \neq t .
$$

Variable Elimination:

$$
\left\{x=^{?} t\right\} \uplus P^{\prime} ; S \Leftrightarrow P^{\prime}\{x \mapsto t\} ;\{x \mapsto t\}(S) \cup\{x \approx t\},
$$

if $x \notin \mathcal{V} \operatorname{ar}(t)$.

Unification with \mathfrak{U}

In order to unify s and t :

1. Create an initial system $\left\{s={ }^{?} t\right\} ; \varnothing$.
2. Apply successively rules from \mathfrak{U}.

The system \mathfrak{U} is essentially the Herbrand's Unification Algorithm.

Properties of \mathfrak{U} : Termination

Lemma 3.3
For any finite set of equations P, every sequence of transformations in \mathfrak{U}

$$
P ; \varnothing \Leftrightarrow P_{1} ; S_{1} \Leftrightarrow P_{2} ; S_{2} \Leftrightarrow \cdots
$$

terminates either with \perp or with $\varnothing ; S$, with S in solved form.

Properties of \mathfrak{U} : Termination

Proof.

Complexity measure on the set P of equations: $\left\langle n_{1}, n_{2}, n_{3}\right\rangle$, ordered lexicographically on triples of naturals, where $n_{1}=$ The number of distinct variables in P.
$n_{2}=$ The number of symbols in P.
$n_{3}=$ The number of equations in P of the form $t=? x$ where t is not a variable.

Properties of \mathfrak{U} : Termination

Proof [Cont.]

Each rule in \mathfrak{U} strictly reduces the complexity measure.

Rule	n_{1}	n_{2}	n_{3}
Trivial	\geq	$>$	
Decomposition	$=$	$>$	
Orient	$=$	$=$	$>$
Variable Elimination	$>$		

Properties of \mathfrak{U} : Termination

Proof [Cont.]

- A rule can always be applied to a system with non-empty P.
- The only systems to which no rule can be applied are \perp and $\varnothing ; S$.
- Whenever an equation is added to S, the variable on the left-hand side is eliminated from the rest of the system, i.e. S_{1}, S_{2}, \ldots are in solved form.

Corollary 3.1
If $P ; \varnothing \Leftrightarrow^{+} \varnothing ; S$ then σ_{S} is idempotent.

Properties of \mathfrak{U} : Correctness

Notation: Γ for systems.
Lemma 3.4
For any transformation $P ; S \Leftrightarrow \Gamma$, a substitution ϑ unifies $P ; S$ iff it unifies Γ.

Properties of \mathfrak{U} : Correctness

Proof.
Occurs Check: If $x \in \mathcal{V} \operatorname{ar}(t)$ and $x \neq t$, then

- x contains fewer symbols than t,
- $\vartheta(x)$ contains fewer symbols than $\vartheta(t)$ (for any ϑ).

Therefore, $\vartheta(x)$ and $\vartheta(t)$ can not be unified.
Variable Elimination: From $\vartheta(x)=\vartheta(t)$, by structural induction on u :

$$
\vartheta(u)=\vartheta\{x \mapsto t\}(u)
$$

for any term, equation, or set of equations u. Then

$$
\vartheta\left(P^{\prime}\right)=\vartheta\{x \mapsto t\}\left(P^{\prime}\right), \quad \vartheta\left(S^{\prime}\right)=\vartheta\{x \mapsto t\}\left(S^{\prime}\right) .
$$

Properties of \mathfrak{U} : Correctness

Theorem 3.5 (Soundness)
If $P ; \varnothing \Leftrightarrow^{+} \varnothing ; S$, then σ_{S} unifies any equation in P.

Properties of \mathfrak{U} : Correctness

Theorem 3.5 (Soundness)
If $P ; \varnothing \Leftrightarrow^{+} \varnothing ; S$, then σ_{S} unifies any equation in P.
Proof.
By induction on the length of derivation, using the previous lemma and the fact that σ_{S} unifies S.

