Introduction to Unification Theory

 ApplicationsTemur Kutsia

RISC, Johannes Kepler University of Linz, Austria

> kutsia@risc.jku.at

Outline

Theorem Proving

Programming

Program Transformation

Computational Linguistics

Outline

Theorem Proving

Programming

Program Transformation

Computational Linguistics

Theorem Proving

- Robinson's unification algorithm was introduced in the context of theorem proving.
- Unification: Computational mechanism behind the resolution inference rule.

Resolution

- Resolution is a rule of logical inference that allows one from " A or B " and "not- A or C " to conclude that " B or C ".
- Logically

$$
\frac{A \vee B \quad \neg A \vee C}{B \vee C}
$$

- For instance, from the two sentences
- it rains or it is sunny,
- it does not rain or trees are wet (this is the same as if it rains then trees are wet) one concludes that
- it is sunny or trees are wet.
- Just take A for it rains, B for it is sunny, and C for trees are wet.

Resolution

- Resolution for first-order clauses:

$$
\frac{A_{1} \vee B \quad \neg A_{2} \vee C}{B \sigma \vee C \sigma}
$$

where $\sigma=m g u\left(A_{1}, A_{2}\right)$.

- For instance, from the two sentences
- Every number is less than its successor.
- If y is less than x then y is less than the successor of x. one concludes that
- every number is less than the successor of its successor.
- How?

Resolution

- Let's write the sentences as logical formulae.
- Every number is less than its successor: $\forall x$ number $(x) \Rightarrow$ less_than $(x, s(x))$
- If y is less than x then y is less than the successor of x : $\forall y \forall x$ less_than $(y, x) \Rightarrow$ less_than $(y, s(x))$
- Write these formulae in disjunctive form and strip off the quantifiers:
\neg number $(x) \vee$ less_than $(x, s(x))$
\neg less_than $(y, x) \vee$ less_than $(y, s(x))$

Resolution

- Prepare for the resolution step. Make the clauses variable disjoint:
\neg number $(x) \vee$ less_than $(x, s(x))$
\neg less_than $\left(y, x^{\prime}\right) \vee$ less_than $\left(y, s\left(x^{\prime}\right)\right)$
- Unify less_than $(x, s(x))$ and less_than $\left(y, x^{\prime}\right)$. The mgu $\sigma=\left\{x \mapsto y, x^{\prime} \mapsto s(y)\right\}$
- Perform the resolution step and obtain the resolvent: \neg number $(y) \vee$ less_than $(y, s(s(y)))$.
- What would go wrong if we did not make the clauses variable disjoint?

Factoring

- Another rule in resolution calculus that requires unification.
- Factoring

$$
\frac{A_{1} \vee A_{2} \vee C}{A_{1} \sigma \vee C \sigma}
$$

where $\sigma=\operatorname{mgu}\left(A_{1}, A_{2}\right)$.

Resolution and Factoring in Action

Given:

- If y is less than x then y is less than the successor of x.
- If x is not less than a successor of some y, than 0 is less than x.
Prove:
- 0 is less than its successor.

Resolution and Factoring in Action

Translating into formulae.
Given:

- \neg less_than $(y, x) \vee$ less_than $(y, s(x))$.
- less_than $(x, s(y)) \vee$ less_than $(0, x)$.

Prove:

- less_than $(0, s(0))$

Resolution and Factoring in Action

Negate the goal and try to derive the contradiction:

1. $\neg l e s s _t h a n(y, x) \vee l e s s _t h a n(y, s(x))$.
2. less_than $(x, s(y)) \vee$ less_than $(0, x)$.
3. \neg less_than $(0, s(0))$.
4. less_than $(0, s(x)) \vee$ less_than $(x, s(y))$,
(Resolvent of the renamed copy of 1
\neg less_than $\left(y^{\prime}, x^{\prime}\right) \vee$ less_than $\left(y^{\prime}, s\left(x^{\prime}\right)\right)$ and 2, obtained by unifying less_than $\left(y^{\prime}, x^{\prime}\right)$ and less_than $(0, x)$ with $\left\{y^{\prime} \mapsto 0, x^{\prime} \mapsto x\right\}$.
5. less_than $(0, s(0))$
(Factor of 4 with $\{x \mapsto 0, y \mapsto 0\}$
6. \square
(Contradiction, resolvent of 3 and 5).

