Unification by Narrowing

Mircea Marin

West University of Timisoara
mmarin@info.uvt.ro

May 20, 2014

What is narrowing?

- Narrowing
- sound and complete method for solving E-unification problems in theories presented by complete term rewriting systems.
- computational model for functional logic programming (FLP)

What is narrowing?

- Narrowing
- sound and complete method for solving E-unification problems in theories presented by complete term rewriting systems.
- computational model for functional logic programming (FLP)
- Functional logic programming = programming style resulted by the integration of two declarative programming styles: Functional Programming and Logic Programming

$$
F L P=F P+L P
$$

What is narrowing?

- Narrowing
- sound and complete method for solving E-unification problems in theories presented by complete term rewriting systems.
- computational model for functional logic programming (FLP)
- Functional logic programming = programming style resulted by the integration of two declarative programming styles: Functional Programming and Logic Programming

$$
F L P=F P+L P
$$

- Functional Programming
- Program = term rewriting system (usually terminating and confluent)
- Computation $=$ reduction to normal form \Rightarrow value

What is narrowing?

- Narrowing
- sound and complete method for solving E-unification problems in theories presented by complete term rewriting systems.
- computational model for functional logic programming (FLP)
- Functional logic programming = programming style resulted by the integration of two declarative programming styles: Functional Programming and Logic Programming

$$
F L P=F P+L P
$$

- Functional Programming
- Program = term rewriting system (usually terminating and confluent)
- Computation $=$ reduction to normal form \Rightarrow value
- Logic Programming
- Program = set of Horn clauses (rules and facts)
- Computation: SLD resolution of goals
\Rightarrow computed answers

Functional + logic programming

Characteristics

DESIRE: inherit the best features from both logic programming and functional programming

- Advantages of logic programming:
- Logical variables; sound and complete search strategy for answers to queries
- Advantages of functional programming:
- More efficient operational behaviour: evaluation of function calls is more deterministic than computing answers to queries.

Functional + logic programming

Characteristics

DESIRE: inherit the best features from both logic programming and functional programming

- Advantages of logic programming:
- Logical variables; sound and complete search strategy for answers to queries
- Advantages of functional programming:
- More efficient operational behaviour: evaluation of function calls is more deterministic than computing answers to queries.
Approaches to integrate FP with LP and define FLP=FP+LP
(1) Integrate functions into LP.
(2) Extend FP with equational queries involving function calls and logical variables.

Functional + logic programming

Characteristics

DESIRE: inherit the best features from both logic programming and functional programming

- Advantages of logic programming:
- Logical variables; sound and complete search strategy for answers to queries
- Advantages of functional programming:
- More efficient operational behaviour: evaluation of function calls is more deterministic than computing answers to queries.
Approaches to integrate FP with LP and define FLP=FP+LP
(1) Integrate functions into LP.
(2) Extend FP with equational queries involving function calls and logical variables.
Historically, both approaches resulted in languages with similar computational models.

Basic notions

Rewrite rules as directed equations

Starting from
$f, g, h, \ldots \in \mathcal{F}:$ ranked signature of function symbols; $\operatorname{ar}(f) \in \mathbb{N}$ for all $f \in \mathcal{F}$
$x, y, z, \ldots \in \mathcal{V}$: countable set of variables
we build

- Terms: $t \in \mathcal{T}(\mathcal{F}, \mathcal{V}): t::=x \mid f\left(t_{1}, \ldots, t_{n}\right)$ where $\operatorname{ar}(f)=n$ Convention: abbreviate $f()$ by f
- Equations: $e::=s=t$ where $s, t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$
- Rewrite rules: $I \rightarrow r$ where $I, r \in \mathcal{T}(\mathcal{F}, \mathcal{V}), I \notin \mathcal{V}$, $\operatorname{vars}(r) \subseteq \operatorname{vars}(I)$. A TRS is a set of rewrite rules.
- Rewriting with a TRS $\mathcal{R}=$ replacing "equals by equals" in a directed manner: $s \rightarrow_{\mathcal{R}} t$ if there exist $p \in \operatorname{Pos}(s)$, $(I \rightarrow r) \in \mathcal{R}$, and substitution $\sigma: \mathcal{V} \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ such that $\left.s\right|_{p}=I \sigma$ and $t=s[r \sigma]_{p}$.

Equational reasoning

Equational reasoning $=$ reasoning with equations in the quotient algebra $\mathcal{T}(\mathcal{F}, \mathcal{V}) /=_{E}$ where $=_{E}$ is the congruence relation induced on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ by a set of equations E (the equational axioms);
$=_{E}$ is the least equivalence relation on $\mathcal{T}(\mathcal{F}, \mathcal{V})$, which satisfies the following two additional conditions:
Substitution: if $s={ }_{E} t$ then $s \sigma={ }_{E} t \sigma$ for all substitutions σ Replacement: if $I=_{E} r$ and $\left.s\right|_{p}=I$ then $s=_{E} s[r]_{p}$.

Equational reasoning

Equational reasoning $=$ reasoning with equations in the quotient algebra $\mathcal{T}(\mathcal{F}, \mathcal{V}) /=_{E}$ where $=_{E}$ is the congruence relation induced on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ by a set of equations E (the equational axioms);
$=_{E}$ is the least equivalence relation on $\mathcal{T}(\mathcal{F}, \mathcal{V})$, which satisfies the following two additional conditions:
Substitution: if $s=_{E} t$ then $\boldsymbol{S} \sigma=_{E} t \sigma$ for all substitutions σ
Replacement: if $I={ }_{E} r$ and $\left.s\right|_{p}=I$ then $s=_{E} s[r]_{p}$.
E-unification problem
Given a set of equations E and a system of equations

$$
\Gamma: s_{1}=t_{1}, \ldots, s_{n}=t_{n}
$$

Find a representation of the set of substitutions σ such that $s_{i} \sigma=E t_{i} \sigma$ for all $i=1$..n.
Γ is an E-unification problem, and $\mathrm{a} \sigma$ is a unifier of Γ.

The unification hierarchy (1)

Asumptions:

E : set of equations
$\Gamma: E$-unification problem
Sol (Γ) : the set of all unifiers of Γ
$\triangleright E$ induces an order on terms: $s \leq_{E} t$ if $s \sigma=_{E} t$ for some σ.
\triangleright A set S of substitutions is a complete set of unifiers (csu) of Γ if
(1) $S \subseteq \operatorname{Sol}(\Gamma)$
(2) For any $\theta \in \operatorname{Sol}(\Gamma)$ there is a $\sigma \in S$ such that $\sigma(x) \leq_{E} \theta(x)$ for all $x \in \operatorname{vars}(\Gamma)$
S is a minimal csu (mcsu) of Γ if it also satisfies the following condition:

- If $\sigma_{1}, \sigma_{2} \in S$ and $\sigma_{1}(x) \leq E \sigma_{2}(x)$ for all $x \in \operatorname{vars}(\Gamma)$, then $\sigma_{1}=\sigma_{2}$.

The unification hierarchy (2)

mcsu of 「 may not exist!
Unification problem without mcsu [Schmidt-Schauss, 1986]
$E=\{f(f(x, y), z)=f(x, f(y, z)), f(x, x)=x\}$
$\Gamma: f(z, f(a, f(x, f(a, z))))=f(z, f(a, z))$
[Siekmann, 1978] introduced the following hierarchy of unification problems:

- unitary: they have a mcsu with 0 or 1 elements.
- finitary: they have a mcsu with finite number of elements.
- infinitary: they have a mcsu with infinite number of elements.
- nullary: they do not have mcsu.

The unification hierarchy (2)

mcsu of 「 may not exist!
Unification problem without mcsu [Schmidt-Schauss, 1986]
$E=\{f(f(x, y), z)=f(x, f(y, z)), f(x, x)=x\}$
$\Gamma: f(z, f(a, f(x, f(a, z))))=f(z, f(a, z))$
[Siekmann, 1978] introduced the following hierarchy of unification problems:

- unitary: they have a mcsu with 0 or 1 elements.
- finitary: they have a mcsu with finite number of elements.
- infinitary: they have a mcsu with infinite number of elements.
- nullary: they do not have mcsu.
[Nutt, 1991] proved that the unification hierarchy is undecidable.

Unification in theories presented by TRSs

IMPLICIT ASSUMPTIONS: \mathcal{R} is a TRS, and

- $=_{\mathcal{R}}$ is the congruence relation induced by \mathcal{R}, viewed as system of equations.
- $s \downarrow_{\mathcal{R}} t: \stackrel{\text { def }}{\Longleftrightarrow}$ there exists u s.t. $s \rightarrow_{\mathcal{R}}^{*} u$ and $t \rightarrow_{\mathcal{R}}^{*} u$.

From now on we will consider systems of equations (also known as goals)

$$
\Gamma: s_{1}=t_{1}, \ldots, s_{n}=t_{n}
$$

interpreted in equational theories presented by term rewriting systems. This means that:

- We interpret the equality $=\mathrm{as}=_{\mathcal{R}}$. If \mathcal{R} is confluent then $={ }_{\mathcal{R}}$ coincides with $\downarrow_{\mathcal{R}}$.
- We wish to compute a compute set of \mathcal{R}-unifiers of Γ. These \mathcal{R}-unifiers are also known as solutions of Γ.

Term rewriting systems

Important properties
A TRS \mathcal{R} is

- terminating (or normalizing) if very sequence of rewrite steps will eventually terminate: $t \rightarrow_{\mathcal{R}} t_{1} \rightarrow_{\mathcal{R}} \ldots \rightarrow_{\mathcal{R}} t_{n} \rightarrow_{\mathcal{R}}$ t_{n} is called a normal form of t.
- weakly-normalizing if for any term t there exists a rewrite termination that ends with a normal form:
$t=t_{0} \rightarrow_{\mathcal{R}} t_{1} \rightarrow_{\mathcal{R}} \ldots \rightarrow_{\mathcal{R}} t_{n} \rightarrow_{\mathcal{R}}$
- confluent if $t_{1} \downarrow_{\mathcal{R}} t_{2}$ whenever $t \rightarrow_{\mathcal{R}}^{*} t_{1}$ and $t \rightarrow_{\mathcal{R}}^{*} t_{2}$.
- semi-complete if it is weakly-normalizing and confluent.
- complete if it is terminating and confluent.

