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Theorem Proving

I Robinson’s unification algorithm was introduced in the
context of theorem proving.

I Unification: Computational mechanism behind the
resolution inference rule.



Resolution

I Resolution is a rule of logical inference that allows one
from “A or B” and “not-A or C” to conclude that “B or C”.

I Logically
A ∨ B ¬A ∨ C

B ∨ C

I For instance, from the two sentences
I it rains or it is sunny,
I it does not rain or trees are wet

(this is the same as if it rains then trees are wet)
one concludes that

I it is sunny or trees are wet.
I Just take A for it rains, B for it is sunny, and C for trees are

wet.
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Resolution

I Resolution for first-order clauses:

A1 ∨ B ¬A2 ∨ C
Bσ ∨ Cσ

,

where σ = mgu(A1,A2).

I For instance, from the two sentences
I Every number is less than its successor.
I If y is less than x then y is less than the successor of x.

one concludes that
I every number is less than the successor of its successor.

I How?
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Resolution

I Let’s write the sentences as logical formulae.

I Every number is less than its successor:
∀x number(x)⇒ less_than(x, s(x))

I If y is less than x then y is less than the successor of x:
∀y∀x less_than(y, x)⇒ less_than(y, s(x))

I Write these formulae in disjunctive form and strip off the
quantifiers:
¬number(x) ∨ less_than(x, s(x))
¬less_than(y, x) ∨ less_than(y, s(x))
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Resolution

I Prepare for the resolution step. Make the clauses variable
disjoint:
¬number(x) ∨ less_than(x, s(x))
¬less_than(y, x′) ∨ less_than(y, s(x′))

I Unify less_than(x, s(x)) and less_than(y, x′). The mgu
σ = {x 7→ y, x′ 7→ s(y)}

I Perform the resolution step and obtain the resolvent:
¬number(y) ∨ less_than(y, s(s(y))).

I What would go wrong if we did not make the clauses
variable disjoint?
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Factoring

I Another rule in resolution calculus that requires unification.
I Factoring

A1 ∨ A2 ∨ C
A1σ ∨ Cσ

where σ = mgu(A1,A2).



Resolution and Factoring in Action

Given:
I If y is less than x then y is less than the successor of x.
I If x is not less than a successor of some y, than 0 is less

than x.
Prove:
I 0 is less than its successor.



Resolution and Factoring in Action

Translating into formulae.

Given:
I ¬less_than(y, x) ∨ less_than(y, s(x)).
I less_than(x, s(y)) ∨ less_than(0, x).

Prove:
I less_than(0, s(0))



Resolution and Factoring in Action

Negate the goal and try to derive the contradiction:
1. ¬less_than(y, x) ∨ less_than(y, s(x)).
2. less_than(x, s(y)) ∨ less_than(0, x).
3. ¬less_than(0, s(0)).

4. less_than(0, s(x)) ∨ less_than(x, s(y)),
(Resolvent of the renamed copy of 1
¬less_than(y′, x′) ∨ less_than(y′, s(x′)) and 2, obtained by
unifying less_than(y′, x′) and less_than(0, x) with
{y′ 7→ 0, x′ 7→ x}.

5. less_than(0, s(0))
(Factor of 4 with {x 7→ 0, y 7→ 0}

6. �
(Contradiction, resolvent of 3 and 5).
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Logic Programming

I Unification plays a crucial role in logic programming.
I Used to perform execution steps.



Logic Programming

I Logic programs consist of (nonnegative) clauses, written:

A← B1, . . . ,Bn,

where n ≥ 0 and A,Bi are atoms.
I Example:

I likes(john,X)← likes(X,wine).
John likes everybody who likes wine.

I likes(john,wine).
John likes wine.

I likes(mary,wine).
Marry likes wine.



Logic Programming

I Goals are negative clauses, written

← D1, . . . ,Dm

where m ≥ 0.
I Example:

I ← likes(john,X).
Who (or what) does John like?