Properties of \mathfrak{U} : Correctness

Theorem 3.6 (Completeness)
If ϑ unifies every equation in P, then any maximal sequence of transformations $P ; \varnothing \Leftrightarrow \cdots$ ends in a system $\varnothing ; S$ such that $\sigma_{S} \lesssim \vartheta$.

Properties of \mathfrak{U} : Correctness

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P, then any maximal sequence of transformations $P ; \varnothing \Leftrightarrow \cdots$ ends in a system $\varnothing ; S$ such that $\sigma_{S} \lesssim \vartheta$.

Proof.
Such a sequence must end in $\varnothing ; S$ where ϑ unifies S (why?).
For every binding $x \mapsto t$ in $\sigma_{S}, \vartheta \sigma_{S}(x)=\vartheta(t)=\vartheta(x)$ and for every $x \notin \operatorname{Dom}\left(\sigma_{S}\right), \vartheta \sigma_{S}(x)=\vartheta(x)$. Hence, $\vartheta=\vartheta \sigma_{S}$.

Properties of \mathfrak{U} : Correctness

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P, then any maximal sequence of transformations $P ; \varnothing \Leftrightarrow \cdots$ ends in a system $\varnothing ; S$ such that $\sigma_{S} \lesssim \vartheta$.

Proof.

Such a sequence must end in $\varnothing ; S$ where ϑ unifies S (why?).
For every binding $x \mapsto t$ in $\sigma_{S}, \vartheta \sigma_{S}(x)=\vartheta(t)=\vartheta(x)$ and for every $x \notin \operatorname{Dom}\left(\sigma_{S}\right), \vartheta \sigma_{S}(x)=\vartheta(x)$. Hence, $\vartheta=\vartheta \sigma_{S}$.

Corollary 3.2

If P has no unifiers, then any maximal sequence of transformations from $P ; \varnothing$ must have the form $P ; \varnothing \Leftrightarrow \cdots \Leftrightarrow \perp$.

Observations

- \mathfrak{U} computes an idempotent mgu.
- The choice of rules in computations via \mathfrak{U} is "don't care" nondeterminism (the word "any" in Completeness Theorem).
- Any control strategy will result to an mgu for unifiable terms, and failure for non-unifiable terms.
- Any practical algorithm that proceeds by performing transformations of \mathfrak{U} in any order is
- sound and complete,
- generates mgus for unifiable terms.
- Not all transformation sequences have the same length.
- Not all transformation sequences end in exactly the same mgu.

Matching

Definition 3.5
Matcher, Matching Problem

- A substitution σ is a matcher of s to t if $\sigma(s)=t$.
- A matching equation between s and t is represented as $s \lesssim^{?} t$.
- A matching problem is a finite set of matching equations.

Matching vs Unification

Example 3.8

$f(x, y) \Sigma^{?} f(g(z), c)$	$f(x, y)=^{?} f(g(z), c)$
$\{x \mapsto g(z), y \mapsto c\}$	$\{x \mapsto g(z), y \mapsto c\}$

Matching vs Unification

Example 3.8

$f(x, y) \lesssim^{?} f(g(z), c)$	$f(x, y)=^{?} f(g(z), c)$
$\{x \mapsto g(z), y \mapsto c\}$	$\{x \mapsto g(z), y \mapsto c\}$
$f(x, y) \lesssim^{?} f(g(z), x)$	$f(x, y)=^{?} f(g(z), x)$
$\{x \mapsto g(z), y \mapsto x\}$	$\{x \mapsto g(z), y \mapsto g(z)\}$

Matching vs Unification

Example 3.8

$f(x, y) \lesssim^{?} f(g(z), c)$	$f(x, y)=^{?} f(g(z), c)$
$\{x \mapsto g(z), y \mapsto c\}$	$\{x \mapsto g(z), y \mapsto c\}$
$f(x, y) \lesssim^{?} f(g(z), x)$	$f(x, y)=^{?} f(g(z), x)$
$\{x \mapsto g(z), y \mapsto x\}$	$\{x \mapsto g(z), y \mapsto g(z)\}$
$f(x, a) \lesssim^{?} f(b, y)$	$f(x, a)=^{?} f(b, y)$
No matcher	$\{x \mapsto b, y \mapsto a\}$