Term rewriting systems

Important properties
A TRS \mathcal{R} is

- terminating (or normalizing) if very sequence of rewrite steps will eventually terminate: $t \rightarrow_{\mathcal{R}} t_{1} \rightarrow_{\mathcal{R}} \ldots \rightarrow_{\mathcal{R}} t_{n} \rightarrow_{\mathcal{R}}$ t_{n} is called a normal form of t.
- weakly-normalizing if for any term t there exists a rewrite termination that ends with a normal form:
$t=t_{0} \rightarrow_{\mathcal{R}} t_{1} \rightarrow_{\mathcal{R}} \ldots \rightarrow_{\mathcal{R}} t_{n} \rightarrow_{\mathcal{R}}$
- confluent if $t_{1} \downarrow_{\mathcal{R}} t_{2}$ whenever $t \rightarrow_{\mathcal{R}}^{*} t_{1}$ and $t \rightarrow_{\mathcal{R}}^{*} t_{2}$.
- semi-complete if it is weakly-normalizing and confluent.
- complete if it is terminating and confluent.

Remarks

- If \mathcal{R} is confluent then $s=_{\mathcal{R}} t$ iff $s \downarrow_{\mathcal{R}} t$.
- If \mathcal{R} is complete then $=_{\mathcal{R}}$ is decidable.

Computations in FP and FLP

- Program = complete TRS defined over a signature $\mathcal{F}=\mathcal{F}_{d} \uplus \mathcal{F}_{c}$ where
- \mathcal{F}_{d} : set of defined function symbols
- \mathcal{F}_{c} : set of constructors
- Rewrite rules are of the form $f\left(s_{1}, \ldots, s_{n}\right) \rightarrow t$ where $f \in \mathcal{F}_{d}$ and $s_{1}, \ldots, s_{n} \in \mathcal{T}\left(\mathcal{F}_{c}, \mathcal{V}\right)$.
- Computation in FP: computes the (unique) normal form of a term t
- Strict languages: terms are reduced by leftmost innermost rewriting.
- Lazy languages: terms are reduced by leftmost outermost rewriting.
- Computation in FLP: find a csu (preferably mcsu) of

$$
\Gamma: s_{1}=t_{1}, \ldots, s_{n}=t_{n}
$$

Theoretical results

Narrowing

Assumption: \mathcal{R} is a TRS.

Definition (Fresh variant)

A fresh variant of a rewrite rule $I \rightarrow r$ is a bijective substitution σ with $\operatorname{dom}(\sigma)=\operatorname{vars}(I)$ and $\sigma(x)$ is a fresh new variable for each $x \in \operatorname{dom}(\sigma)$.

Definition (Narrowing [Slagle, 1974])

s is narrowable into t, notation $s \rightsquigarrow_{\sigma, \mathcal{R}} t$, if there exist

- a narrowing position $p \in \operatorname{Pos}(s)$ such that $\left.s\right|_{p} \notin \mathcal{V}$
- a fresh variant $I \rightarrow r$ of a rewrite rule of \mathcal{R} such that $\sigma=m g u\left(\left.s\right|_{p}, I\right)$ and $t=s[r]_{p} \sigma$.

Theoretical results

Narrowing

Assumption: \mathcal{R} is a TRS.

Definition (Fresh variant)

A fresh variant of a rewrite rule $I \rightarrow r$ is a bijective substitution σ with $\operatorname{dom}(\sigma)=\operatorname{vars}(I)$ and $\sigma(x)$ is a fresh new variable for each $x \in \operatorname{dom}(\sigma)$.

Definition (Narrowing [Slagle, 1974])

s is narrowable into t, notation $s \rightsquigarrow_{\sigma, \mathcal{R}} t$, if there exist

- a narrowing position $p \in \operatorname{Pos}(s)$ such that $\left.s\right|_{p} \notin \mathcal{V}$
- a fresh variant $I \rightarrow r$ of a rewrite rule of \mathcal{R} such that $\sigma=m g u\left(\left.s\right|_{p}, I\right)$ and $t=s[r]_{p} \sigma$.

NOTATION: A derivation $t_{0} \rightsquigarrow_{\sigma_{1}, \mathcal{R}} t_{1} \rightsquigarrow_{\sigma_{2}, \mathcal{R}} \ldots \rightsquigarrow_{\sigma_{n}, \mathcal{R}} t_{n}$ is abbreviated $t_{0} \rightsquigarrow_{\sigma, \mathcal{R}}^{*} t_{n}$, or simply $t_{0} \rightsquigarrow_{\sigma}^{*} t_{n}$, where $\sigma=\sigma_{1} \ldots \sigma_{n}$.

Narrowing
 Main properties

Theorem ([Hullot, 1985])

If \mathcal{R} is complete then
Soundness: If $s=t \rightsquigarrow_{\sigma} s^{\prime}=t^{\prime}$ and $\theta=m g u\left(s^{\prime}, t^{\prime}\right)$ then

$$
(s \sigma \theta)==_{\mathcal{R}}(t \sigma \theta)
$$

Completeness: If $s \theta=\mathcal{R}$ t θ then there exist

- $s=t \rightsquigarrow_{\sigma}^{*} s^{\prime}=t^{\prime}$ and
- $\sigma^{\prime} \in \operatorname{mgu}\left(s^{\prime}, t^{\prime}\right)$
such that $\sigma \sigma^{\prime} \leq_{\mathcal{R}} \theta[\operatorname{vars}(s, t)]$.

Narrowing
 Main properties

Theorem ([Hullot, 1985])

If \mathcal{R} is complete then
Soundness: If $s=t \rightsquigarrow_{\sigma} s^{\prime}=t^{\prime}$ and $\theta=m g u\left(s^{\prime}, t^{\prime}\right)$ then

$$
(s \sigma \theta)=_{\mathcal{R}}(t \sigma \theta)
$$

Completeness: If $s \theta=\mathcal{R}$ t θ then there exist

$$
\begin{aligned}
& \text { - } s=t \rightsquigarrow{ }_{\sigma}^{*} s^{\prime}=t^{\prime} \text { and } \\
& \text { - } \sigma^{\prime} \in m g u\left(s^{\prime}, t^{\prime}\right)
\end{aligned}
$$

such that $\sigma \sigma^{\prime} \leq_{\mathcal{R}} \theta[\operatorname{vars}(s, t)]$.
Question: Can we drop the condition of termination of \mathcal{R}, and still have soundness and completeness?
Answer: Yes, if we restrict ourselves to normalized unifiers: $N S o l(\Gamma)=\{\theta \in \operatorname{Sol}(\Gamma) \mid x \theta$ is normal form, for all $x \in \operatorname{dom}(\theta)\}$.

Narrowing computations

Example

$\mathcal{R}=\{0+x \rightarrow x, s(x)+y \rightarrow s(x+y), x=x \rightarrow$ true $\}$.
Let's solve $z+z=s(s(0))$:

$$
\begin{aligned}
\underline{z+z}=s(s(0)) & \rightsquigarrow\left\{y_{1} \mapsto s\left(x_{1}\right), z \mapsto s\left(x_{1}\right)\right\}, s\left(x_{1}\right)+y_{1} \rightarrow s\left(x_{1}+y_{1}\right) \\
s\left(\frac{x_{1}+s\left(x_{1}\right)}{s(s(0))}\right)=(s(0)) & \rightsquigarrow\left\{x_{1} \mapsto 0, x_{2} \mapsto s(0)\right\}, 0+x_{2} \mapsto x_{2} \\
s(0)) & \rightsquigarrow\left\{x_{3} \mapsto s(s(0))\right\}, x_{3}+x_{3} \rightarrow \text { true true }
\end{aligned}
$$

Solution: $\left\{y_{1} \mapsto s\left(x_{1}\right), z \mapsto s\left(x_{1}\right)\right\}\left\{x_{1} \mapsto 0, x_{2} \mapsto s(0)\right\}\left\{x_{3} \mapsto s(s(0))\right\}$ $=\left\{y_{1} \mapsto s(0), z \mapsto s(0), x_{1} \mapsto 0, x_{2} \mapsto s(0), x_{3} \mapsto s(s(0))\right\}$ restricted to $\operatorname{vars}(z+z=0)=\{z\}$, is $\theta=\{z \mapsto s(0)\}$
There are also several failed attempts to compute \mathcal{R}-unifiers:

$$
\underline{z+z}=s(s(0)) \rightsquigarrow\left\{z \mapsto 0, x_{1} \mapsto 0\right\}, 0+x_{1} \rightarrow x_{1} 0=s(s(0)) \not \not \nVdash
$$

Narrowing

Extension to system of equations

Let \mathcal{R} be a confluent TRS, $\Gamma: s_{1}=t_{1}, \ldots, s_{n}=t_{n}$, and

- $\mathcal{R}_{+}:=\mathcal{R} \cup\{(x=x) \rightarrow$ true $\}$
- $\top:=$ generic notation for system containing only true-s

Definition

$\rightsquigarrow_{\mathcal{R}}$ is extended to act on systems of equations as follows:

$$
\Gamma_{1}, e, \Gamma_{2} \rightsquigarrow_{\sigma, \mathcal{R}}\left(\Gamma_{1}, e^{\prime}, \Gamma_{2}\right) \sigma
$$

if $e \rightsquigarrow_{\sigma, \mathcal{R}} e^{\prime}$ where e is a non-true equation.
NOTATION: Like before, we abbreviate $\Gamma_{0} \rightsquigarrow_{\sigma_{1}} \ldots \rightsquigarrow_{\sigma_{n}} \Gamma_{n}$ with $\Gamma_{0} \rightsquigarrow_{\sigma}^{*} \Gamma_{n}$, where $\sigma=\sigma_{1} \ldots \sigma_{n}$. Also, we define the set of answers computed by narrowing: $\operatorname{Ans}(\Gamma)=\left\{\sigma \mid \Gamma \rightsquigarrow{ }_{\sigma}^{*} \top\right\}$

Corollary

 $\operatorname{Ans}(\Gamma)$ is a csu of Γ.
Containing the high nondeterminism (1)

The computation of $\operatorname{Ans}(\Gamma)$ is highly nondeterministic, due to the selection of
(1) the narrowing position
(2) the rewrite rule to be applied at the narrowing position A more deterministic version of narrowing, still sound and complete w.r.t. normalized unifiers, is basic narrowing ([Hullot, 1987], [Middeldorp et al, 1996])

Definition (Position constraint)

A position constraint for Γ is a mapping that assigns to every equation $e \in \Gamma$ a subset of $\operatorname{Pos}_{\mathcal{F}}(e)=\left\{p \in \operatorname{Pos}(e)|e|_{p} \notin \mathcal{V}\right\}$. The position constraint that assigns to every $e \in \Gamma$ the set $\operatorname{Pos}_{\mathcal{F}}(e)$ is denoted by $\bar{\Gamma}$.