I ← likes(X,marry), likes(X,wine).
Who likes both marry and wine?

I ← likes(john,X), likes(Y,X).
Find such X and Y that both John and Y like X.



Logic Programming

Inference step:

← D1, . . . ,Dm

← D1σ, . . . ,Di−1σ,B1σ, . . . ,Bnσ,Di+1σ, . . . ,Dmσ

where σ = mgu(Di,A) for (a renamed copy of) some program
clause A← B1, . . . ,Bn.



Logic Programming

Example
Program:

likes(john,X)← likes(X,wine).

likes(john,wine).

likes(mary,wine).

Goal:

← likes(X,marry), likes(X,wine).

Inference:
I Unifying likes(X,marry) with likes(john,X’) gives
{X 7→ john,X′ 7→ marry}

I New goal: ← likes(marry,wine), likes(john,marry).



Prolog

I Prolog: Most popular logic programming language.
I Unification in Prolog is nonstandard: Omits occur-check.
I Result: Prolog unifies terms x and f (x), using the

substitution {x 7→ f (f (f (. . .)))}.
I Because of that, sometimes Prolog might draw

conclusions the user does not expect:

less(X,s(X)).

foo : −less(s(Y),Y).
?− foo.
yes.

I Infinite terms in a theoretical model for real Prolog
implementations.



Higher-Order Logic Programming
Example

A λ-Prolog program:

(age bob 24).
(age sue 23).
(age ned 23).
(mappred P nil nil).
(mappred P (X::L) (Y::K)):- (P X Y), (mappred P L K).

mappred maps the predicate P on the lists (X::L) and (Y::K).

The goal (mappred x\y\(age x y) L (23::24::nil)) returns two an-
swers:

L = (sue::bob::nil)
L = (ned::bob::nil)
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Higher-Order Logic Programming

Example (Cont.)

I On the previous slide, the goal was unified with the head of
(a copy of) the second mappred clause by the substitution

{P 7→ x\y\(age x y),L 7→ (X :: L′),Y 7→ 23,K 7→ (24 :: nil)}

x\y\(age x y) is the λ-Prolog notation for λx.λy. (age x y).
I It made the new goal

(age X 23), (mappred x\y\(age x y) L’ (24::nil))).

etc.



Higher-Order Logic Programming

I The fragment of higher-order unification used in λ-prolog is
unification for higher-order patterns.

I Higher-order pattern is a λ-term where arguments of free
variables are distinct bound variables.

I Higher-order pattern unification is unitary.



Programming in Mathematica

I Mathematica is a symbolic computation system, a product
of Wolfram Research, Inc.

I It comes with a rule based programming language.
I An example of Mathematica code to compute factorial:

f[0] := 1

f[n_] := n ∗ f[n− 1]/;n > 0

I To compute f[5], it first tries to match 0 with 5, which fails.
I Next, n matches 5 with the substitution n 7→ 5, the

condition 5 > 0 is satisfied and the next goal becomes
5*f[4].

I n_ indicates that n is a variable that can match an
expression.

I Matching is a special case of unification: s .
=? t is a

matching problem if t is ground.



Programming in Mathematica

I Mathematica has a special kind of variable, called
sequence variable.

I Sequence variables can be instantiated by finite
sequences.

I Convenient to write short, elegant programs.
I Unification with sequence variables is decidable and

infinitary, matching is finitary.



Programming in Mathematica

I An example of Mathematica code for bubble sort:

sort[{x___,u_,y___,v_,z___}] := sort[{x,v,y,u,z}]/;u > v

sort[{x___}] := {x}

I x___ indicates that x is a sequence variable.
I sort[{x___,u_,y___,v_,z___}] matches
sort[{1,2,3,4,1}] in various ways.

