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Validity and Satisfiability

Notation: s ~p t iff s ~ ¢t belongs to the equational theory
generated by F.
Validity problem:
Given: A set of identities &£ and terms s and t.
Decide: s=~pgt.
Satisfiability problem:
Given: A set of identities E£ and terms s and t.
Find: A substitution o such that o(s) ~g o(t).



Equational Problems

The following methods solve special cases:
» Term rewriting decides ~g if > g is convergent.
» Congruence closure decided »p when E is variable-free.
» Syntactic unification computes o such that o(s) = o(¢).



Equations Problems

Relating validity and satisfiability problems.
» Validity: s~ tis valid in E iff

VZ. s~t

holds in all models of E.

» Satisfiability: s » t is satisfiable in E iff
Jz. s~t

holds in all nonempty models of F.



Deciding ~p

» By Birkhoffs theorem, s ~p t iff s <> .

» Hence, deciding = is equivalent to deciding S



Deciding ~p

» By Birkhoffs theorem, s ~p t iff s <> .
» Hence, deciding = is equivalent to deciding S
» Word problem:

Given: A set of identities &/ and terms s and .
Decide: s <:>E t.



Deciding ~g: Finite E/, Convergent —»p

Recall from abstract reduction systems:
If - is confluent and terminating, then
» every element x has a unique normal form x |,
> x<i>y iff xl=vy|.
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» Provided that we are able to compute normal forms.



Deciding ~g: Finite E/, Convergent —»p

Recall from abstract reduction systems:
If - is confluent and terminating, then
» every element x has a unique normal form x |,
> nyiwal:yl.

. . . *
» Hence, if - g is convergent, we can decide = < y.
» Provided that we are able to compute normal forms.

» This is possible if we can effectively

» decide whether a term is in normal form wrt —» g, and
» compute some s’ such that s =5 s’ if s is not in normal form.



Deciding ~g: Finite E/, Convergent —»p

How to decide whether a term is in normal form wrt —g?
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» That is, check whether any of its subterms is an instance of
the lhs of a rule in > .
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» Check whether it can be rewritten by —g.
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the lhs of a rule in > .
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Given: Two terms s and ¢.
Find: A substitution o such that o(s) =t.



Deciding ~g: Finite E/, Convergent —»p

How to decide whether a term is in normal form wrt —g?
» Check whether it can be rewritten by —g.

» That is, check whether any of its subterms is an instance of
the lhs of a rule in > .

» Matching problem:

Given: Two terms s and ¢.
Find: A substitution o such that o(s) =t.

» Matching is decidable. (Details later, with unification.)



Deciding ~g: Finite E/, Convergent —»p

Theorem 3.1
If E is finite and —f is convergent, then ~p is decidable.

Proof.

1. Decide whether a term s is in normal form wrt —g:
Check all I ~ r € E and all positions p € Pos(s)
if there is o such that s|, = o(l).

2. Compute some s’ such that s - s’ if s is not in normal form:
Reduce s to s[o(r)], if the test above is positive.

Iterate the process to compute a normal form.

The iteration stops because — g is terminating.

The obtained normal form is unique because — g is confluent.

To decide s =g t, compute s |g and ¢ | and compare. O



Deciding ~g: Finite E/, Convergent —»p

» Convergence of — g is important for decidability of ~g.
» There exist finite sets E for which ~g is not decidable.

» Example: Combinatory logic.



Deciding ~g: Finite E/, Convergent —»p

Definition 3.1 (Term Rewriting System)

» Rewrite rule: An identity [ ~ r such that

» [ is not a variable,
» Var(l) 2 Var(r).

» Notation: [ — r instead of [ ~ r.

» A term rewriting system (TRS) is a set of rewrite rules.
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By definition, a TRS R is a set of identities.
Hence, - and ~p are well-defined.
We say that R is terminating, confluent, etc. if —p is.
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Definition 3.1 (Term Rewriting System)

» Rewrite rule: An identity [ ~ r such that

» [ is not a variable,
» Var(l) 2 Var(r).

» Notation: [ — r instead of [ ~ 7.
» A term rewriting system (TRS) is a set of rewrite rules.

By definition, a TRS R is a set of identities.
Hence, - and ~p are well-defined.
We say that R is terminating, confluent, etc. if —p is.

Theorem 3.2
If R is a finite convergent TRS, then ~g is decidable. o



Deciding ~g: Finite Ground E

» An identity [ ~ r is a ground identity if Var(l) = Var(r) = @.
» Ground word problem for E: Word problem for ground terms
over the signature of F.



Deciding ~g: Finite Ground E

» An identity [ ~ r is a ground identity if Var(l) = Var(r) = @.

