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Motivation

Abstract Reduction Systems



Equational Reasoning

▸ Restricted class of languages: The only predicate symbol is
equality ≈.

▸ Reasoning with equations:
▸ derive consequences of given equations,
▸ find values for variables that satisfy a given equation.

▸ At the heart of many problems in mathematics and computer
science.



Example: Addition of Natural Numbers

▸ Equations (identities):

x + 0 ≈ x

x + s(y) ≈ s(x + y)

▸ How to calculate s(0) + s(s(0))?



Example: Addition of Natural Numbers

▸ Orient equations, obtaining rewriting rules.

▸ Apply the rules to transform expressions.

▸ Rewrite rules:

x + 0→ x (R1)

x + s(y)→ s(x + y) (R2)

▸ Rewriting s(0) + s(s(0)):

s(0) + s(s(0))→ (by R2, with x↦ s(0), y ↦ s(0))

s(s(0) + s(0))→ (by R2, with x↦ s(0), y ↦ 0)

s(s(s(0) + 0))→ (by R1, with x↦ s(0))

s(s(s(0)))
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What is Rewriting

▸ Process of transforming one expression into another.

▸ Rules describe how one expression can be rewritten into
another.



Identities and Rewriting

▸ Rewriting as a computational mechanism:
▸ Apply given equations in one direction, as rewrite rules.
▸ Compute normal forms.
▸ Close relationship with functional programming.
▸ Example: symbolic differentiation.

▸ Rewriting as a deduction mechanism:
▸ Apply given equations in both directions.
▸ Define equivalence classes of terms.
▸ Equational reasoning.
▸ Example: group theory.
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Symbolic Differentiation

▸ Expressions: Terms built over variables (u, v, . . .) and the
following function symbols:

▸ constants 0,1 (numbers),
▸ constants X,Y (indeterminates),
▸ unary symbol DX (partial derivative with respect to X),
▸ binary symbols +,∗.

▸ Examples of terms:
▸ (X +X) ∗ Y + 1.
▸ DX(u ∗ v).
▸ (X + Y ) ∗DX(X ∗ Y ).

▸ Rewrite rules:

DX(X)→ 1 (R1)

DX(Y )→ 0 (R2)

DX(u + v)→DX(u) +DX(v) (R3)

DX(u ∗ v)→ (u ∗DX(v)) + (DX(u) ∗ v) (R4)
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Properties of Term Rewriting Systems

The symbolic differentiation example can be used to illustrate
two most important properties of TRSs:

1. Termination:
▸ Is it always the case that after finitely many rule applications

we reach an expression to which no more rules apply (normal
form)?

▸ For symbolic differentiation rules this is the case.
▸ But how to prove it?
▸ An example of non-terminating rule: u + v → v + u
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leading to different terms t1 and t2, can they be reduced by
rule applications to a common term?

▸ For symbolic differentiation rules this is the case.
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Properties of Term Rewriting Systems

▸ Adding the rule u + 0→ u (R5) destroys confluence:

DX(X + 0)

DX(X)

(R5)

1

(R1)

DX(X) +DX(0)

(R3)

1 +DX(0)

(R1)

▸ Confluence can be regained by adding DX(0)→ 0
(completion).



Group Theory

▸ Terms are built over variables and the following function
symbols:

▸ binary ○,
▸ unary i,
▸ constant 0.

▸ Examples of terms:
▸ x ○ (y ○ i(y))
▸ (0 ○ x) ○ i(0)
▸ i(x ○ y)

▸ Identities (aka group axioms), defining groups:

Associativity of ○ (x ○ y) ○ z ≈ x ○ (y ○ z) (G1)

e left unit e ○ x ≈ x (G2)

i left inverse i(x) ○ x ≈ e (G3)



Group Theory

▸ Identities can be applied in both directions.
▸ Word problem for identities:

▸ Given a set of identities E and two terms s and t.
▸ Is it possible to transform s into t, using the identities in E as

rewrite rules applied in both directions?

▸ For instance, is it possible to transform e into x ○ i(x), i.e., is
the left inverse also a right-inverse?



Group Theory

(x ○ y) ○ z ≈ x ○ (y ○ z) (G1)

e ○ x ≈ x (G2)

i(x) ○ x ≈ e (G3)

Transform e into x ○ i(x):

e ≈G3 i(x ○ i(x)) ○ (x ○ i(x))

≈G2 i(x ○ i(x)) ○ (x ○ (e ○ i(x)))

≈G3 i(x ○ i(x)) ○ (x ○ ((i(x) ○ x) ○ i(x)))

≈G1 i(x ○ i(x)) ○ ((x ○ (i(x) ○ x)) ○ i(x))

≈G1 i(x ○ i(x)) ○ (((x ○ i(x)) ○ x) ○ i(x))

≈G1 i(x ○ i(x)) ○ ((x ○ i(x)) ○ (x ○ i(x)))

≈G1 (i(x ○ i(x)) ○ (x ○ i(x))) ○ (x ○ i(x))

≈G3 e ○ (x ○ i(x))

≈G3 x ○ i(x)



Solving Word Problems by Rewriting?