Outline

Theorem Proving

Programming

Program Transformation

Computational Linguistics

Logic Programming

- Unification plays a crucial role in logic programming.
- Used to perform execution steps.

Logic Programming

- Logic programs consist of (nonnegative) clauses, written:

$$
A \leftarrow B_{1}, \ldots, B_{n},
$$

where $n \geq 0$ and A, B_{i} are atoms.

- Example:
- likes $($ john,$X) \leftarrow$ likes $(X$, wine $)$. John likes everybody who likes wine.
- likes(john, wine). John likes wine.
- likes(mary, wine). Marry likes wine.

Logic Programming

- Goals are negative clauses, written

$$
\leftarrow D_{1}, \ldots, D_{m}
$$

where $m \geq 0$.

- Example:
- $\leftarrow \operatorname{likes}(j o h n, X)$.

Who (or what) does John like?
$-\leftarrow \operatorname{likes}(X$, marry $)$, likes (X, wine).
Who likes both marry and wine?
$-\leftarrow \operatorname{likes}(j o h n, X)$, likes (Y, X).
Find such X and Y that both John and Y like X.

Logic Programming

Inference step:

$$
\frac{\leftarrow D_{1}, \ldots, D_{m}}{\leftarrow D_{1} \sigma, \ldots, D_{i-1} \sigma, B_{1} \sigma, \ldots, B_{n} \sigma, D_{i+1} \sigma, \ldots, D_{m} \sigma}
$$

where $\sigma=m g u\left(D_{i}, A\right)$ for (a renamed copy of) some program clause $A \leftarrow B_{1}, \ldots, B_{n}$.

Logic Programming

Example

Program:

$$
\begin{aligned}
& \text { likes }(\text { john }, X) \leftarrow \text { likes }(X, \text { wine }) \text {. } \\
& \text { likes }(\text { john, wine }) . \\
& \text { likes }(\text { mary }, \text { wine }) .
\end{aligned}
$$

Goal:

$$
\leftarrow \operatorname{likes}(X, \text { marry }), \text { likes }(X, \text { wine })
$$

Inference:

- Unifying likes(X, marry) with likes(john, X^{\prime}) gives $\left\{X \mapsto\right.$ john, $X^{\prime} \mapsto$ marry $\}$
- New goal: \leftarrow likes(marry, wine), likes(john, marry).

Prolog

- Prolog: Most popular logic programming language.
- Unification in Prolog is nonstandard: Omits occur-check.
- Result: Prolog unifies terms x and $f(x)$, using the substitution $\{x \mapsto f(f(f(\ldots)))\}$.
- Because of that, sometimes Prolog might draw conclusions the user does not expect:

$$
\begin{aligned}
& \text { less }(\mathrm{X}, \mathrm{~s}(\mathrm{X})) \\
& \text { foo:-less }(\mathrm{s}(\mathrm{Y}), \mathrm{Y}) \\
& ?-\text { foo. } \\
& \text { yes. }
\end{aligned}
$$

- Infinite terms in a theoretical model for real Prolog implementations.

Higher-Order Logic Programming

Example

A λ-Prolog program:
(age bob 24).
(age sue 23).
(age ned 23).
(mappred P nil nil).
(mappred P (X::L) (Y::K)):- (P X Y), (mappred P L K).
mappred maps the predicate P on the lists $(\mathrm{X}:: \mathrm{L})$ and $(\mathrm{Y}:: \mathrm{K})$.
The goal (mappred $x \backslash y \backslash($ age $x y) L(23:: 24:: n i l))$ returns two answers:

$$
\begin{aligned}
& \mathrm{L}=\text { (sue::bob::nil) } \\
& \mathrm{L}=\text { (ned::bob::nil) }
\end{aligned}
$$

Higher-Order Logic Programming

Example (Cont.)

- On the previous slide, the goal was unified with the head of (a copy of) the second mappred clause by the substitution

$$
\left\{P \mapsto x \backslash y \backslash(\text { age } x y), L \mapsto\left(X:: L^{\prime}\right), Y \mapsto 23, K \mapsto(24:: \text { nil })\right\}
$$

$\mathrm{x} \backslash \mathrm{y} \backslash$ (age xy) is the λ-Prolog notation for λx. λy. (age $x y$).