» Ground word problem for E: Word problem for ground terms
over the signature of F.

» G: A set of ground identities.

» Congruence on terms: Equivalence relation closed under
operations.

» Congruence closure of G: smallest congruence on terms which
contains G.



Deciding ~g: Finite Ground E

Relating ~¢ and congruence closure of G:

» By Theorem 2.1, <i>G is the smallest equivalence relation
closed under substitutions and operations.

» G is ground, substitutions are irrelevant.
* .
» Hence, < is the congruence closure of G.

» By Birkhoffs Theorem, ~ is the congruence closure of G.



Deciding ~g: Finite Ground E

Operational description of congruence closure: A functional version
of the rules of equational logic.

R(E):={(t,t) |teT(F,V)}.

S(E)={(s,t) | (t,s) e E}.
T(FE):={(s,r) |for some t, (s,t) € E and (t,7) € E}.

C(E) ={(f(s1,--,8n), f(t1,.. ., tn)) |
feF" (si,t;) e Eforall 1<i<n}.

Cong(E):=EUR(E)uS(E)uT(E)uC(FE)
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Operational description of congruence closure: A functional version
of the rules of equational logic.

R(E):={(t,t) |teT(F,V)}.
S(E)={(s,t) | (t,s) e E}.
T(FE):={(s,r) |for some t, (s,t) € E and (t,7) € E}.
C(E) = {(f(sl,... ,Sn),f(tl,. . .,tn)) |
feF" (si,t;) e Eforall 1<i<n}.

Cong(E):=EUR(E)uS(E)uT(E)uC(FE)

» E is congruence iff E is closed under Cong (i.e.,
Cong(E) c E).
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Operational description of congruence closure: A functional version
of the rules of equational logic.

R(E):={(t,t) |teT(F,V)}.
S(E)={(s,t) | (t,s) e E}.
T(FE):={(s,r) |for some t, (s,t) € E and (t,7) € E}.
C(E) = {(f(sl,... ,Sn),f(tl,. . .,tn)) |
feF" (si,t;) e Eforall 1<i<n}.

Cong(E):=EUR(E)uS(E)uT(E)uC(FE)

» E is congruence iff E is closed under Cong (i.e.,
Cong(E) c E).
» E is congruence iff Cong(E) = E. /N



Deciding ~g: Finite Ground E

The process of closing G under Cong:

G(] =G.
Gis1 = Cong(G,-).

cC(G) = |JG;

>0



Deciding ~g: Finite Ground E

Lemma 3.1
CC(G) = ~g.
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Lemma 3.1
CC(G) = ~g.
Proof.

(<) Use monotonicity of Cong: If Ey € E5, then
Cong(E1) ¢ Cong(Es).
Proof by induction on i. Gy = G S~g. Assume G; S~¢ and
show Gi1 S~g. Gy = COHg(GZ‘) c C’ong(wg) =RqG.



Deciding ~g: Finite Ground E

Lemma 3.1
CC(G) = ~g.
Proof.

(<) Use monotonicity of Cong: If Ey € E5, then
Cong(E1) € Cong(E»).
Proof by induction on i. Gy = G S~g. Assume G; S~¢ and
show Gi11 S»g. Giyg = COTLg(GZ‘) c C’ong(wg) =RqG.

(2) CC(G) is a congruence containing G (because CC(QG) is
closed under Cong. Check!). =~ is the least congruence
containing G. Hence, »g < CC(G).



Deciding ~g: Finite Ground E

v

CC(G) may be infinite. If the signature consists of a, b, and
a unary function symbol f:

CO({awb}) 2 {(f'(a), f'(b)) | >0}

Check whether f2(a) ~g f2(b) is easy: (f?(a), f?(b)) e~g.
» But how to conclude that f3(a) #¢ f2(b)?
Shall we examine all G;'s?

v

v



Deciding ~g: Finite Ground E

v

CC(G) may be infinite. If the signature consists of a, b, and
a unary function symbol f:

CO({awb}) 2 {(f'(a), f'(b)) | >0}

Check whether f2(a) ~g f2(b) is easy: (f?(a), f3(b)) e~g.
» But how to conclude that f3(a) #¢g f2(b)?

Shall we examine all G;'s?

v

v

» It turns out that since G is ground, the search space is finite.

» We need to test only terms occurring in G or in the input
terms.



Deciding ~g: Finite Ground E

Subterms(t) := {t|, | p € Pos(t)}

Subterms(E) = | (Subterms(l) U Subterms(r))
(I,r)eE
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Subterms(t) := {t|, | p € Pos(t)}

Subterms(E) = | (Subterms(l) U Subterms(r))
(I,r)eE

Fix a finite set of ground identities G' and two terms s and ¢.