Containing the high nondeterminism (2)
 Basic narrowing

Definition (Basic derivation)

$\Gamma_{1} \rightsquigarrow_{\sigma_{1}, e_{1}, p_{1}, l_{1} \rightarrow r_{1} \ldots \rightsquigarrow_{\sigma_{n-1}, e_{n-1}, p_{n-1}, l_{n-1} \rightarrow r_{n-1}} \Gamma_{n} \text { is based on a }}$ position constraint B_{1} for Γ_{1} if $p_{i} \in B_{i}\left(e_{i}\right)$ for $1 \leq i \leq n-1$, where

$$
B_{i+1}(e):= \begin{cases}B_{i}\left(e^{\prime}\right) & \text { if } e^{\prime} \in \Gamma_{i} \backslash\left\{e_{i}\right\} \\ \mathcal{B}\left(B_{i}\left(e_{i}\right), p_{i}, r_{i}\right) & \text { if } e^{\prime}=e_{i}\left[r_{i}\right] p_{i}\end{cases}
$$

for all $1 \leq i<n-1$ and $e=e^{\prime} \sigma_{i} \in \Gamma_{i+1}$, with $\mathcal{B}\left(B_{i}\left(e_{i}\right), p_{i}, r_{i}\right)$ abbreviating the set of positions
$B_{i}\left(e_{i}\right) \backslash\left\{q \in B_{i}\left(e_{i}\right) \mid q \geq p_{i}\right\} \cup\left\{p_{i} \cdot q \in \operatorname{Pos}_{\mathcal{F}}(e) \mid q \in \operatorname{Pos}_{\mathcal{F}}\left(r_{i}\right)\right\}$.
Such a narrowing derivation of Γ_{1} is basic if $B_{1}=\bar{\Gamma}_{1}$.

Containing the high nondeterminism (3)
 Basic narrowing

REMARK: In a basic narrowing derivation, narrowing is never applied to a subterm introduced by a previous narrowing substitution.

Theorem ([Hullot, 1987], [Middeldorp and Hamoen, 1994])

Let \mathcal{R} be a confluent TRS and Γ a system of equations. For every normalized unifier θ of G there exists a basic narrowing refutation $\Gamma \rightsquigarrow_{\sigma}^{*} \top$ such that $\sigma \leq_{\mathcal{R}} \theta[\operatorname{vars}(\Gamma)]$ provided one of the following conditions is satisfied:
(1) \mathcal{R} is terminating
(2) \mathcal{R} is orthogonal and $\Gamma \theta$ has an \mathcal{R}-normal form
(3) \mathcal{R} is right-linear

Narrowing derivations

Example

$\mathcal{R}=\{\operatorname{rev}(\operatorname{rev}(x)) \rightarrow x\}$ specifies a property of the reverse operation on lists.

- An infinite non-basic narrowing derivation

$$
\begin{aligned}
\Gamma: \underline{\operatorname{rev}(x)}=x & \rightsquigarrow\left\{x_{\mapsto} \rightarrow \operatorname{rev}\left(x_{1}\right)\right\}, 1, \operatorname{rev}\left(\operatorname{rev}\left(x_{1}\right)\right) \rightarrow x_{1} \\
& \rightsquigarrow\left\{x_{1}=\operatorname{rev}\left(x_{1}\right)\right. \\
& \left.\rightsquigarrow\left\{x_{2} \mapsto \operatorname{rev}\left(x_{2}\right), 2, \operatorname{rev}\left(x_{3}\right), 1, \operatorname{rev}\left(\operatorname{rev}\left(x_{2}\right)\right) \rightarrow x_{2}\right\}\right) \underline{\left.\left.\operatorname{rev}\left(x_{3}\right)\right) \rightarrow x_{3}\right\}}=x_{2}
\end{aligned}
$$

- The only basic narrowing derivation of the same Γ is

$$
\Gamma: \underline{\operatorname{rev}(x)}=x \rightsquigarrow\left\{x_{\mapsto} \mapsto \operatorname{rev}\left(x_{1}\right)\right\}, 1, \operatorname{rev}\left(\operatorname{rev}\left(x_{1}\right)\right) \rightarrow x_{1} x_{1}=\operatorname{rev}\left(x_{1}\right)
$$

Basic narrowing prohibits any further narrowing steps $\Rightarrow \Gamma$ has no unifiers.

Basic narrowing

Other useful properties

Theorem ([Hullot, 1980])
 If $\mathcal{R}=\left\{I_{i} \rightarrow r_{i} \mid 1 \leq i \leq n\right\}$ is a complete TRS, and any basic narrowing derivation starting from r_{i} terminates, then all basic narrowing derivations starting from any term terminate.

Basic narrowing

Other useful properties

Theorem ([Hullot, 1980])

If $\mathcal{R}=\left\{I_{i} \rightarrow r_{i} \mid 1 \leq i \leq n\right\}$ is a complete TRS, and any basic narrowing derivation starting from r_{i} terminates, then all basic narrowing derivations starting from any term terminate.

Corollary

Basic narrowing becomes a decision procedure for E-unification if the conditions of the previous theorem hold.

Narrowing calculi

- Computational model of several functional logic programming languages.
- Narrowing is a complicated operation \Rightarrow various narrowing calculi consisting of more elementary inference rules that simulate narrowing have been proposed
- Properties of narrowing calculi
- Easier to analyse than the narrowing operation
- Three sources of nondeterminism, due to the choice of
(1) the equation of the system
(2) the inference rule to be applied
(3) the rewrite rule of the TRS (for certain inference rules)
- Several criteria have been proposed to reduce these sources of nondeterminism under reasonable assumptions.

Lazy narrowing calculi
 \section*{LNC [Middeldorp and Okui, 1999]}

[o] outermost narrowing: $\frac{\Gamma_{1}, f\left(s_{1}, \ldots, s_{n}\right) \simeq t, \Gamma_{2}}{\Gamma_{1}, s_{1}=I_{1}, \ldots, s_{n}=I_{n}, r=t, \Gamma_{2}}$ if $f\left(I_{1}, \ldots, I_{n}\right) \rightarrow r$ is a fresh variant of a rule from \mathcal{R}
[i] imitation: $\frac{\Gamma_{1}, f\left(s_{1}, \ldots, s_{n}\right) \simeq x, \Gamma_{2}}{\left(\Gamma_{1}, s_{1}=x_{1}, \ldots, s_{n}=x_{n}, \Gamma_{2}\right) \theta}$
if $\theta=\left\{x \mapsto f\left(x_{1}, \ldots, x_{n}\right)\right\}$ with x_{1}, \ldots, x_{n} fresh variables.
[d] decomposition: $\frac{\Gamma_{1}, f\left(s_{1}, \ldots, s_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right), \Gamma_{2}}{\Gamma_{1}, s_{1}=t_{1}, \ldots, s_{n}=t_{n}, \Gamma_{2}}$
[v] variable elimination: $\frac{\Gamma_{1}, x \simeq t, \Gamma_{2}}{\left(\Gamma_{1}, \Gamma_{2}\right) \sigma}$
if $x \notin \operatorname{vars}(t)$ and $\sigma=\{x \mapsto t\}$
$[t]$ removal of trivial equations: $\frac{\Gamma_{1}, x=x, \Gamma_{2}}{\Gamma_{1}, \Gamma_{2}}$
The red equations produced by $[0]$ are called parameter-passing equations.

Lazy narrowing calculi
 \section*{LNC [Middeldorp and Okui, 1999]}

Notation:

- $\Gamma \Rightarrow_{[\alpha], \sigma} \Gamma^{\prime}$ if Γ and Γ^{\prime} are the upper and lower parts of an inference rule $[\alpha](\alpha \in\{\boldsymbol{o}, i, \boldsymbol{d}, \boldsymbol{v}, \boldsymbol{t}\})$ and σ is the substitution computed by that inference rule.
- \square denotes the system with no equations.
- An LNC-derivation $\Gamma_{0} \Rightarrow_{\left[\alpha_{1}\right], \sigma_{1}} \ldots \Rightarrow{ }_{\left[\alpha_{n}\right], \sigma_{n}} \Gamma_{n}$ is abbreviated $\Gamma_{0} \Rightarrow_{\sigma}^{*} \square$ where $\sigma=\sigma_{1} \ldots \sigma_{n}$.

Theorem

If \mathcal{R} is confluent and θ is a normalized \mathcal{R}-unifier of Γ then there exists $\Gamma \Rightarrow_{\sigma}^{*} \square$ respecting leftmost equation selection strategy such that $\sigma \leq \theta[\operatorname{vars}(\Gamma)]$.

Theorem

If \mathcal{R} is confluent and θ is a normalized \mathcal{R}-unifier of Γ then there exists $\Gamma \Rightarrow_{\sigma}^{*} \square$ respecting leftmost equation selection strategy such that $\sigma \leq \theta[\operatorname{vars}(\Gamma)]$.