Matching vs Unification

Example 3.8

$f(x, y) \lesssim^{?} f(g(z), c)$	$f(x, y)=^{?} f(g(z), c)$
$\{x \mapsto g(z), y \mapsto c\}$	$\{x \mapsto g(z), y \mapsto c\}$
$f(x, y) \lesssim^{?} f(g(z), x)$	$f(x, y)=^{?} f(g(z), x)$
$\{x \mapsto g(z), y \mapsto x\}$	$\{x \mapsto g(z), y \mapsto g(z)\}$
$f(x, a) \lesssim^{?} f(b, y)$	$f(x, a)=^{?} f(b, y)$
No matcher	$\{x \mapsto b, y \mapsto a\}$
$f(x, x) \lesssim^{?} f(x, a)$	$f(x, x)=^{?} f(x, a)$
No matcher	$\{x \mapsto a\}$

Matching vs Unification

Example 3.8

$f(x, y) \lesssim^{?} f(g(z), c)$	$f(x, y)=^{?} f(g(z), c)$
$\{x \mapsto g(z), y \mapsto c\}$	$\{x \mapsto g(z), y \mapsto c\}$
$f(x, y) \lesssim^{?} f(g(z), x)$	$f(x, y)=^{?} f(g(z), x)$
$\{x \mapsto g(z), y \mapsto x\}$	$\{x \mapsto g(z), y \mapsto g(z)\}$
$f(x, a) \lesssim^{?} f(b, y)$	$f(x, a)=^{?} f(b, y)$
No matcher	$\{x \mapsto b, y \mapsto a\}$
$f(x, x) \lesssim^{?} f(x, a)$	$f(x, x)=^{?} f(x, a)$
No matcher	$\{x \mapsto a\}$
$x \lesssim^{?} f(x)$	$x=^{?} f(x)$
$\{r f f(x)\}$	

How to Solve Matching Problems

- $s={ }^{?} t$ and $s \lesssim$? t coincide, if t is ground.
- When t is not ground in $s \underset{\sim}{?} t$, simply regard all variables in t as constants and use the unification algorithm.
- Alternatively, modify the rules in \mathfrak{U} to work directly with the matching problem.

Matched Form

- A set of equations $\left\{x_{1} \approx t_{1}, \ldots, x_{n} \approx t_{n}\right\}$ is in matched from, if all x 's are pairwise distinct.
- The notation σ_{S} extends to matched forms.
- If S is in matched form, then

$$
\sigma_{S}(x)= \begin{cases}t, & \text { if } x \approx t \in S \\ x, & \text { otherwise }\end{cases}
$$

The Inference System \mathfrak{M}

- Matching system: The symbol \perp or a pair $P ; S$, where
- P is set of matching problems.
- S is set of equations in matched form.
- A matcher (or a solution) of a system $P ; S$: A substitution that solves each of the matching equations in P and S.
- \perp has no matchers.

The Inference System \mathfrak{M}

Five transformation rules on matching systems: ${ }^{2}$

Decomposition:

$$
\begin{aligned}
& \left\{f\left(s_{1}, \ldots, s_{n}\right) \lesssim^{?} f\left(t_{1}, \ldots, t_{n}\right)\right\} \uplus P^{\prime} ; S \Leftrightarrow \\
& \quad\left\{s_{1} \lesssim^{?} t_{1}, \ldots, s_{n} \lesssim^{?} t_{n}\right\} \cup P^{\prime} ; S, \text { where } n \geq 0 .
\end{aligned}
$$