S = Subterms(G) u Subterms(s) U Subterms(t)



Deciding ~g: Finite Ground E

Subterms(t) := {t|, | p € Pos(t)}
Subterms(E) = | (Subterms(l) U Subterms(r))

(I,r)eE
Fix a finite set of ground identities G' and two terms s and ¢.
S = Subterms(G) u Subterms(s) U Subterms(t)

S is finite. It will be used to decide s ~ t.



Deciding ~g: Finite Ground E

Define the sequence:

HO =G
Hiyp := Cong(H;) n (S x S)
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Define the sequence:

HO =G
Hi+1 = C’ong(Hi) n (S X S)

Lemma 3.2
There is some m such that Hy,.1 = Hy,.

Proof.

By definition, H; € S x S. Moreover, H; ¢ Cong(H;). Hence,

H; c H;\1. Therefore, Hyc Hi S HyC---cSx S5 and S'is

finite. ]



Deciding ~g: Finite Ground E

Define the sequence:

HO =G
Hi+1 = C’ong(Hi) n (S X S)

Lemma 3.2
There is some m such that Hy,.1 = Hy,.

Proof.

By definition, H; € S x S. Moreover, H; ¢ Cong(H;). Hence,

H; c H;\1. Therefore, Hyc Hi S HyC---cSx S5 and S'is

finite. O
The limit H,, is denoted by C'C's(G).



Deciding ~g: Finite Ground E

Theorem 3.3
CCs(G) =RG ﬂ(S X S).
Proof.
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Theorem 3.3
CCs(G) ==gn(Sx8S).
Proof.

(€) By definition, H; € G; n (S x S). Therefore,
CCs(G)c CC(G)n(Sx8S).
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Theorem 3.3
CCs(G) ==gn(Sx8S).
Proof.

(€) By definition, H; € G; n (S x S). Therefore,
CCs(G)c CC(G)n(Sx8S).

(2) Let u,v €S and u ¢ v. Prove (u,v) € Hyy, (the limit of H;)
by well-founded induction on the lexicographically ordered pair
(n, |ul):
» n=0. Then u=wv. Hence, (u,v) € H; ¢ Hy,.
» u o v, Two cases:
1. There is a rewrite step at the root.
2. There is no rewrite step at the root.
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Theorem 3.3
CCs(G) ==gn(Sx8S).

Proof (Cont.)

1. There is a rewrite step at the root.

ues logrefv

for some [~ e GuG™L. (G is ground: No substitutions).
n1,n9 <n. By induction hypothesis,

(u,l) € Hy, and (r,v) € Hy,.

If (I,7) € G, then (I,7) € Hy € Hy,. If (1,7) € G, then
(I,r) e Hy € H,,. By transitivity of Hy,,, (u,v) € Hyp,.



Deciding ~g: Finite Ground E

Theorem 3.3
CCs(G) ==gn(Sx8S).

Proof (Cont.)

2. There is no rewrite step at the root.

w=f(uy,...u), v=f(v,...,vp)

and u; < v; forall 1 <i<k.

Since n; <n+1, |u;| < |u|, and u;,v; € S, by the induction
hypothesis, (u;,v;) € Hy, for all 1 <i<k.

By congruence, (u,v) € Hyy1 = Hp,.



Deciding ~g: Finite Ground E

Example 3.1
Let F = {a, f}, G:={f*(a) ~a, f3(a) »a}, and s:= f(a), t = a.

Then S = {a, f(a), f*(a), f*(a)}.
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Example 3.1

Let F = {a, f}, G:={f*(a) ~a, f3(a) »a}, and s:= f(a), t = a.
Then S:={a, f(a), f*(a), f*(a)}.

Constructing CCs(G):

SxS:
ama asfl)  asfa)  asf)
f@wa  fla)s fla) fla)~ f*(a)  f(a)~ f(a)
fla)~a fAa)~ f(a) f*a)= f(a) f*(a) = f(a)
Playma fa)~ fla) f(a)=~f(a) fP(a) =~ f(a)
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Example 3.1

Let F = {a, f}, G:={f*(a) ~a, f3(a) »a}, and s:= f(a), t = a.
Then S:={a, f(a), f*(a), f*(a)}.

Constructing CCs(G):

Hy:

ava  axf(a)  a=fa)  a=fa)
f@w~a  fa)~f(a) fla)~ f2a)  f(a)w f3(a)
Playca fa)~fa) fa)=f(a) f(a)~fa)
Playsa fayxfa) fa)sf @) fa)=fa)
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Example 3.1

Let F = {a, f}, G:={f*(a) ~a, f3(a) »a}, and s:= f(a), t = a.
Then S = {a, f(a), f*(a), f*(a)}.