Theorem

Let \mathcal{R} be a confluent TRS, Г a system of equations, and \mathcal{S} any selection function for equations from a system. For every normalized solution θ of Γ there exists an LNC-refutation $\Gamma \Rightarrow_{\sigma}^{*} \square \operatorname{respecting} \mathcal{S}$ such that $\sigma \leq \theta[\operatorname{vars}(\Gamma)]$ provided one of the following conditions holds:
(1) \mathcal{R} is terminating
(2) \mathcal{R} is orthogonal and $\Gamma \theta$ has an \mathcal{R}-normal form
(3) \mathcal{R} is right-linear

Refinements of LNC

LNC with eager variable elimination [Middeldorp and Okui, 1996]

Refinement of LNC which performs eager variable elimination for descendants of parameter-passing equations:

- Whenever we select an equation $x \simeq t$ with $x \notin \operatorname{vars}(t)$, which is descendant of a parameter-passing equation, we apply inference rule [v].

Theorem

Let \mathcal{R} be an orthogonal TRS and Γ a system of equations. For every \mathcal{R}-normalized unifier θ of Γ there exists an eager LNC-refutation $G \Rightarrow_{\sigma}^{*} \square$ respecting leftmost equation selection strategy, such that $\sigma \leq \theta[\operatorname{vars}(\Gamma)]$.

Note that a TRS \mathcal{R} is orthogonal if
(1) It is left-linear, i.e., no equation appears twice in any lhs of some rewrite rule
(2) It's rewrite rules are non-overlapping

Refinements of LNC
 LNC_{d} [Middeldorp and Okui, 1999]

Designed for strict solving of systems of equations

Definition

Let \mathcal{R} be a TRS. A substitution σ is a strict solution of a system Γ if for every equation $s=t$ in Γ there exists a constructor term u such that $s \sigma \rightarrow_{\mathcal{R}}^{*} u$ and $t \sigma \rightarrow_{\mathcal{R}}^{*} u$.
LNC_{d} is a refinement of calculus LNC which distinguishes:

- $\mathcal{F}=\mathcal{F}_{c} \uplus \mathcal{F}_{d}$, where

$$
\mathcal{F}_{d}:=\left\{f \in \mathcal{F} \mid \exists\left(f\left(s_{1}, \ldots, s_{n}\right) \rightarrow r\right) \in \mathcal{R}\right\} \text { and } \mathcal{F}_{c}=\mathcal{F} \backslash \mathcal{F}_{d}
$$

- Descendants of initial equations (written as $s \equiv t$) from descendants of parameter-passing equations (written as $s \triangleright t)$. We write $s \cong t$ if $s \equiv t$ or $t \equiv s$
$[o]_{\equiv}$ outermost narrowing: $\frac{f\left(s_{1}, \ldots, s_{n}\right) \cong t, \Gamma}{s_{1} \triangleright I_{1}, \ldots, s_{n} \triangleright I_{n}, r \equiv t, \Gamma}$ if $\operatorname{root}(t) \notin \mathcal{F}_{d}$ and $f\left(s_{1}, \ldots, s_{n}\right) \rightarrow r$ is a fresh variant of a rewrite rule from \mathcal{R}
$[i]_{\equiv}$ imitation: $\frac{f\left(s_{1}, \ldots, s_{n}\right) \cong x, \Gamma}{\left(s_{1} \equiv x_{1}, \ldots, s_{n} \equiv x_{n}, \Gamma\right) \sigma}$
if $f \in \mathcal{F}_{c}, c \notin \operatorname{vars}_{c}\left(f\left(s_{1}, \ldots, s_{n}\right)\right), f\left(s_{1}, \ldots, s_{n}\right) \notin \mathcal{T}\left(\mathcal{F}_{c}, \mathcal{V}\right)$, and $\sigma=\left\{x \mapsto f\left(x_{1}, \ldots, x_{n}\right)\right\}$ with x_{1}, \ldots, x_{n} fresh variables.
$[d]_{\equiv}$ decomposition: $\frac{f\left(s_{1}, \ldots, s_{n}\right) \equiv f\left(t_{1}, \ldots, t_{n}\right), \Gamma}{s_{1} \equiv t_{1}, \ldots, s_{n} \equiv t_{n}, \Gamma}$
$[v]_{\equiv}$ variable elimination: $\frac{s \cong x, \Gamma}{\Gamma \sigma}$
if $x \notin \operatorname{vars}(s)$ and $\sigma=\{x \mapsto s\}$
$[t]_{\equiv}$ removal of trivial equations: $\frac{x \equiv x, \Gamma}{\Gamma}$
$[o]_{\triangleright}$ outermost narrowing:

$$
\frac{f\left(s_{1}, \ldots, s_{n}\right) \triangleright t, \Gamma}{s_{1} \triangleright I_{1}, \ldots, s_{n} \triangleright I_{n}, r \triangleright t, \Gamma}
$$

if $r o o t(t) \notin \mathcal{F}_{d}$ and $f\left(s_{1}, \ldots, s_{n}\right) \rightarrow r$ is a fresh variant of a rewrite rule from \mathcal{R}
$[d]_{\triangleright}$ decomposition: $\frac{f\left(s_{1}, \ldots, s_{n}\right) \triangleright f\left(t_{1}, \ldots, t_{n}\right), \Gamma}{s_{1} \triangleright t_{1}, \ldots, s_{n} \triangleright t_{n}, \Gamma}$
$[v]_{\triangleright}$ variable elimination: $\frac{s \triangleright x, \Gamma}{\Gamma \sigma} \quad \frac{x \triangleright s, \Gamma}{\Gamma \sigma}$ if $x \notin \operatorname{vars}(s)$ and $\sigma=\{x \mapsto s\}$

Completeness result

Theorem

Let \mathcal{R} be a left-linear confluent constructor system and Γ a system of equations. For every strict and normalized solution θ of Γ there exists an LNC_{d}-refutation $G \Rightarrow_{\sigma}^{*} \square$ such that $\sigma \leq_{\mathcal{R}} \theta[\operatorname{vars}(\Gamma)]$

Completeness result

Theorem

Let \mathcal{R} be a left-linear confluent constructor system and Γ a system of equations. For every strict and normalized solution θ of Γ there exists an LNC_{d}-refutation $G \Rightarrow_{\sigma}^{*} \square$ such that $\sigma \leq_{\mathcal{R}} \theta[\operatorname{vars}(\Gamma)]$

Remark

The only source of nondeterminism of the lazy narrowing calculus LNC_{d} is the choice of the rewrite rule when applying inference rules $[0]_{\equiv}$ and $[0]_{\triangleright}$.
The other sources of nondeterminism disappeared:
(1) The selected equation is always the leftmost
(2) There is only at most one applicable inference rule.

Extensions to larger classes of TRSs

A conditional TRS (CTRS) consists of conditional rewrite rules $I \rightarrow r \Leftarrow c$ where the conditional part is a (possibly empty) sequence $s_{1}=t_{1}, \ldots, s_{n}=t_{n}$ of equations. We require $I \notin \mathcal{V}$.

$$
\operatorname{evars}(I \rightarrow r \Leftarrow c):=\operatorname{vars}(r, c) \backslash \operatorname{vars}(I)
$$

Extensions to larger classes of TRSs

A conditional TRS (CTRS) consists of conditional rewrite rules $I \rightarrow r \Leftarrow c$ where the conditional part is a (possibly empty) sequence $s_{1}=t_{1}, \ldots, s_{n}=t_{n}$ of equations. We require $I \notin \mathcal{V}$.

$$
\operatorname{evars}(I \rightarrow r \Leftarrow c):=\operatorname{vars}(r, c) \backslash \operatorname{vars}(I)
$$

CTRSs are classified according to the distribution of variables in rewrite rules, into:

$$
\begin{array}{ll}
\text { 1-CTRS } \operatorname{vars}(r, c) \subseteq \operatorname{vars}(I) & \text { for all rules } I \rightarrow r \Leftarrow c \\
\text { 2-CTRS } \operatorname{vars}(r) \subseteq \operatorname{vars}(I) & \text { for all rules } I \rightarrow r \Leftarrow c \\
\text { 3-CTRS } \operatorname{vars}(r) \subseteq \operatorname{vars}(I, c) & \text { for all rules } I \rightarrow r \Leftarrow c
\end{array}
$$

REmARK: Extra variables enable a note natural style of writing program specifications

Example (Fibonacci numbers)

$$
\begin{aligned}
& 0+y \rightarrow y, s(x)+y \rightarrow s(x+y) \\
& \text { fib(0) } \rightarrow\langle 0, s(0)\rangle, \\
& \text { fib }(s(x)) \rightarrow\langle z, y+z\rangle \Leftarrow f i b(x)=\langle y, z\rangle
\end{aligned}
$$

Rewriting with conditional TRSs

Assumptions:

- every CTRS \mathcal{R} contains the rewrite rule $x=x \rightarrow$ true
- true and $=$ do not occur in other rewrite rules of \mathcal{R}
- T denotes any sequence of t rues

We define inductively the unconditional TRSs \mathcal{R}_{n} for $n \geq 0$:

$$
\begin{aligned}
\mathcal{R}_{0} & :=\{x=x \rightarrow \text { true }\} \\
\mathcal{R}_{n+1} & :=\left\{I \sigma \rightarrow r \sigma \mid I \rightarrow r \Leftarrow c \in \mathcal{R} \text { and } c \sigma \rightarrow_{\mathcal{R}_{n}}^{*} \top\right\}
\end{aligned}
$$

and abbreviate $\rightarrow_{\mathcal{R}_{n}}$ by \rightarrow_{n}

Rewriting with conditional TRSs

Assumptions:

- every CTRS \mathcal{R} contains the rewrite rule $x=x \rightarrow$ true
- true and $=$ do not occur in other rewrite rules of \mathcal{R}
- T denotes any sequence of t rues

We define inductively the unconditional TRSs \mathcal{R}_{n} for $n \geq 0$:

$$
\begin{aligned}
\mathcal{R}_{0} & :=\{x=x \rightarrow \text { true }\} \\
\mathcal{R}_{n+1} & :=\left\{I \sigma \rightarrow r \sigma \mid I \rightarrow r \Leftarrow c \in \mathcal{R} \text { and } c \sigma \rightarrow_{\mathcal{R}_{n}}^{*} \top\right\}
\end{aligned}
$$

and abbreviate $\rightarrow_{\mathcal{R}_{n}}$ by \rightarrow_{n}

Remarks

We interpret equality as joinability; such kind of CTRSs are known as join CTRSs in the literature.