I The one that satisfies the condition u > v is

{x 7→ 1,u 7→ 2,y 7→ (3,4),v 7→ 1,z 7→ ()}

I The next goal becomes sort[{1,1,3,4,2}], and so on.
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Program Transformation

I Program transformation is the act of changing one program
into another.

I Some techniques describe transformation as rewriting
systems for program schemas, together with constraints on
the instances of the schemas that must be met in order for
the transformation to be valid.

I When a rewriting rule is applied to a particular program,
the schema in the left hand side of the rule should match
the program.

I Usually schemas are expressed in a higher-order
language.

I Leads to higher-order matching.



Program Transformation

Example (Schema Matching)

I Schema:

F(x)⇐ if A(x) then B(x) else H(D(x),F(E(x))).

I Instance program:

fact(x)⇐ if x = 0 then 1 else x ∗ fact(x− 1)

I The schema matches the instance with the substitution:

{F 7→ λx.fact(x),A 7→ λx.x = 0,B 7→ λx.1,

H 7→ λx.λy.x ∗ y,D 7→ λx.x,E 7→ λx.x− 1}



Program Transformation

Example (Schema Matching)
The same schema, different instance.
I Schema:

F(x)⇐ if A(x) then B(x) else H(D(x),F(E(x)))

I Instance:

rev(x)⇐ if Null(x) then x else app(rev(Cdr(x)),Cons(Car(x),nil))

I Matching substitution:

{F 7→ λx.rev(x),A 7→ λx.Null(x),B 7→ λx.x,

H 7→ λx.λy.app(y, x),D 7→ λx.Cons(Car(x),nil),
E 7→ λx.Cdr(x)}



Outline

Theorem Proving

Programming

Program Transformation

Computational Linguistics



Ellipsis Resolution

I An elliptical construction involves two phrases (clauses)
that are parallel in structure in some sense.

I The source clause is complete.
I The target clause is missing material found in the source.
I Goal: To recover the property of the parallel element in the

target the missing material stands for.



Ellipsis Resolution

Example

I Dan likes golf, and George does too.

I “Dan” and “George” are parallel elements.
I Semantic interpretation of “Dan likes golf”: like(dan, golf ).
I dan is called a primary occurrence.
I To interpret “George does too”, we require the property P such

that, when applied to the interpretation of the subject of “Dan
likes golf”, i.e. dan, gives the interpretation of “Dan likes golf”.

I Find P such that P(dan) .=? like(dan, golf )

.

I σ1 = {P 7→ λx.like(dan, golf )}, σ2 = {P 7→ λx.like(x, golf )}.
I Constraint: Solution should not contain the primary occurrence.

Hence, σ2 is the only solution.
I Interpretation: like(dan, golf ) ∧ P(george)σ2 that gives

like(dan, golf ) ∧ like(george, golf ).
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Ellipsis Resolution

I Higher-order unification generates multiple solutions.
I Leads to multiple readings.
I Constraints help to filter out some.
I Still, several may remain.
I Strict and sloppy reading.



Ellipsis Resolution

Example

I Dan likes his wife, and George does too.

I Semantic interpretation of “Dan likes his wife”:
like(dan,wife-of (dan)).

I dan is a primary occurrence, dan is secondary, because it came
from the pronoun which is not a parallel element.

I Find P such that P(dan) .=? like(dan,wife-of (dan))

.

I σ1 = {P 7→ λx.like(dan,wife-of (dan))},
σ2 = {P 7→ λx.like(dan,wife-of (x))},
σ3 = {P 7→ λx.like(x,wife-of (dan))},
σ4 = {P 7→ λx.like(x,wife-of (x))}

I Constraint: Solution should not contain the primary occurrence.
Hence, σ1 and σ2 are discarded.

I Strict reading: P(george)σ3 = like(george,wife-of (dan)).
I Sloppy reading: P(george)σ4 = like(george,wife-of (george)).
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Open Problems

The RTA list of open problems:

http://www.win.tue.nl/rtaloop/

http://www.win.tue.nl/rtaloop/
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