Constructing CCs(G):

Hy

ava  awfl@)  axfa)  a~fa)
f@w~a  fa)~f(a) fla)~f2a)  f(a)w f3(a)
Playra fa)~fa) fa)=f(a) f(a)~fa)
Playsa fAa)~fa) ffa)s @) [a)~fa)
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Example 3.1

Let F = {a, f}, G:={f*(a) ~a, f3(a) »a}, and s:= f(a), t = a.
Then S':={a, f(a), f*(a), f*(a)}.

Constructing CCs(G):

Hy:
ara a~ f(a) a~f*(a) a~f(a)
flaysa  fla)~ f(a) f(a)=f*(a) [(a)~[*(a)
FPla)ysa fHa)w fla) fAa)~f*(a) [*(a)~ [*(a)
Flaysa fHa)w fla) f(a)~f(a) f(a)~f*a)
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Example 3.1

Let F = {a, f}, G:={f*(a) ~a, f3(a) »a}, and s:= f(a), t = a.
Then S':={a, f(a), f*(a), f*(a)}.

Constructing CCs(G):

Hy:

ava  axfla)  axfia)  axfa)
f@y~a  fla)=f(a) fla)~f2(a)  fla)~f(a)
Pl@yra )~ fa) fa)=f(a) f(a)~fa)
Playsa fPa)~fa) fa)=fa) fa)=fa)



Deciding ~g: Finite Ground E
Example 3.1
Let F = {a, f}, G:={f*(a) ~a, f3(a) »a}, and s:= f(a), t = a.
Then S:={a, f(a), f*(a), f*(a)}.
Constructing CCs(G):
Hs:
a~a aw f(a) aw~f?(a) a~f3(a)
f@ywa  fa)~fla) fla)~ f*(a) f(a)~ f(a)
fPlaysa f(a)~f(a) f(a)~f*(a) f*(a)=f*(a)
FPlaysa fa)~fla) f(a)~f*(a) f*(a)=f(a)

Hence, (f(a),a) € CCs(G), showing f(a) ~¢ a.
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Example 3.1

Let F = {a, f}, G:={f*(a) ~a, f3(a) »a}, and s:= f(a), t = a.

Then S :={a, f(a), f*(a), f3(a)}.

Constructing CCs(G):

H32

fla)»
f(a) ~
Fa)~

f(a)»a
@)~ a
@) ~a

a) a~f(a)
a)  fa)~ f*(a)
a) f*(a)~ f*(a)
a) f*a) = f(a)

awnf?
f2
7
f

2

f(a)

fla)  f(a) =~
fa) f*(a)w~
fla) f(a)w

—_~ o~ o~ o~

Hence, (f(a),a) € CCs(G), showing f(a) ~¢ a.
Note that H3 = .S x S. In general the iteration may stop before

S x S is reached.

.M.&.
e
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Example 3.1
s:=f(a), t:=a.

S = {avf<a)’f2(a’)’ fg(a)}

CCs(G):
ama  axf@)  asfa)  a=f)
fl@y~ma  f(a)~ f(a) f(a)~f*(a) f(a)= f*(a)
flayma  fAa)~ fla) f(a)= f(a) f*(a) =~ f*(a)
Flay~a f(a)~ f(a) f(a)=f*(a) fP(a) = f(a)
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Example 3.1
s:=f(a), t:=a.

S = {avf(a)’f2(a’)’ fg(a)}

CCs(G):
aw~a ax f(a
fla)~a  f(a) = f(a
Fa)y~a f(a)= f(a
Flay~a f(a)=f(a

a~f*(a) a~f’(a)
fla)~ f2(a)  fa) = [(a)
f2(a)~ f(a)  f*(a)~ f(a)
Fla)~ f2(a) ()=~ f(a)

— O~ '

Hence, (f(a),a) € CCs(G), showing f(a) ~¢ a.
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Example 3.1
s:=f(a), t:=a.

S = {avf(a)’fQ(a’)’fS(a)}'

CCs(G):
asa ax f(a
fla)y~a  f(a)=~ f(a
fHaysa fHa)~ f(a
faysa f*a)~ f(a

a~f*(a) a~f’(a)
fla)~ f2(a)  fa) = [(a)
f2(a)~ f(a)  f*(a)~ f(a)
Fla)~ f2(a) ()=~ f(a)

— O~ '

Hence, (f(a),a) € CCs(G), showing f(a) ~¢ a.
Note that CCs(G) =S x S. In general the iteration may stop
before S x S is reached. N
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