▸ Is there a simpler way to solve word problems?

▸ Try to solve it by rewriting (uni-directional application of
identities):

s

ŝ

∗

t

t̂

∗

=

▸ Reduce s and t to normal forms ŝ and t̂.

▸ Check whether ŝ = t̂, i.e., syntactically equal.
(= is the meta-equality.)

▸ But... it would only work if normal forms exist and are unique.
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Solving Word Problems by Rewriting?

▸ In the group theory example, e and x ○ i(x) are equivalent,
but it can not be decided by (left-to-right) rewriting: Both
terms are in the normal form.

▸ Uniqueness of normal forms is violated: non-confluence.

▸ Normal forms may not exist: The process of reducing a term
may lead to an infinite chain of transformations:
non-termination.

▸ Termination and confluence ensure existence and uniqueness
of normal forms.

▸ If a given set of identities leads to non-confluent system, we
will try to apply the idea of completion to extend the rewrite
system to a confluent one.



Solving Word Problems by Rewriting?

▸ In the group theory example, e and x ○ i(x) are equivalent,
but it can not be decided by (left-to-right) rewriting: Both
terms are in the normal form.

▸ Uniqueness of normal forms is violated: non-confluence.

▸ Normal forms may not exist: The process of reducing a term
may lead to an infinite chain of transformations:
non-termination.

▸ Termination and confluence ensure existence and uniqueness
of normal forms.

▸ If a given set of identities leads to non-confluent system, we
will try to apply the idea of completion to extend the rewrite
system to a confluent one.



Solving Word Problems by Rewriting?

▸ In the group theory example, e and x ○ i(x) are equivalent,
but it can not be decided by (left-to-right) rewriting: Both
terms are in the normal form.

▸ Uniqueness of normal forms is violated: non-confluence.

▸ Normal forms may not exist: The process of reducing a term
may lead to an infinite chain of transformations:
non-termination.

▸ Termination and confluence ensure existence and uniqueness
of normal forms.

▸ If a given set of identities leads to non-confluent system, we
will try to apply the idea of completion to extend the rewrite
system to a confluent one.



Motivation

Abstract Reduction Systems



Abstract vs Concrete

Concrete rewrite formalisms:

▸ string rewriting

▸ term rewriting

▸ graph rewriting

▸ λ calculus

▸ etc.

Abstract reduction:

▸ No structure on objects to be rewritten.

▸ Abstract treatment of reductions.



Abstract Reduction Systems

▸ Abstract reduction system (ARS): A pair (A,→), where
▸ A is a set,
▸ the reduction → is a binary relation on A: → ⊆ A ×A.

▸ Write a→ b for (a, b) ∈→.



Abstract Reduction System: Example

▸ A = {a, b, c, d, e, f, g}

▸ →= {
(a, e), (b, a), (b, c), (c, d), (c, f)
(e, b), (e, g), (f, e), (f, g)

}

a b c d

e f

g



Equivalence and Reduction

Again, two views at reductions.

1. Directed computation: Follow the reductions, trying to
compute a normal form: a0 → a1 → ⋯

2. View → as description of
∗
←→.

▸ a
∗

←→ b means there is a path between a and b, with arrows
traversed in both directions: a← c→ d← b

▸ Goal: Decide whether a
∗

←→ b.
▸ Bidirectional rewriting is expensive.
▸ Unidirectional rewriting with subsequent comparison of normal

form works if the reduction system is confluent and
terminating.

Termination, confluence: central topics.



Basic notions

1. Composition of two relations.

2. Given two relations R ⊆ A ×B and S ⊆ B ×C, their
composition is defined by

R ○ S ∶= {(x, z) ∣ ∃y ∈ B. (x, y) ∈ R ∧ (y, z) ∈ S}



Abstract Reduction System: Example

a b c d

e f

g

a

e

b c

f

▸ Finite rewrite sequence: a→ e→ b→ c→ f

▸ Empty rewrite sequence: a

▸ Infinite rewrite sequence: a→ e→ b→ a→ ⋯
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Abstract Reduction System: Example