Rewriting with conditional CTRSs

Other relevant notions

Level confluence: \mathcal{R} is level-confluent if every \mathcal{R}_{n} is confluent.
Shallow-confluence: \mathcal{R} is shallow-confluent if

$$
\stackrel{*}{m} \leftarrow \circ \rightarrow_{n}^{*} \subseteq{ }_{n}^{*} \leftarrow \circ \rightarrow_{m}^{*} \text { for all } m, n \geq 0
$$

Decreasingness: \mathcal{R} is decreasing if there exists a well-founded \succ order on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ with the following properties:

- \succ contains $\rightarrow_{\mathcal{R}}$
- \succ has the subterm property (i.e., $\triangleleft \subseteq \succ$ where $s \triangleright t$ iff t is a proper subterm of s)
- $t \sigma \succ s \sigma$ and $s \sigma \succ t \sigma$ for every $I \rightarrow r \Leftarrow c \in \mathcal{R}$, every $s=t$ from c, and every substitution σ.

Remark

Shallow-confluent CTRSs are level-confluent, but the reverse is not true.

Narrowing for 3-CTRS

Conditional narrowing (CNC)

Assumption: \mathcal{R} is a CTRS

$\Gamma^{\prime}, e, \Gamma^{\prime \prime}$
$\overline{\left(\Gamma^{\prime}, e[r]_{p}, c, \Gamma^{\prime \prime}\right) \sigma}$
if there exist a fresh variant $I \rightarrow r \Leftarrow c$ of a rewrite rule in \mathcal{R}, a non-variable position p in e, and $\sigma=m g u\left(\left.e\right|_{p}, l\right)$.

Remarks

\triangleright The previous inference rule is also written as $\left(\Gamma^{\prime}, e, \Gamma^{\prime \prime}\right) \rightsquigarrow_{\sigma, p, l \rightarrow r \Leftarrow c}\left(\Gamma^{\prime}, e[r]_{p}, c, \Gamma^{\prime \prime}\right) \sigma$ or simply $\left(\Gamma^{\prime}, e, \Gamma^{\prime \prime}\right) \rightsquigarrow_{\sigma}\left(\Gamma^{\prime}, e[r]_{p}, c, \Gamma^{\prime \prime}\right) \sigma$.
\triangleright CNC is sound: If $\Gamma \rightsquigarrow_{\sigma}^{*} \top$ then $\left.\sigma\right|_{\text {vars }(G)}$ is an \mathcal{R}-unifier of Γ.
\triangleright We can define basic conditional narrowing, similar to basic narrowing:

- Main idea: no narrowing steps should take place at positions introduced by previous narrowing substitutions.

Basic conditional narrowing (1)

A CNC-derivation

$$
\Gamma_{1} \rightsquigarrow \theta_{1}, p_{1}, l_{1} \rightarrow r_{1} \Leftarrow c_{1} \cdots \rightsquigarrow \theta_{n-1}, p_{n-1}, l_{n-1} \rightarrow r_{n-1} \Leftarrow c_{n-1} \Gamma_{n}
$$

is based on a position constraint B_{1} for Γ_{1} if $p_{i} \in B_{i}\left(e_{i}\right)$ for $1 \leq i \leq n-1$, where the position constraints B_{2}, \ldots, B_{n-1} for $\Gamma_{2}, \ldots, \Gamma_{n-1}$ are defined inductively by

$$
B_{i+1}(e)= \begin{cases}B_{i}\left(e^{\prime}\right) & \text { if } e^{\prime} \in \Gamma_{i} \backslash\left\{e_{i}\right\} \\ \mathcal{B}\left(B_{i}\left(e_{i}\right), p_{i}, r_{i}\right) & \text { if } e^{\prime}=e_{i}\left[r_{i}\right] p_{i} \\ \operatorname{Pos}_{\mathcal{F}}\left(e^{\prime}\right) & \text { if } e^{\prime} \in c_{i}\end{cases}
$$

for all $1 \leq i<n-1$ and $e=e^{\prime} \theta_{i} \in \Gamma_{i+1}$, with $\mathcal{B}\left(B_{i}\left(e_{i}\right), p_{i}, r_{i}\right)$ abbreviating the set of positions
$\left(B_{i}\left(e_{i}\right) \backslash\left\{q \in B_{i}\left(e_{i}\right) \mid q \geq p_{i}\right\}\right) \cup\left\{p_{i} \cdot q \in \operatorname{Pos}_{\mathcal{F}}(e) \mid q \in \operatorname{Pos}_{\mathcal{F}}\left(r_{i}\right)\right\}$

Basic conditional narrowing (2)

\triangleright The position constraint on Γ that assigns the set of positions $\operatorname{Pos}_{\mathcal{F}}(e)$ to every e in G is denoted by \bar{G}
\triangleright A CNC derivation is basic it it is based on \bar{G}

- Basic CNC has much smaller search space than CNC

CNC is complete for

- semi-complete 1-CTRSs
- semi-confluent 1-CTRSs w.r.t. normalizable substitutions
- level-semi-complete 2-CTRSs
- level-complete 3-CTRSs

Basic conditional narrowing is complete for

- decreasing and confluent 1-CTRSs
- semi-complete orthogonal 1-CTRSs

Reference: [Middeldorp and Hamoen, 1994]

Extending LNC to work with 3-CTRS

LCNC = lazy conditional narrowing calculus
The only change is inference rule [0]:
[o] outermost narrowing $\frac{\Gamma^{\prime}, f\left(s_{1}, \ldots, s_{n}\right) \simeq t, \Gamma^{\prime \prime}}{\Gamma^{\prime}, s_{1}=I_{1}, s_{n}=I_{n}, r=t, c, \Gamma^{\prime \prime}}$ if $I \rightarrow r \Leftarrow c$ is a fresh variant of a rewrite rule in \mathcal{R}.
The other inference rules $([i],[d],[v],[t])$ are like those of LNC.

LCNC

Example

$$
\begin{aligned}
& \mathcal{R}=\{0+y=y, s(x)+y \rightarrow s(x+y), f i b(0)=\langle 0, s(0)\rangle, \\
& \text { fib }(s(x)) \rightarrow\langle z, y+z\rangle \Leftarrow \operatorname{fib}(x)=\langle y, z\rangle\} \\
& \text { fib }(x)=\langle x, x\rangle \Rightarrow{ }_{[0]} \quad x=s\left(x_{1}\right),\left\langle z_{1}, y_{1}+z_{1}\right\rangle=\langle x, x\rangle, \text { fib }\left(x_{1}\right)=\left\langle y_{1}, z_{1}\right\rangle \\
& \Rightarrow{ }_{[d]} \quad x=s\left(x_{1}\right), \underline{z_{1}=x}, y_{1}+z_{1}=x, f i b\left(x_{1}\right)=\left\langle y_{1}, z_{1}\right\rangle \\
& \Rightarrow_{[v],\left\{z_{1} \mapsto x\right\}} \quad x=s\left(x_{1}\right), \overline{y_{1}+x}=x, \text { fib }\left(x_{1}\right)=\left\langle y_{1}, x\right\rangle \\
& \Rightarrow_{[0]} \quad x=s\left(x_{1}\right), y_{1}+x=x, \overline{x_{1}=0},\langle 0, s(0)\rangle=\left\langle y_{1}, x\right\rangle \\
& \left.\Rightarrow{ }_{[v],\left\{x_{1} \mapsto 0\right\}} \quad x=s(0), y_{1}+x=x, \overline{\langle 0, s(0)}\right\rangle=\left\langle y_{1}, x\right\rangle \\
& \Rightarrow[d] \quad x=s(0), y_{1}+x=x, 0=y_{1}, s(0)=x \\
& \Rightarrow[v],\left\{y_{1} \mapsto 0\right\} \quad x=s(0), 0+x=x, s(0)=x \\
& \Rightarrow_{[v],\{x \mapsto s(0)\}} \quad \overline{0+s(0)}=s(0), s(0)=s(0) \\
& \Rightarrow{ }_{[d]} 0+s(0)=s(0), \underline{0=0} \Rightarrow_{[d]}^{0+s(0)=s(0)} \\
& \Rightarrow{ }_{[o]} \quad 0=0, s(0)=y_{2}, y_{2}=s(0) \\
& \Rightarrow_{[v],\left\{y_{1} \mapsto s(0)\right\}} \quad 0=0, s(0)=s(0) \\
& \Rightarrow_{[d]} \quad 0=0, \overline{0}=0 \\
& \Rightarrow_{[d]} \Rightarrow_{[d]} \quad \square
\end{aligned}
$$

