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Validity and Satisfiability

Notation: s ≈E t iff s ≈ t belongs to the equational theory
generated by E.

Validity problem:

Given: A set of identities E and terms s and t.
Decide: s ≈E t.

Satisfiability problem:

Given: A set of identities E and terms s and t.
Find: A substitution σ such that σ(s) ≈E σ(t).
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Equational Problems

The following methods solve special cases:

▸ Term rewriting decides ≈E if →E is convergent.

▸ Congruence closure decided ≈E when E is variable-free.

▸ Syntactic unification computes σ such that σ(s) = σ(t).



Equations Problems

Relating validity and satisfiability problems.

▸ Validity: s ≈ t is valid in E iff

∀x. s ≈ t

holds in all models of E.

▸ Satisfiability: s ≈ t is satisfiable in E iff

∃x. s ≈ t

holds in all nonempty models of E.



Deciding ≈E

▸ By Birkhoffs theorem, s ≈E t iff s
∗←→E r.

▸ Hence, deciding ≈E is equivalent to deciding
∗←→E .

▸ Word problem:

Given: A set of identities E and terms s and t.
Decide: s

∗←→E t.
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Deciding ≈E: Finite E, Convergent →E

Recall from abstract reduction systems:

If → is confluent and terminating, then
▸ every element x has a unique normal form x ↓,
▸ x

∗←→ y iff x ↓= y ↓.

▸ Hence, if →E is convergent, we can decide x
∗←→ y.

▸ Provided that we are able to compute normal forms.

▸ This is possible if we can effectively

▸ decide whether a term is in normal form wrt →E , and
▸ compute some s′ such that s→E s′ if s is not in normal form.
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Deciding ≈E: Finite E, Convergent →E

How to decide whether a term is in normal form wrt →E?

▸ Check whether it can be rewritten by →E .

▸ That is, check whether any of its subterms is an instance of
the lhs of a rule in →E .

▸ Matching problem:

Given: Two terms s and t.
Find: A substitution σ such that σ(s) = t.

▸ Matching is decidable. (Details later, with unification.)
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Deciding ≈E: Finite E, Convergent →E

Theorem 3.1
If E is finite and →E is convergent, then ≈E is decidable.

Proof.

1. Decide whether a term s is in normal form wrt →E :
Check all l ≈ r ∈ E and all positions p ∈ Pos(s)
if there is σ such that s∣p = σ(l).

2. Compute some s′ such that s→E s
′ if s is not in normal form:

Reduce s to s[σ(r)]p if the test above is positive.

Iterate the process to compute a normal form.
The iteration stops because →E is terminating.
The obtained normal form is unique because →E is confluent.
To decide s ≈E t, compute s ↓E and t ↓E and compare.



Deciding ≈E: Finite E, Convergent →E

▸ Convergence of →E is important for decidability of ≈E .

▸ There exist finite sets E for which ≈E is not decidable.

▸ Example: Combinatory logic.



Deciding ≈E: Finite E, Convergent →E

Definition 3.1 (Term Rewriting System)

▸ Rewrite rule: An identity l ≈ r such that
▸ l is not a variable,
▸ Var(l) ⊇ Var(r).

▸ Notation: l → r instead of l ≈ r.

▸ A term rewriting system (TRS) is a set of rewrite rules.

By definition, a TRS R is a set of identities.

Hence, →R and ≈R are well-defined.

We say that R is terminating, confluent, etc. if →R is.

Theorem 3.2
If R is a finite convergent TRS, then ≈R is decidable.
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Deciding ≈E: Finite Ground E

▸ An identity l ≈ r is a ground identity if Var(l) = Var(r) = ∅.

▸ Ground word problem for E: Word problem for ground terms
over the signature of E.

▸ G: A set of ground identities.

▸ Congruence on terms: Equivalence relation closed under
operations.

▸ Congruence closure of G: smallest congruence on terms which
contains G.
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Deciding ≈E: Finite Ground E

Relating ≈G and congruence closure of G:

▸ By Theorem 2.1,
∗←→G is the smallest equivalence relation

closed under substitutions and operations.

▸ G is ground, substitutions are irrelevant.

▸ Hence,
∗←→G is the congruence closure of G.

▸ By Birkhoffs Theorem, ≈G is the congruence closure of G.



Deciding ≈E: Finite Ground E

Operational description of congruence closure: A functional version
of the rules of equational logic.

R(E) ∶= {(t, t) ∣ t ∈ T (F ,V)}.
S(E) ∶= {(s, t) ∣ (t, s) ∈ E}.
T (E) ∶= {(s, r) ∣ for some t, (s, t) ∈ E and (t, r) ∈ E}.
C(E) ∶= {(f(s1, . . . , sn), f(t1, . . . , tn)) ∣

f ∈ Fn, (si, ti) ∈ E for all 1 ≤ i ≤ n}.

Cong(E) ∶= E ∪R(E) ∪ S(E) ∪ T (E) ∪C(E)

▸ E is congruence iff E is closed under Cong (i.e.,
Cong(E) ⊆ E).