a

b c d

e

f

g

a

e

b

c

f

▸ Finite rewrite sequence: a→ e→ b→ c→ f

▸ Empty rewrite sequence: a

▸ Infinite rewrite sequence: a→ e→ b→ a→ ⋯



Relations Derived from →

0
Ð→ ∶= {(x,x) ∣ x ∈ A} identity

i+1
ÐÐ→ ∶=

i
Ð→ ○→ (i + 1)-fold composition, i ≥ 0

+

Ð→ ∶= ∪i>0
i
Ð→ transitive closure

∗

Ð→ ∶=
+

Ð→ ∪
0
Ð→ reflexive transitive closure

=

Ð→ ∶= → ∪
0
Ð→ reflexive closure

−1
Ð→ ∶= {(y, x) ∣ (x, y) ∈ →} inverse

← ∶=
−1
Ð→ inverse

↔ ∶= → ∪← symmetric closure
+

←→ ∶= (↔)
+ transitive symmetric closure

∗

←→ ∶= (↔)
∗ reflexive transitive symmetric closure



Terminology

▸ If x
∗
Ð→ y then we say:

▸ x rewrites to y, or
▸ there is some finite path from x to y, or
▸ y is a reduct of x.

a b c
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b c

f a
∗
Ð→ f
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Terminology

▸ x is reducible iff there exists y such that x→ y.

▸ x is in normal form (irreducible) iff x is not reducible.

▸ y is a normal form of x iff x
∗
Ð→ y and y is in normal form.

▸ We write x
!
Ð→ y if y is a normal form of x.

▸ If x has a unique normal form, it is denoted by x ↓.

a b c d

e f

g

a, b, c, e, f are reducibled, g are in a normal form
b

!
Ð→ d

b
!
Ð→ g

g
!
Ð→ g
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Terminology

▸ y is direct successor of x iff x→ y.

▸ y is successor of x iff x
+
Ð→ y.

▸ x and y are convertible iff x
∗
←→ y.

▸ x and y are joinable iff there exists z such that x
∗
Ð→ z

∗
←Ð y.

▸ We write x ↓ y iff x and y are joinable.

a b c d

e f

g

e ↓ f , f ↓ d, a ↓ f , not g ↓ dg
∗
←→ d
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Central Notions

Definition 1.1
A reduction → is called Church-Rosser (CR) iff

x
∗
←→ y implies x ↓ y.

Graphically:

x y

z

∗

∗ ∗

Solid arrows represent universal and dashed arrows existential

quantification: ∀x, y. x
∗
←→ y⇒ ∃z. x

∗
Ð→ z ∧ y

∗
Ð→ z.
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Central Notions

Definition 1.2
A reduction → is called confluent (C) iff

y1
∗
←Ð x

∗
Ð→ y2 implies y1 ↓ y2.

Graphically:

x y1

y2 z

∗

∗

∗∗

Solid arrows represent universal and dashed arrows existential

quantification: ∀x, y1, y2. y1
∗
←Ð x
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Ð→ z

∗
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Central Notions

Definition 1.3
A reduction → is called locally confluent (LC) iff

y1 ← x→ y2 implies y1 ↓ y2.

Graphically:
x y1

y2 z
∗

∗

Solid arrows represent universal and dashed arrows existential

quantification: ∀x, y1, y2. y1 ← x→ y2 ⇒ ∃z. y1
∗
Ð→ z

∗
←Ð y2.
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Central Notions

Definition 1.4
A reduction → is called

▸ terminating (T) iff there is no infinite descending chain
a0 → a1 → ⋯.

▸ normalizing (N) iff every element has a normal form.

▸ uniquely normalizing (UN) iff every element has at most one
normal form.

▸ convergent iff it is both confluent and terminating.

Alternative terminology:

▸ Strongly normalizing: terminating.

▸ Weakly normalizing: normalizing.
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Central Notions

▸ Obviously, x ↓ y implies x
∗
←→ y.

▸ Therefore, the Church-Rosser property can be formulated as
the equivalence:

▸ → is called Church-Rosser iff

x
∗
←→ y iff x ↓ y.



Properties

1. T Ô⇒ N

2. T /⇐Ô N a b

3. CR ⇐⇒ ∗
←→ = ↓

4. CR Ô⇒ UN

5. CR /⇐Ô UN a b c

6. N ∧ UN Ô⇒ C

7. C Ô⇒ LC

8. C /⇐Ô LC a b c d
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Properties

▸ Recall we were looking for:

▸ Ability to check equivalence by the search of a common
reduct.

▸ This is exactly the Church-Rosser property.

▸ How does it relate to confluence and termination?



Church-Rosser and Confluence

▸ The Church-Rosser property and confluence coincide.

▸ CRÔ⇒ C is immediate.

▸ CR⇐Ô C has a nice diagrammatic proof:



Church-Rosser and Confluence

Definition 1.5
A reduction → is called semi-confluent (SC) iff

y1 ← x
∗
Ð→ y2 implies y1 ↓ y2.