Symbol Clash:

$$
\left\{f\left(s_{1}, \ldots, s_{n}\right) \lesssim^{?} g\left(t_{1}, \ldots, t_{m}\right)\right\} \uplus P^{\prime} ; S \Leftrightarrow \perp, \text { if } f \neq g .
$$

[^0]
The Inference System \mathfrak{M}

Symbol-Variable Clash:

$$
\left\{f\left(s_{1}, \ldots, s_{n}\right) \lesssim^{?} x\right\} \uplus P^{\prime} ; S \Leftrightarrow \perp .
$$

Merging Clash:

$$
\left\{x \lesssim^{?} t_{1}\right\} \uplus P^{\prime} ;\left\{x \approx t_{2}\right\} \uplus S^{\prime} \Leftrightarrow \perp \text {, if } t_{1} \neq t_{2} \text {. }
$$

Elimination:

$$
\{x \lesssim ? t\} \uplus P^{\prime} ; S \Leftrightarrow P^{\prime} ;\{x \approx t\} \cup S,
$$

if S does not contain $x \approx t^{\prime}$ with $t \neq t^{\prime}$.

Matching with \mathfrak{M}

In order to match s to t

1. Create an initial system $\{s \lesssim$? $t\} ; \varnothing$.
2. Apply successively the rules from \mathfrak{M}.

Matching with \mathfrak{M}

Example 3.9

Match $f(x, f(a, x))$ to $f(g(a), f(a, g(a)))$:

$$
\begin{aligned}
& \left\{f(x, f(a, x)) \lesssim^{?} f(g(a), f(a, g(a)))\right\} ; \varnothing \Leftrightarrow_{\text {Decomposition }} \\
& \left\{x \lesssim^{?} g(a), f(a, x) \lesssim^{?} f(a, g(a))\right\} ; \varnothing \Leftrightarrow_{\text {Elimination }} \\
& \left\{f(a, x) \lesssim^{?} f(a, g(a))\right\} ;\{x \approx g(a)\} \Leftrightarrow_{\text {Decomposition }} \\
& \left\{a \lesssim^{?} a, x \lesssim^{?} g(a)\right\} ;\{x \approx g(a)\} \Leftrightarrow_{\text {Decomposition }} \\
& \left\{x \lesssim^{?} g(a)\right\} ;\{x \approx g(a)\} \Leftrightarrow_{\text {Merge }} \\
& \varnothing ;\{x \approx g(a)\}
\end{aligned}
$$

Matcher: $\{x \mapsto g(a)\}$.

Matching with \mathfrak{M}

Example 3.10
Match $f(x, x)$ to $f(x, a)$:

$$
\begin{aligned}
& \left\{f(x, x) \lesssim{ }^{?} f(x, a)\right\} ; \varnothing \Leftrightarrow \text { Decomposition } \\
& \{x \lesssim \cdot x, x \lesssim ? a\} ; \varnothing \Leftrightarrow \text { Elimination } \\
& \{x \lesssim ? a\} ;\{x \approx x\} \Leftrightarrow_{\text {Merging Clash }} \\
& \perp
\end{aligned}
$$

No matcher.

Properties of \mathfrak{M} : Termination

Theorem 3.7
For any finite set of matching problems P, every sequence of transformations in \mathfrak{M} of the form $P ; \varnothing \Leftrightarrow P_{1} ; S_{1} \Leftrightarrow P_{2} ; S_{2} \Leftrightarrow \cdots$ terminates either with \perp or with $\varnothing ; S$, with S in matched form.

Properties of \mathfrak{M} : Termination

Theorem 3.7
For any finite set of matching problems P, every sequence of transformations in \mathfrak{M} of the form $P ; \varnothing \Leftrightarrow P_{1} ; S_{1} \Leftrightarrow P_{2} ; S_{2} \Leftrightarrow \cdots$ terminates either with \perp or with $\varnothing ; S$, with S in matched form.

Proof.