- It made the new goal

$$
\text { (age } X \text { 23), (mappred } x \backslash y \backslash(\text { age } \times y) L^{\prime}(24: \text { :nil))). }
$$

etc.

Higher-Order Logic Programming

- The fragment of higher-order unification used in λ-prolog is unification for higher-order patterns.
- Higher-order pattern is a λ-term where arguments of free variables are distinct bound variables.
- Higher-order pattern unification is unitary.

Programming in Mathematica

- Mathematica is a symbolic computation system, a product of Wolfram Research, Inc.
- It comes with a rule based programming language.
- An example of Mathematica code to compute factorial:

$$
\begin{aligned}
& \mathrm{f}[0]:=1 \\
& \mathrm{f}[\mathrm{n}]:=\mathrm{n} * \mathrm{f}[\mathrm{n}-1] / ; \mathrm{n}>0
\end{aligned}
$$

- To compute $f[5]$, it first tries to match 0 with 5 , which fails.
- Next, n matches 5 with the substitution $n \mapsto 5$, the condition $5>0$ is satisfied and the next goal becomes 5*f[4].
- n_{Z} indicates that n is a variable that can match an expression.
- Matching is a special case of unification: $s \doteq$? t is a matching problem if t is ground.

Programming in Mathematica

- Mathematica has a special kind of variable, called sequence variable.
- Sequence variables can be instantiated by finite sequences.
- Convenient to write short, elegant programs.
- Unification with sequence variables is decidable and infinitary, matching is finitary.

Programming in Mathematica

- An example of Mathematica code for bubble sort:
sort[\{x
, u_{-}, y_{-}
, $\left.\left.\mathrm{v}_{-}, \mathrm{z}_{_} _\right\}\right]:=\operatorname{sort}[\{\mathrm{x}, \mathrm{v}, \mathrm{y}, \mathrm{u}, \mathrm{z}\}] / ; \mathrm{u}>\mathrm{v}$
$\left.\operatorname{sort}\left[\left\{x _\right\}\right\}\right]:=\{x\}$
- x ___ indicates that x is a sequence variable.
- $\operatorname{sort}\left[\left\{x_{_}, u_{-}, y_{_}, v_{-}, z_{_} \quad\right\}\right]$ matches $\operatorname{sort}[\{1,2,3,4,1\}]$ in various ways.
- The one that satisfies the condition $u>v$ is

$$
\{\mathrm{x} \mapsto 1, \mathrm{u} \mapsto 2, \mathrm{y} \mapsto(3,4), \mathrm{v} \mapsto 1, \mathrm{z} \mapsto()\}
$$

- The next goal becomes sort $[\{1,1,3,4,2\}]$, and so on.

Outline

Theorem Proving

Programming

Program Transformation

Computational Linguistics

Program Transformation

- Program transformation is the act of changing one program into another.
- Some techniques describe transformation as rewriting systems for program schemas, together with constraints on the instances of the schemas that must be met in order for the transformation to be valid.
- When a rewriting rule is applied to a particular program, the schema in the left hand side of the rule should match the program.
- Usually schemas are expressed in a higher-order language.
- Leads to higher-order matching.

Program Transformation

Example (Schema Matching)

- Schema:

$$
F(x) \Leftarrow \text { if } A(x) \text { then } B(x) \text { else } H(D(x), F(E(x)))
$$

- Instance program:

$$
\operatorname{fact}(x) \Leftarrow \text { if } x=0 \text { then } 1 \text { else } x * \operatorname{fact}(x-1)
$$

- The schema matches the instance with the substitution:

$$
\begin{aligned}
&\{F \mapsto \lambda x . f a c t \\
&(x), A \mapsto \lambda x \cdot x=0, B \mapsto \lambda x .1 \\
&H \mapsto \lambda x . \lambda y \cdot x * y, D \mapsto \lambda x \cdot x, E \mapsto \lambda x \cdot x-1\}
\end{aligned}
$$

Program Transformation

Example (Schema Matching)

The same schema, different instance.