Graphically:
x y1

y2 z
∗

∗∗

Solid arrows represent universal and dashed arrows existential

quantification: ∀x, y1, y2. y1 ← x
∗
Ð→ y2 ⇒ ∃z. y1

∗
Ð→ z

∗
←Ð y2.
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Church-Rosser, Confluence, and Semi-Confluence

Theorem 1.1
The following conditions are equivalent:

1. → has the Chursh-Rosser property.

2. → is confluent.

3. → is semi-confluent.

Proof.
(1⇒ 2)

▸ Assume → is CR and y1
∗
←Ð x

∗
Ð→ y2. Show y1 ↓ y2.

▸ y1
∗
←Ð x

∗
Ð→ y2 implies y1

∗
←→ y2.

▸ CR implies y1 ↓ y2.
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▸ CR implies y1 ↓ y2.
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Corollaries

▸ If → is confluent and x
∗
←→ y then

1. x
∗

Ð→ y if y is in a normal form, and
2. x = y if both x and y are in a normal form.

▸ Hence, for confluent relations, convertibility is equivalent to
joinability.

▸ Without termination, joinability can not be decided.



Corollaries

▸ If → is confluent, then every element has at most one normal
form (CÔ⇒ UN)

▸ If → is normalizing and confluent, then every element has
exactly one normal form.

Hence, for confluent and normalizing reductions the notation x ↓ is
well-defined.



Goal-Directed Equivalence Test

Theorem 1.2
If → is confluent and normalizing, then

▸ every element x has a unique normal form x ↓,

▸ x
∗
←→ y iff x ↓= y ↓.

Normalization requires bread-first search for normal forms.

Theorem 1.3
If → is confluent and terminating, then

▸ every element x has a unique normal form x ↓,

▸ x
∗
←→ y iff x ↓= y ↓.

Termination permits depth-first search for normal forms.
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Confluence and Termination

▸ How to show confluence and termination of an ARS?



Showing Termination

▸ Idea: Embedding the reduction into a well-founded order.

▸ Well-founded order (B,>): No infinite descending chain
b0 > b1 > b2 > ⋯ in B.



Showing Termination

▸ Idea: Embedding the reduction into a well-founded order.

▸ Well-founded order (B,>): No infinite descending chain
b0 > b1 > b2 > ⋯ in B.



Showing Termination

Examples of well-founded orders:

▸ (N,>): The set of natural numbers with the standard
ordering.

▸ (N ∖ {0},>): The set of positive integers where a > b iff b ∣ a
and b ≠ a.

▸ ({a, b, c}∗,>): The set of finite words over a fixed alphabet,
where w1 > w2 iff w2 is a proper substring of w1.

Examples of non-well-founded orders:

▸ (Z,>): The set of integers with the standard ordering.

▸ (Q+
0 ,>): The set of non-negative rationals with the standard

ordering.

▸ ({a, b, c}∗,>): The set of finite words over a fixed alphabet,
where > is the lexicographic ordering, e.g. a > ab > abb > ⋯.
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Showing Termination

Theorem 1.4
Let (A,→) be an ARS. Then → is terminating iff there exists a
well-founded order (B,>) and a mapping ϕ ∶ A→ B such that

a1 → a2 implies ϕ(a1) > ϕ(a2).



Showing Confluence

Lemma 1.1 (Newman’s Lemma)

If → is terminating and locally confluent, then it is confluent.

Proof.

▸ Use well-founded induction. Let (A,→) be an ARS. Then
WFI is the inference rule:

∀x ∈ A.(∀y ∈ A.(x
+
Ð→ y⇒ P (y))⇒ P (x))

∀x.P (x)
(WFI)

where P is some property of elements of A.

▸ Reads: To prove P (x) for all x ∈ A, try to prove P (x) under
the assumption that P (y) holds for all successors y of x.

▸ Holds when → is terminating.
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Lemma 1.1 (Newman’s Lemma)

If → is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

▸ Let P be

P (x) = ∀y, z. y
∗
←Ð x

∗
Ð→ z ⇒ y ↓ z.

Obviously, → is confluent if P (x) holds for all x ∈ A.

▸ Show P (x) under the assumption P (t) for all x
+
Ð→ t.

▸ Fix x, y, z arbitrarily. Assume y
∗
←Ð x

∗
Ð→ z. Prove y ↓ z.

▸ Case 1: x = y or y = x. Trivial.
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Lemma 1.1 (Newman’s Lemma)

If → is terminating and locally confluent, then it is confluent.

Proof. (Cont.)

▸ Case 2: x→ y1
∗
Ð→ y and x→ z1

∗
Ð→ z.
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v
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∗
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∗
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