▸ E is congruence iff Cong(E) = E.
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Deciding ≈E: Finite Ground E

The process of closing G under Cong :

G0 ∶= G.
Gi+1 ∶= Cong(Gi).

CC (G) ∶= ⋃
i≥0
Gi



Deciding ≈E: Finite Ground E

Lemma 3.1
CC (G) = ≈G.

Proof.

(⊆) Use monotonicity of Cong : If E1 ⊆ E2, then
Cong(E1) ⊆ Cong(E2).
Proof by induction on i. G0 = G ⊆≈G. Assume Gi ⊆≈G and
show Gi+1 ⊆≈G. Gi+1 = Cong(Gi) ⊆ Cong(≈G) =≈G.

(⊇) CC (G) is a congruence containing G (because CC (G) is
closed under Cong . Check!). ≈G is the least congruence
containing G. Hence, ≈G ⊆ CC (G).
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Deciding ≈E: Finite Ground E

▸ CC (G) may be infinite. If the signature consists of a, b, and
a unary function symbol f :

CC ({a ≈ b}) ⊇ {(f i(a), f i(b)) ∣ i ≥ 0}

▸ Check whether f2(a) ≈G f2(b) is easy: (f2(a), f2(b)) ∈ ≈G.

▸ But how to conclude that f3(a) /≈G f2(b)?

▸ Shall we examine all Gi’s?

▸ It turns out that since G is ground, the search space is finite.

▸ We need to test only terms occurring in G or in the input
terms.
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Deciding ≈E: Finite Ground E

Subterms(t) ∶= {t∣p ∣ p ∈ Pos(t)}

Subterms(E) ∶= ⋃
(l,r)∈E

(Subterms(l) ∪ Subterms(r))

Fix a finite set of ground identities G and two terms s and t.

S ∶= Subterms(G) ∪ Subterms(s) ∪ Subterms(t)

S is finite. It will be used to decide s ≈G t.
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Deciding ≈E: Finite Ground E

Define the sequence:

H0 ∶= G
Hi+1 ∶= Cong(Hi) ∩ (S × S)

Lemma 3.2
There is some m such that Hm+1 =Hm.

Proof.
By definition, Hi ⊆ S × S. Moreover, Hi ⊆ Cong(Hi). Hence,
Hi ⊆Hi+1. Therefore, H0 ⊆H1 ⊆H2 ⊆ ⋯ ⊆ S × S and S is
finite.

The limit Hm is denoted by CC S(G).
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Deciding ≈E: Finite Ground E

Theorem 3.3
CC S(G) =≈G ∩(S × S).

Proof.

(⊆) By definition, Hi ⊆ Gi ∩ (S × S). Therefore,
CC S(G) ⊆ CC (G) ∩ (S × S).

(⊇) Let u, v ∈ S and u↔n
G v. Prove (u, v) ∈Hm (the limit of Hi)

by well-founded induction on the lexicographically ordered pair
(n, ∣u∣):

▸ n = 0. Then u = v. Hence, (u, v) ∈H1 ⊆Hm.
▸ u↔n+1

G v. Two cases:

1. There is a rewrite step at the root.
2. There is no rewrite step at the root.
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Theorem 3.3
CC S(G) =≈G ∩(S × S).

Proof (Cont.)

1. There is a rewrite step at the root.

u↔n1
G l↔G r↔n2

G v

for some l ≈ r ∈ G ∪G−1. (G is ground: No substitutions).
n1, n2 < n. By induction hypothesis,

(u, l) ∈Hm and (r, v) ∈Hm.

If (l, r) ∈ G, then (l, r) ∈H0 ⊆Hm. If (l, r) ∈ G−1, then
(l, r) ∈H1 ⊆Hm. By transitivity of Hm, (u, v) ∈Hm.
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Theorem 3.3
CC S(G) =≈G ∩(S × S).

Proof (Cont.)

2. There is no rewrite step at the root.

u = f(u1, . . . , uk), v = f(v1, . . . , vk)

and ui ↔ni
G vi for all 1 ≤ i ≤ k.

Since ni ≤ n + 1, ∣ui∣ < ∣u∣, and ui, vi ∈ S, by the induction
hypothesis, (ui, vi) ∈Hm for all 1 ≤ i ≤ k.
By congruence, (u, v) ∈Hm+1 =Hm.
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Example 3.1

Let F = {a, f}, G ∶= {f2(a) ≈ a, f3(a) ≈ a}, and s ∶= f(a), t ∶= a.

Then S ∶= {a, f(a), f2(a), f3(a)}.

Constructing CC S(G):

S × S ∶
a ≈ a a ≈ f(a) a ≈ f2(a) a ≈ f3(a)

f(a) ≈ a f(a) ≈ f(a) f(a) ≈ f2(a) f(a) ≈ f3(a)
f2(a) ≈ a f2(a) ≈ f(a) f2(a) ≈ f2(a) f2(a) ≈ f3(a)
f3(a) ≈ a f3(a) ≈ f(a) f3(a) ≈ f2(a) f3(a) ≈ f3(a)
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