LCNC

Example

$$
\begin{aligned}
& \mathcal{R}=\{0+y=y, s(x)+y \rightarrow s(x+y), f i b(0)=\langle 0, s(0)\rangle, \\
& \text { fib }(s(x)) \rightarrow\langle z, y+z\rangle \Leftarrow \operatorname{fib}(x)=\langle y, z\rangle\} \\
& \text { fib }(x)=\langle x, x\rangle \Rightarrow_{[0]} \quad x=s\left(x_{1}\right),\left\langle z_{1}, y_{1}+z_{1}\right\rangle=\langle x, x\rangle, \text { fib }\left(x_{1}\right)=\left\langle y_{1}, z_{1}\right\rangle \\
& \Rightarrow_{[d]} \quad x=s\left(x_{1}\right), \underline{z_{1}=x}, y_{1}+z_{1}=x, \text { fib }\left(x_{1}\right)=\left\langle y_{1}, z_{1}\right\rangle \\
& \Rightarrow_{[v],\left\{z_{1} \mapsto x\right\}} \quad x=s\left(x_{1}\right), y_{1}+x=x, f i b\left(x_{1}\right)=\left\langle y_{1}, x\right\rangle \\
& \Rightarrow_{[0]} \quad x=s\left(x_{1}\right), y_{1}+x=x, \overline{x_{1}=0,\langle 0, s(0)\rangle}=\left\langle y_{1}, x\right\rangle \\
& \left.\Rightarrow{ }_{[v],\left\{x_{1} \mapsto 0\right\}} \quad x=s(0), y_{1}+x=x, \overline{\langle 0, s(0)}\right\rangle=\left\langle y_{1}, x\right\rangle \\
& \Rightarrow[d] \quad x=s(0), y_{1}+x=x, 0=y_{1}, s(0)=x \\
& \Rightarrow[v],\left\{y_{1} \mapsto 0\right\} \quad x=s(0), 0+x=x, s(0)=x \\
& \Rightarrow_{[v],\{x \mapsto s(0)\}} \quad \overline{0+s(0)}=s(0), s(0)=s(0) \\
& \Rightarrow{ }_{[d]} 0+s(0)=s(0), \underline{0=0} \Rightarrow_{[d]}^{0+s(0)=s(0)} \\
& \Rightarrow{ }_{[o]} \quad 0=0, s(0)=y_{2}, y_{2}=s(0) \\
& \Rightarrow_{[v],\left\{y_{1} \mapsto s(0)\right\}} \quad 0=0, s(0)=s(0) \\
& \Rightarrow_{[d]} \quad 0=0, \overline{0}=0 \\
& \Rightarrow[d] \Rightarrow[d]
\end{aligned}
$$

Computed substitution: $\{x \mapsto s(0)\}$

Properties of LCNC

Theorem

Let \mathcal{R} be a confluent 1-CTRS and Γ a system of equations. For every normalized unifier θ of Γ there exists an LCNC-refutation $\Gamma \Rightarrow_{\sigma}^{*} \square$ respecting leftmost equation selection strategy such that $\sigma \leq \theta[\operatorname{vars}(\Gamma)]$

Theorem

Let \mathcal{R} be an arbitrary CTRS and $\Gamma \rightsquigarrow_{\theta}^{*} \top$ be a basic CNC-refutation. For every selection function \mathcal{S} there exists an LCNC-refutation respecting \mathcal{S} such that $\sigma \leq \theta[\operatorname{vars}(\Gamma)]$.

Theorem

Let \mathcal{R} be a terminating and level-confluent CTRS. For every \mathcal{R}-unifier θ of a system Γ there exists an LCNC-refutation $\Gamma \Rightarrow_{\sigma}^{*} \square$ such that $\sigma \leq \theta[\operatorname{vars}(\Gamma)]$.

Unification for deterministic CTRSs (1)

We will consider equations of two kinds: $s=t$ and $s \triangleright t$

Definition

Let X be a set of variables. A system of equations $\Gamma: e_{1}, \ldots, e_{n}$ is X-deterministic if

- $\operatorname{vars}\left(s_{i}\right) \subseteq X \cup \bigcup_{j=1}^{i-1} \operatorname{vars}\left(e_{j}\right)$ when e_{i} is $s_{i} \triangleright t_{i}$
- $\operatorname{vars}\left(e_{i}\right) \subseteq X \cup \bigcup_{j=1}^{i-1} \operatorname{vars}\left(e_{j}\right)$ when e_{i} is $s_{i}=t_{i}$

A CTRS \mathcal{R} is deterministic if it is made of rewrite rules of the form $I \rightarrow r \Leftarrow c$ where c is an vars (I)-deterministic system of equations. \mathcal{R} is fresh if $\operatorname{vars}(t) \cap \operatorname{vars}(I)=\emptyset$ for every $s \triangleright t$ in the condition c of any rewrite rule $I \rightarrow r \Leftarrow c$ from \mathcal{R}.

When rewriting with deterministic CTRSs, $=$ is interpreted as joinability $\left(\downarrow_{\mathcal{R}}\right)$, and \triangleright as reducibility $\left(\rightarrow_{R}\right)$:

- If \mathcal{R} is deterministic then $s \rightarrow_{\mathcal{R}} t$ if there exist $I \rightarrow r \Leftarrow c \in \mathcal{R}$, $p \in \operatorname{Pos}_{\mathcal{F}}(s)$ and θ such that $\left.s\right|_{p}=I \theta, t=s[r \theta]_{p}$, and for all $e_{i} \in c: s_{i} \theta \downarrow_{\mathcal{R}} t_{i} \theta$ if e_{i} is $s_{i}=t_{i} ; s_{i} \theta \rightarrow_{\mathcal{R}}^{*} t_{i} \theta$ if e_{i} is $s_{i} \triangleright t_{i}$.

Deterministic CTRSs and X-deterministic goals

 Example$$
\begin{array}{rlr}
\mathcal{R}=\{ & 0+y \rightarrow y, & f s t(\langle x, y\rangle) \rightarrow x, \\
& s(x)+y \rightarrow s(x+y), & \operatorname{snd}(\langle x, y\rangle) \rightarrow y, \\
& \text { fib }(0) \rightarrow\langle 0, s(0)\rangle, & \\
& \text { fib }(s(x)) \rightarrow\langle y, y+z\rangle \Leftarrow \operatorname{fib}(x) \triangleright\langle y, z\rangle
\end{array}
$$

The goal

$$
\Gamma: f i b(s(x)) \triangleright\langle s(s(s(0))), y\rangle, y \triangleright s(z)
$$

is $\{x\}$-deterministic.

Unification for deterministic CTRSs (2)

The calculus LCNC ${ }_{\ell}^{\dagger}$ [Marin and Middeldorp, 2004]

Given an X-deterministic goal Γ and a deterministic CTRS \mathcal{R}
Compute a complete set of X-normalized \mathcal{R}-unifiers of Γ. A substitution θ is X-normalized if $\theta(x)$ is an \mathcal{R}-normal form for all $x \in X$.
$\mathrm{LCNC}_{\ell}^{\dagger}$: refinement of LCNC adjusted to resolve this problem

- Works on terms from $\mathcal{T}\left(\mathcal{F} \cup \mathcal{F}^{\dagger}, \mathcal{V} \cup \mathcal{V}^{\dagger}\right)$ where \mathcal{F}^{\dagger} (resp. \mathcal{V}^{\dagger}) is the set of marked function symbols (resp. marked variables). The purpose of marking is to avoid computing many non-normalised solutions.
- We write t^{\dagger} for the term obtained from t by marking its root symbol, if not already marked.
- We write $u(t)$ for the term obtained by removing all markers from t. E.g., $\mathrm{u}\left(f^{\dagger}\left(x, g\left(y^{\dagger}\right)\right)\right)=f(x, g(y))$

Same as LCNC, except that the leftmost equation is always selected, and the inference rules $[i],[d],[v],[t]$ are adjusted as follows:

$$
[i] \frac{f\left(s_{1}, \ldots, s_{n}\right) \triangleright x, \Gamma}{\left(s_{1} \triangleright x_{1}, \ldots, s_{n} \triangleright x_{n}, \Gamma\right) \sigma} \quad \frac{f\left(s_{1}, \ldots, s_{n}\right) \simeq x^{\dagger}, \Gamma}{\left(s_{1} \triangleright x_{1}^{\dagger}, \ldots, s_{n} \triangleright x_{n}^{\dagger}, \Gamma\right) \sigma^{\prime}}
$$

$$
\text { with }(s \simeq t) \in\{s=t, t=s, s \triangleright t\}, \sigma=\left\{x \mapsto f\left(x_{1}, \ldots, x_{n}\right)\right. \text {, }
$$

$$
\left.x^{\dagger} \mapsto f^{\dagger}\left(x_{1}, \ldots, x_{n}\right)\right\}, \sigma^{\prime}=\left\{x, x^{\dagger} \mapsto f^{\dagger}\left(x_{1}, \ldots, x_{n}\right)\right\}, \text { and } x_{1}, \ldots, x_{n}
$$ fresh variables

$$
\begin{aligned}
& {[d] } \frac{f\left(s_{1}, \ldots, s_{n}\right) \simeq f\left(t_{1}, \ldots, t_{n}\right), \Gamma}{s_{1} \simeq t_{1}, \ldots, s_{n} \simeq t_{n}, \Gamma} \\
& \frac{f\left(s_{1}, \ldots, s_{n}\right) \simeq f^{\dagger}\left(t_{1}, \ldots, t_{n}\right), \Gamma}{s_{1} \simeq t_{1}^{\dagger}, \ldots, s_{n} \simeq t_{n}^{\dagger}, \Gamma} \\
& \frac{f^{\dagger}\left(s_{1}, \ldots, s_{n}\right) \simeq f\left(t_{1}, \ldots, t_{n}\right), \Gamma}{s_{1}^{\dagger} \simeq t_{1}, \ldots, s_{n}^{\dagger} \simeq t_{n}, \Gamma} \\
& \text { with } \simeq \in\{=, \triangleright\} \frac{f^{\dagger}\left(s_{1}, \ldots, s_{n}\right) \simeq f^{\dagger}\left(t_{1}, \ldots, t_{n}\right), \Gamma}{s_{1}^{\dagger} \simeq t_{1}^{\dagger}, \ldots, s_{n}^{\dagger} \simeq t_{n}^{\dagger}, \Gamma} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& {[v] \frac{x^{\dagger} \simeq s, \Gamma}{\Gamma \theta^{\prime}} \text { if } s \notin \mathcal{V} \cup \mathcal{V}^{\dagger} \quad \frac{s \simeq x^{\dagger}, \Gamma}{\Gamma \theta^{\prime}} \quad \frac{s \triangleright x, \Gamma}{\Gamma \theta}} \\
& \text { with } x \notin \operatorname{vars}(u(s)), \simeq \in\{=, \triangleright\}, \\
& \theta=\left\{x \mapsto s, x^{\dagger} \mapsto s^{\dagger}\right\}, \text { and } \\
& \theta^{\prime}=\left\{x, x^{\dagger} \mapsto s^{\dagger}\right\} \cup\left\{y \mapsto y^{\dagger} \mid y \in \operatorname{vars}(u(s))\right\} \\
& {[t] \frac{s \simeq t, \Gamma}{\Gamma} \text { if } u(s)=u(t) \text { and } \simeq \in\{=, \triangleright\}}
\end{aligned}
$$