- Termination is obvious, since every rule strictly decreases the size of the first component of the matching system.
- A rule can always be applied to a system with non-empty P.
- The only systems to which no rule can be applied are \perp and $\varnothing ; S$.
- Whenever $x \approx t$ is added to S, there is no other equation $x \approx t^{\prime}$ in S. Hence, S_{1}, S_{2}, \ldots are in matched form.

Properties of \mathfrak{M} : Correctness

The following lemma is straightforward:
Lemma 3.5
For any transformation of matching systems $P ; S \Leftrightarrow \Gamma$, a substitution ϑ is a matcher for $P ; S$ iff it is a matcher for Γ.

Properties of \mathfrak{M} : Correctness

Theorem 3.8 (Soundness)
If $P ; \varnothing \Leftrightarrow{ }^{+} \varnothing ; S$, then σ_{S} solves all matching equations in P.

Properties of \mathfrak{M} : Correctness

Theorem 3.8 (Soundness)
If $P ; \varnothing \Leftrightarrow^{+} \varnothing ; S$, then σ_{S} solves all matching equations in P.
Proof.
By induction on the length of derivations, using the previous lemma and the fact that σ_{S} solves the matching problems in S.

Properties of \mathfrak{M} : Correctness

Let $v\left(\left\{s_{1} \approx t_{1}, \ldots, s_{n} \approx t_{n}\right\}\right)$ be $\mathcal{V} \operatorname{Var}\left(\left\{s_{1}, \ldots, s_{n}\right\}\right)$.
Theorem 3.9 (Completeness)
If ϑ is a matcher of P, then any maximal sequence of transformations $P ; \varnothing \Leftrightarrow \cdots$ ends in a system $\varnothing ; S$ such that $\sigma_{S}=\left.\vartheta\right|_{v(P)}$.

Properties of \mathfrak{M} : Correctness

Let $v\left(\left\{s_{1} \approx t_{1}, \ldots, s_{n} \approx t_{n}\right\}\right)$ be $\mathcal{V} \operatorname{Var}\left(\left\{s_{1}, \ldots, s_{n}\right\}\right)$.
Theorem 3.9 (Completeness)
If ϑ is a matcher of P, then any maximal sequence of transformations $P ; \varnothing \Leftrightarrow \cdots$ ends in a system $\varnothing ; S$ such that $\sigma_{S}=\left.\vartheta\right|_{v(P)}$.

Proof.

Such a sequence must end in $\varnothing ; S$ where ϑ is a matcher of S. $v(S)=v(P)$. For every equation $x \approx t \in S$, either $t=x$ or $x \mapsto t \in \sigma_{S}$. Therefore, for any such $x, \sigma_{S}(x)=t=\vartheta(x)$. Hence, $\sigma_{S}=\left.\vartheta\right|_{v(P)}$.

Properties of \mathfrak{M} : Correctness

Let $v\left(\left\{s_{1} \approx t_{1}, \ldots, s_{n} \approx t_{n}\right\}\right)$ be $\operatorname{Var}\left(\left\{s_{1}, \ldots, s_{n}\right\}\right)$.
Theorem 3.9 (Completeness)
If ϑ is a matcher of P, then any maximal sequence of transformations $P ; \varnothing \Leftrightarrow \cdots$ ends in a system $\varnothing ; S$ such that $\sigma_{S}=\left.\vartheta\right|_{v(P)}$.

Proof.

Such a sequence must end in $\varnothing ; S$ where ϑ is a matcher of S.
$v(S)=v(P)$. For every equation $x \approx t \in S$, either $t=x$ or $x \mapsto t \in \sigma_{S}$. Therefore, for any such $x, \sigma_{S}(x)=t=\vartheta(x)$. Hence, $\sigma_{S}=\left.\vartheta\right|_{v(P)}$.

Corollary 3.3
If P has no matchers, then any maximal sequence of transformations from $P ; \varnothing$ must have the form $P ; \varnothing \Leftrightarrow \cdots \Leftrightarrow \perp$.

[^0]: ${ }^{2} \uplus$ stands for disjoint union.