- Schema:

$$
F(x) \Leftarrow \text { if } A(x) \text { then } B(x) \text { else } H(D(x), F(E(x)))
$$

- Instance:
$\operatorname{rev}(x) \Leftarrow$ if $\operatorname{Null}(x)$ then x else $\operatorname{app}(\operatorname{rev}(\operatorname{Cdr}(x)), \operatorname{Cons}(\operatorname{Car}(x), \operatorname{nil}))$
- Matching substitution:

$$
\begin{aligned}
\{F & \mapsto \lambda x \cdot \operatorname{rev}(x), A \mapsto \lambda x \cdot \operatorname{Null}(x), B \mapsto \lambda x \cdot x \\
H & \mapsto \lambda x \cdot \lambda y \cdot \operatorname{app}(y, x), D \mapsto \lambda x \cdot \operatorname{Cons}(\operatorname{Car}(x), \text { nil }), \\
E & \mapsto \lambda x \cdot \operatorname{Cdr}(x)\}
\end{aligned}
$$

Outline

Theorem Proving

Programming

Program Transformation

Computational Linguistics

Ellipsis Resolution

- An elliptical construction involves two phrases (clauses) that are parallel in structure in some sense.
- The source clause is complete.
- The target clause is missing material found in the source.
- Goal: To recover the property of the parallel element in the target the missing material stands for.

Ellipsis Resolution

Example

- Dan likes golf, and George does too.
- "Dan" and "George" are parallel elements.
- Semantic interpretation of "Dan likes golf": like(dan, golf).
- dan is called a primary occurrence.
- To interpret "George does too", we require the property P such that, when applied to the interpretation of the subject of "Dan likes golf", i.e. dan, gives the interpretation of "Dan likes golf".
- Find P such that $P($ dan $) \doteq$? like (dan, golf $)$.
- $\sigma_{1}=\{P \mapsto \lambda x$.like(dan, golf $\left.)\right\}, \sigma_{2}=\{P \mapsto \lambda x$.like (x, golf $\left.)\right\}$.
- Constraint: Solution should not contain the primary occurrence. Hence, σ_{2} is the only solution.
- Interpretation: like $($ dan, golf $) \wedge P($ george $) \sigma_{2}$ that gives like (dan, golf) \wedge like(george, golf).

Ellipsis Resolution

- Higher-order unification generates multiple solutions.
- Leads to multiple readings.
- Constraints help to filter out some.
- Still, several may remain.
- Strict and sloppy reading.

Ellipsis Resolution

Example

- Dan likes his wife, and George does too.
- Semantic interpretation of "Dan likes his wife": like(dan, wife-of (dan)).
- dan is a primary occurrence, dan is secondary, because it came from the pronoun which is not a parallel element.
- Find P such that $P($ dan $) \doteq$? like (dan, wife-of $($ dan $))$.
- $\sigma_{1}=\{P \mapsto \lambda x$.like(dan, wife-of (dan)) $\}$,
$\sigma_{2}=\{P \mapsto \lambda$ x.like (dan, wife-of $\left.(x))\right\}$,
$\sigma_{3}=\{P \mapsto \lambda x . \operatorname{like}(x$, wife-of(dan)) $\}$,
$\sigma_{4}=\{P \mapsto \lambda x$.like $(x$, wife-of $(x))\}$
- Constraint: Solution should not contain the primary occurrence. Hence, σ_{1} and σ_{2} are discarded.
- Strict reading: $P($ george $) \sigma_{3}=$ like(george, wife-of (dan)).
- Sloppy reading: $P($ george $) \sigma_{4}=$ like(george, wife-of(george)).

Brief Summary of the Course

- First-order syntactic unification
- Most general unifier.
- Unification algorithm.
- Improvements of the algorithm.
- First-order equational unification
- Minimal complete set of unifiers.
- Decidability/Undecadibility, Unification type.
- Results for particular theories.
- Universal E-unification procedure.
- Narrowing.
- Higher-order unification
- Undecidability.
- Unification type (zero).
- Preunification procedure.
- Applications related to logic, language, and information
- Theorem proving.
- Programming, program transformation.
- Ellipsis resolution.

Open Problems

The RTA list of open problems:
http://www.win.tue.nl/rtaloop/