NOtATION: Γ^{\dagger} is the result of replacing all variables x with x^{\dagger} in Γ

Theorem

Let \mathcal{R} be a deterministic CTRS and θ a normalized \mathcal{R}-unifier of「. There exists an $\mathrm{LCNC}_{\ell}^{\dagger}$-refutation $\mathrm{G}^{\dagger} \Rightarrow_{\sigma}^{*} \square$ such that $u(\sigma) \leq \theta[\operatorname{vars}(\Gamma)]$

- For unoriented equation $s=t$

$\operatorname{root}(s))^{\operatorname{root}(t)}$	\mathcal{F}^{\dagger}	$\mathcal{F}_{\mathcal{C}}$	$\mathcal{F}_{\mathcal{D}}$	\mathcal{V}^{\dagger}	\mathcal{V}
\mathcal{F}^{\dagger}	$[\mathrm{t}] ;[\mathrm{d}]$	$[\mathrm{t}] ;[\mathrm{d}]$	$[\mathrm{t}] ;[\mathrm{d}],[\mathrm{o}]_{2}$	$[\mathrm{v}]$	\times
$\mathcal{F}_{\mathcal{C}}$	$[\mathrm{t}] ;[\mathrm{d}]$	$[\mathrm{t}] ;[\mathrm{d}]$	$[\mathrm{o}]_{2}$	$[\mathrm{i}],[\mathrm{v}]$	\times
$\mathcal{F}_{\mathcal{D}}$	$[\mathrm{t}] ;[\mathrm{d}],[\mathrm{o}]_{1}$	$[\mathrm{o}]_{1}$	$[\mathrm{t}] ;[\mathrm{d}],[\mathrm{o}]_{1},[\mathrm{o}]_{2}$	$[\mathrm{o}]_{1},[\mathrm{i}],[\mathrm{v}]$	\times
\mathcal{V}^{\dagger}	$[\mathrm{v}]$	$[\mathrm{i}],[\mathrm{v}]$	$[\mathrm{o}]_{2},[\mathrm{i}],[\mathrm{v}]$	$[\mathrm{t}] ;[\mathrm{v}]$	\times
\mathcal{V}	\times	\times	\times	\times	\times

- For oriented equation $s \triangleright t$

$\operatorname{root}(s))^{\operatorname{root}(t)}$	\mathcal{F}^{\dagger}	$\mathcal{F}_{\mathcal{C}}$	$\mathcal{F}_{\mathcal{D}}$	$\mathcal{V} \cup \mathcal{V}^{\dagger}$
\mathcal{F}^{\dagger}	$[\mathrm{t}] ;[\mathrm{d}]$	$[\mathrm{t}] ;[\mathrm{d}]$	$[\mathrm{t}] ;[\mathrm{d}]$	$[\mathrm{v}]$
$\mathcal{F}_{\mathcal{C}}$	$[\mathrm{t}] ;[\mathrm{d}]$	$[\mathrm{t}] ;[\mathrm{d}]$	\times	$[\mathrm{i}],[\mathrm{v}]$
$\mathcal{F}_{\mathcal{D}}$	$[\mathrm{t}] ;[\mathrm{d}],[\mathrm{o}]_{1}$	$[\mathrm{o}]_{1}$	$[\mathrm{t}] ;[\mathrm{d}],[\mathrm{o}]_{1}$	$[\mathrm{o}]_{1},[\mathrm{i}],[\mathrm{v}]$
\mathcal{V}^{\dagger}	$[\mathrm{v}]$	$[\mathrm{v}]$	$[\mathrm{v}]$	$[\mathrm{t}] ;[\mathrm{v}]$
\mathcal{V}	\times	\times	\times	\times

Unification for deterministic CTRSs
 $L C N C_{\ell}^{\text {eve }}$: a lazy narrowing calculus with eager variable elimination (1)

MAIN IDEA: Like LNC, the calculus LCNC can apply eagerly variable elimination for descendants of parameter-passing equations without losing completeness

- Descendants of parameter-passing equations are defined in exactly the same way as for LNC; we write $s \triangleright t$ to distinguish them from other kinds of equations.
- $\mathrm{LCNC}_{\ell}^{\text {eve }}$: adjustment of $\mathrm{LCNC}_{\ell}^{\dagger}$ with the following strategy to solve parameter-passing equations:

$\left.\operatorname{root}(s)\right\|^{\operatorname{root}(t)}$	$\mathcal{F}_{\mathcal{C}}$	$\mathcal{F}_{\mathcal{D}}$	\mathcal{V}	$\mathcal{F}^{\dagger} \cup \mathcal{V}^{\dagger}$
\mathcal{F}^{\dagger}	$[\mathrm{t}] ;[\mathrm{d}]$	$[\mathrm{t}] ;[\mathrm{d}]$	$[\mathrm{v}]$	\times
$\mathcal{F}_{\mathcal{C}}$	$[\mathrm{t}] ;[\mathrm{d}]$	\times	$[\mathrm{v}]$	\times
$\mathcal{F}_{\mathcal{D}}$	$[\mathrm{o}]_{1}$	$[\mathrm{t}] ;[\mathrm{d}],[\mathrm{o}]_{1}$	$[\mathrm{v}]$	\times
\mathcal{V}^{\dagger}	$[\mathrm{v}]$	$[\mathrm{v}]$	$[\mathrm{v}]$	\times
\mathcal{V}	\times	\times	\times	\times

Unification for deterministic CTRSs

$\mathrm{LCNC}_{\ell}^{\mathrm{eve}}$: a lazy narrowing calculus with eager variable elimination (2)
BAD NEWS: $\operatorname{LCNC}_{\ell}^{\text {eve }}$ is incomplete for left-linear deterministic CTRSs.

Example

- $\mathcal{R}=\{f(x) \rightarrow x, g(x, y) \rightarrow x \Leftarrow x \triangleright y\}$
- $\Gamma: g(x, f(y))=a$
\mathcal{R} is left-linear and deterministic, but not fresh; $\theta=\{x \mapsto a, y \mapsto a\}$ is a normalized solution of $\Gamma . \theta$ can not be computed with $\mathrm{LCNC}_{\ell}^{\mathrm{eve}}$, because the only maximal $\mathrm{LCNC}_{\ell}^{\mathrm{eve}}$-derivation is

$$
\begin{aligned}
\Gamma^{\dagger} \Rightarrow[o] & x^{\dagger} \triangleright x_{1}, f\left(y^{\dagger}\right) \triangleright y_{1}, x_{1} \triangleright y_{1}, x_{1}=a \\
\Rightarrow[v],\left\{x_{1} \mapsto x^{\dagger}, x_{1}^{\dagger} \mapsto x^{\dagger}\right\} & f\left(y^{\dagger}\right) \triangleright y_{1}, x^{\dagger} \triangleright y_{1}, x^{\dagger}=a \\
\Rightarrow_{[v],\left\{y_{1} \mapsto f\left(y^{\dagger}\right), y_{1}^{\dagger} \mapsto f^{\dagger}\left(y^{\dagger}\right)\right\}} & x^{\dagger} \triangleright f\left(y^{\dagger}\right), x^{\dagger}=a \\
\Rightarrow_{[v],\left\{x \mapsto f^{\dagger}\left(y^{\dagger}\right), x^{\dagger} \mapsto f^{\dagger}\left(y^{\dagger}\right)\right\}} & f^{\dagger}\left(y^{\dagger}\right)=a
\end{aligned}
$$

Unification for deterministic CTRSs

$\mathrm{LCNC}_{\ell}^{\text {eve }}$: a lazy narrowing calculus with eager variable elimination (2)
BAD NEWS: $\mathrm{LCNC}_{\ell}^{\text {eve }}$ is incomplete for left-linear deterministic CTRSs.

Example

- $\mathcal{R}=\{f(x) \rightarrow x, g(x, y) \rightarrow x \Leftarrow x \triangleright y\}$
- $\Gamma: g(x, f(y))=a$
\mathcal{R} is left-linear and deterministic, but not fresh; $\theta=\{x \mapsto a, y \mapsto a\}$ is a normalized solution of $\Gamma . \theta$ can not be computed with $\mathrm{LCNC}_{\ell}{ }^{\mathrm{eve}}$, because the only maximal $\mathrm{LCNC}_{\ell}^{\mathrm{eve}}$-derivation is

$$
\begin{aligned}
\Gamma^{\dagger} \Rightarrow_{[0]} & x^{\dagger} \triangleright x_{1}, f\left(y^{\dagger}\right) \triangleright y_{1}, x_{1} \triangleright y_{1}, x_{1}=a \\
\Rightarrow_{[v],\left\{x_{1} \mapsto x^{\dagger}, x_{1}^{\dagger} \mapsto x^{\dagger}\right\}} & f\left(y^{\dagger} \triangleright y_{1}, x^{\dagger} \triangleright y_{1}, x^{\dagger}=a\right. \\
\Rightarrow_{[v],\left\{y_{1} \mapsto f\left(y^{\dagger}\right), y_{1}^{\dagger} \mapsto f^{\dagger}\left(y^{\dagger}\right)\right\}} & x^{\dagger} \triangleright f\left(y^{\dagger}\right), x^{\dagger}=a \\
\Rightarrow_{[v],\left\{x \mapsto f^{\dagger}\left(y^{\dagger}\right), x^{\dagger} \mapsto f^{\dagger}\left(y^{\dagger}\right)\right\}} & f^{\dagger}\left(y^{\dagger}\right)=a
\end{aligned}
$$

GOOD NEWS: $\operatorname{LCNC}_{\ell}^{\text {eve }}$ is complete for left-linear fresh deterministic CTRSs

Unification of strict equations for deterministic CTRSs

Definition

A substitution θ is a strict solution of an equation

- $s \triangleright t$ if $s \theta \rightarrow_{\mathcal{R}}^{*} t \theta$ and $t \theta \in \mathcal{T}\left(\mathcal{F}_{c}, \mathcal{V}\right)$ (that is, $t \theta$ is a term without defined function symbols)
- $s=t$ if there exists a term $u \in \mathcal{T}\left(\mathcal{F}_{c}, \mathcal{V}\right)$ such that $s \theta \rightarrow_{\mathcal{R}}^{*} u$ and $t \theta \rightarrow_{\mathcal{R}}^{*} u$.
θ is a strict solution of a goal Γ if it is a strict solution of every equation from Γ.

CHALLENGE: Find a refinement of LCNC which computes a complete set of strict solutions of a given goal Γ.

Unification of strict equations for deterministic CTRSs

Definition

A substitution θ is a strict solution of an equation

- $s \triangleright t$ if $s \theta \rightarrow_{\mathcal{R}}^{*} t \theta$ and $t \theta \in \mathcal{T}\left(\mathcal{F}_{c}, \mathcal{V}\right)$ (that is, $t \theta$ is a term without defined function symbols)
- $s=t$ if there exists a term $u \in \mathcal{T}\left(\mathcal{F}_{c}, \mathcal{V}\right)$ such that $s \theta \rightarrow_{\mathcal{R}}^{*} u$ and $t \theta \rightarrow_{\mathcal{R}}^{*} u$.
θ is a strict solution of a goal Γ if it is a strict solution of every equation from Γ.

CHALLENGE: Find a refinement of LCNC which computes a complete set of strict solutions of a given goal Γ.

- The calculus LCNC ${ }_{\ell}^{S}$ [Marin and Middeldorp, 2004] was designed for this purpose.

The lazy narrowing calculus LCNC_{ℓ}^{S}

 Inference rules (1)$$
\begin{aligned}
& {[o] \frac{f\left(s_{1}, \ldots, s_{n}\right) \simeq t, \Gamma}{s_{1} \triangleright l_{1}, \ldots, s_{n} \triangleright I_{n}, c, \Gamma} \text { where } \simeq \in\left\{=,=^{-1}, \triangleright, \triangleright\right\}} \\
& \text { if } f\left(l_{1}, \ldots, I_{n}\right) \rightarrow r \Leftarrow c \text { is a fresh variant of a rewrite rule in } \mathcal{R} \\
& {[i] \frac{g\left(s_{1}, \ldots, s_{n}\right) \simeq x, \Gamma}{\left(s_{1} \simeq x_{1}, \ldots, s_{n} \simeq x_{n}, \Gamma\right) \theta} \text { where } \simeq \in\left\{=,==^{-1}, \triangleright\right\}, g \in \mathcal{F}_{c}} \\
& \text { if } g\left(s_{1}, \ldots, s_{n} \notin \mathcal{T}\left(\mathcal{F}_{c}, \mathcal{V}\right), \theta=\left\{x \mapsto g\left(x_{1}, \ldots, x_{n}\right)\right\} .\right. \\
& \frac{g\left(s_{1}, \ldots, s_{n}\right) \triangleright x, \Gamma}{\left(s_{1} \triangleright x_{1}, \ldots, s_{n} \triangleright x_{n}, \Gamma\right) \theta^{\prime}} \\
& \text { if } \theta^{\prime}=\left\{x \mapsto f\left(x_{1}, \ldots, x_{n}\right)\right\} \\
& \text { [d] } \frac{g\left(s_{1}, \ldots, s_{n}\right) \simeq g\left(t_{1}, \ldots, t_{n}\right), \Gamma}{s_{1} \simeq t_{1}, s_{n} \simeq t_{n}, \Gamma} \text { where } \simeq \in\{=, \triangleright\} \text { and } g \in \mathcal{F}_{c} \\
& \quad \frac{f\left(s_{1}, \ldots, s_{n}\right) \simeq f\left(t_{1}, \ldots, t_{n}\right), \Gamma}{s_{1} \triangleright t_{1}, \ldots, s_{n} \triangleright t_{n}, \Gamma}
\end{aligned}
$$

The lazy narrowing calculus LCNC_{ℓ}^{S}

 Inference rules (2)$$
\begin{aligned}
{[v] } & \frac{x>s, \Gamma}{\Gamma \theta} \text { were } s \notin \mathcal{V} \\
& \frac{s \vee x, \Gamma}{\Gamma \theta}
\end{aligned}
$$

$$
\begin{array}{r}
\frac{s \simeq x, \Gamma}{\Gamma \theta} \text { where } s \in \mathcal{T}\left(\mathcal{F}_{c}, \mathcal{V}\right) \\
\frac{x \simeq s, \Gamma}{\Gamma \theta} \text { where } s \in \mathcal{T}\left(\mathcal{F}_{c}, \mathcal{V}\right) \backslash \mathcal{V}
\end{array}
$$

$$
\text { where } x \notin \operatorname{vars}(s), \simeq \in\{=, \triangleright\} \text {, and } \theta=\{x \mapsto s\}
$$

$$
[t] \frac{s \triangleright s, \Gamma}{\Gamma}
$$

$$
\frac{s \simeq s, \Gamma}{\Gamma} \text { where } \simeq \in\{=, \triangleright\} \text { and } s \in \mathcal{T}\left(\mathcal{F}_{c}, \mathcal{V}\right)
$$

The lazy narrowing calculus LCNC_{ℓ}^{S}

 Inference rule selection strategy| $s \approx t$ | | | |
| :---: | :---: | :---: | :---: |
| | $\mathcal{F}_{\mathcal{C}}$ | $\mathcal{F}_{\mathcal{D}}$ | \mathcal{V} |
| $\mathcal{F}_{\mathcal{C}}$ | $[\mathrm{t}] ;[\mathrm{d}]$ | $[\mathrm{o}]_{2}$ | $[\mathbf{v}] ;[\mathrm{i}]$ |
| $\mathcal{F}_{\mathcal{D}}$ | $[\mathrm{o}]_{1}$ | $[\mathrm{o}]_{1}$ | $[\mathrm{o}]_{1}$ |
| \mathcal{V} | $[\mathrm{v}] ;[\mathbf{i}]$ | $[\mathrm{o}]_{2}$ | $[\mathrm{t}] ;[\mathrm{v}]$ |

$s \triangleright t$			
	$\mathcal{F}_{\mathcal{C}}$	$\mathcal{F}_{\mathcal{D}}$	\mathcal{V}
$\mathcal{F}_{\mathcal{C}}$	$[\mathrm{t}] ;[\mathrm{d}]$	\times	$[\mathrm{v}] ;[\mathrm{i}]$
$\mathcal{F}_{\mathcal{D}}$	$[\mathrm{o}]_{1}$	$[\mathrm{t}] ;[\mathrm{o}]_{1}$	$[\mathrm{o}]_{1}$
\mathcal{V}	$[\mathrm{v}]$	\times	$[\mathrm{t}] ;[\mathrm{v}]$

$s \triangleright t$			
	$\mathcal{F}_{\mathcal{C}}$	$\mathcal{F}_{\mathcal{D}}$	\mathcal{V}
$\mathcal{F}_{\mathcal{C}}$	$[\mathbf{t}] ;[\mathrm{d}]$	\times	$[\mathrm{v}] ;[\mathrm{i}]$
$\mathcal{F}_{\mathcal{D}}$	$[\mathrm{o}]_{1}$	$[\mathbf{t}] ;\left([\mathrm{o}]_{1},[\mathrm{~d}]\right)$	$[\mathrm{o}]_{1},[\mathrm{i}],[\mathrm{v}]$
\mathcal{V}	$[\mathrm{v}]$	$[\mathrm{v}]$	$[\mathbf{t}] ;[\mathrm{v}]$

Theorem

Let \mathcal{R} be a deterministic CTRS and θ an \mathcal{R}-normalized strict solution of Γ. Then there exists an LCNC_{ℓ}^{s}-refutation $\Gamma \Rightarrow_{\sigma}^{*} \square$ such that $\sigma \leq \theta[\operatorname{vars}(\Gamma)]$.

Higher-order extensions of the narrowing calculus

- Functional programming operates with functions as values
- The lambda calculus is suitable to express functional computations (function abstractions and function calls)
\Rightarrow it is natural to try to extend narrowing to solve systems of equations between λ-terms

$$
\begin{array}{rll}
t::= & x & \\
& \lambda x . t & \text { absiable } \\
& (t t) & \\
\text { application }
\end{array}
$$

where x ranges over a countably infinite set of variables.

Conversion rules for λ-terms

λ-terms are identified modulo the following conversion rules:

- $\lambda x . t \rightarrow \lambda y .(t\{x \mapsto y\})$ if $y \in \mathcal{V} \backslash \operatorname{vars}(t) \quad(\alpha$-conversion)
- $(\lambda x . s) t=s\{x \mapsto t\}$ (β-conversion)
- $(\lambda x .(t x)=t$ if $x \in \mathcal{V} \backslash \operatorname{vars}(t)$
(η-conversion)

Rewriting systems for λ-terms

- Usually, higher-order E-unification is performed between simply-typed λ-terms, which can be represented in a standard form called long $\beta \eta$-normal form
- TRSs have been generalised to pattern rewrite systems (PRS), and CTRSs to conditional PRSs
- Narrowing has been generalised to higher-order lazy narrowing with PRSs.
- 1998: Prehofer proposed lazy narrowing calculus for PRS \mathcal{R}, called LN. LN performs higher-order \mathcal{R}-preunification.
- Main challenge: reduce the search space for solutions
- since 2000: several refinements of LN which reduce nondeterminism have been proposed.

