Unification by Narrowing

Mircea Marin

West University of Timisoara

mmarin@info.uvt.ro

May 20, 2014

Marin Unification by Narrowing

ヘロト 人間 ト ヘヨト ヘヨト

3

- Narrowing
 - sound and complete method for solving *E*-unification problems in theories presented by complete term rewriting systems.
 - computational model for functional logic programming (FLP)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Narrowing
 - sound and complete method for solving *E*-unification problems in theories presented by complete term rewriting systems.
 - computational model for functional logic programming (FLP)
- Functional logic programming = programming style resulted by the integration of two declarative programming styles: Functional Programming and Logic Programming FLP = FP + LP

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Narrowing
 - sound and complete method for solving *E*-unification problems in theories presented by complete term rewriting systems.
 - computational model for functional logic programming (FLP)
- Functional logic programming = programming style resulted by the integration of two declarative programming styles: Functional Programming and Logic Programming FLP = FP + LP
- Functional Programming
 - Program = term rewriting system (usually terminating and confluent)
 - Computation = reduction to normal form ⇒ value

ヘロン 人間 とくほ とくほとう

3

- Narrowing
 - sound and complete method for solving *E*-unification problems in theories presented by complete term rewriting systems.
 - computational model for functional logic programming (FLP)
- Functional logic programming = programming style resulted by the integration of two declarative programming styles: Functional Programming and Logic Programming FLP = FP + LP
- Functional Programming
 - Program = term rewriting system (usually terminating and confluent)
 - Computation = reduction to normal form ⇒ value
- Logic Programming
 - Program = set of Horn clauses (rules and facts)
 - Computation: SLD resolution of goals
 - \Rightarrow computed answers

ロトス通とスヨトスヨト

3

DESIRE: inherit the best features from both logic programming and functional programming

- Advantages of logic programming:
 - Logical variables; sound and complete search strategy for answers to queries
- Advantages of functional programming:
 - More efficient operational behaviour: evaluation of function calls is more deterministic than computing answers to queries.

・ 同 ト ・ ヨ ト ・ ヨ ト …

DESIRE: inherit the best features from both logic programming and functional programming

- Advantages of logic programming:
 - Logical variables; sound and complete search strategy for answers to queries
- Advantages of functional programming:
 - More efficient operational behaviour: evaluation of function calls is more deterministic than computing answers to queries.

Approaches to integrate FP with LP and define FLP=FP+LP

- Integrate functions into LP.
- Extend FP with equational queries involving function calls and logical variables.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

DESIRE: inherit the best features from both logic programming and functional programming

- Advantages of logic programming:
 - Logical variables; sound and complete search strategy for answers to queries
- Advantages of functional programming:
 - More efficient operational behaviour: evaluation of function calls is more deterministic than computing answers to queries.
- Approaches to integrate FP with LP and define FLP=FP+LP
 - Integrate functions into LP.
 - Extend FP with equational queries involving function calls and logical variables.

Historically, both approaches resulted in languages with similar computational models.

Starting from

 $f, g, h, \ldots \in \mathcal{F}$: ranked signature of function symbols; $ar(f) \in \mathbb{N}$ for all $f \in \mathcal{F}$ $x, y, z, \ldots \in \mathcal{V}$: countable set of variables

we build

- Terms: $t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$: $t ::= x | f(t_1, ..., t_n)$ where ar(f) = nConvention: abbreviate f() by f
- Equations: e ::= s = t where $s, t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$
- Rewrite rules: $I \rightarrow r$ where $I, r \in \mathcal{T}(\mathcal{F}, \mathcal{V}), I \notin \mathcal{V},$ vars $(r) \subseteq vars(I)$. A TRS is a set of rewrite rules.
- Rewriting with a TRS R = replacing "equals by equals" in a directed manner: s →_R t if there exist p ∈ Pos(s), (I → r) ∈ R, and substitution σ : V → T(F, V) such that s|_p = lσ and t = s[rσ]_p.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Equational reasoning

Equational reasoning = reasoning with equations in the quotient algebra $\mathcal{T}(\mathcal{F}, \mathcal{V})/_{=_{\mathcal{E}}}$ where $=_{\mathcal{E}}$ is the congruence relation induced on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ by a set of equations \mathcal{E} (the equational axioms);

 $=_{E}$ is the least equivalence relation on $\mathcal{T}(\mathcal{F}, \mathcal{V})$, which satisfies the following two additional conditions:

Substitution: if $s =_E t$ then $s\sigma =_E t\sigma$ for all substitutions σ Replacement: if $I =_E r$ and $s|_p = I$ then $s =_E s[r]_p$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Equational reasoning = reasoning with equations in the quotient algebra $\mathcal{T}(\mathcal{F}, \mathcal{V})/_{=_{\mathcal{E}}}$ where $=_{\mathcal{E}}$ is the congruence relation induced on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ by a set of equations \mathcal{E} (the equational axioms);

 $=_{E}$ is the least equivalence relation on $\mathcal{T}(\mathcal{F}, \mathcal{V})$, which satisfies the following two additional conditions:

Substitution: if $s =_E t$ then $s\sigma =_E t\sigma$ for all substitutions σ Replacement: if $l =_E r$ and $s|_p = l$ then $s =_E s[r]_p$.

E-unification problem

Given a set of equations *E* and a system of equations

$$\Gamma$$
: $\boldsymbol{s}_1 = t_1, \ldots, \boldsymbol{s}_n = t_n$

Find a representation of the set of substitutions σ such that $s_i \sigma =_E t_i \sigma$ for all i = 1..n.

 Γ is an *E*-unification problem, and a σ is a unifier of Γ .

ASUMPTIONS:

- E : set of equations
- Γ : *E*-unification problem

Sol(Γ) : the set of all unifiers of Γ

- ▷ *E* induces an order on terms: $s \leq_E t$ if $s\sigma =_E t$ for some σ .
- A set S of substitutions is a complete set of unifiers (csu) of Γ if

2 For any $\theta \in Sol(\Gamma)$ there is a $\sigma \in S$ such that $\sigma(x) \leq_E \theta(x)$ for all $x \in vars(\Gamma)$

S is a minimal csu (mcsu) of Γ if it also satisfies the following condition:

• If $\sigma_1, \sigma_2 \in S$ and $\sigma_1(x) \leq_E \sigma_2(x)$ for all $x \in vars(\Gamma)$, then $\sigma_1 = \sigma_2$.

(雪) (ヨ) (ヨ)

The unification hierarchy (2)

mcsu of Γ may not exist!

Unification problem without mcsu [Schmidt-Schauss, 1986]

$$E = \{f(f(x, y), z) = f(x, f(y, z)), f(x, x) = x\}$$

$$\Gamma : f(z, f(a, f(x, f(a, z)))) = f(z, f(a, z))$$

[Siekmann, 1978] introduced the following hierarchy of unification problems:

- unitary: they have a mcsu with 0 or 1 elements.
- finitary: they have a mcsu with finite number of elements.
- infinitary: they have a mcsu with infinite number of elements.
- nullary: they do not have mcsu.

< 回 > < 回 > < 回 > .

mcsu of Γ may not exist!

Unification problem without mcsu [Schmidt-Schauss, 1986]

$$E = \{f(f(x, y), z) = f(x, f(y, z)), f(x, x) = x\}$$

$$\Gamma : f(z, f(a, f(x, f(a, z)))) = f(z, f(a, z))$$

[Siekmann, 1978] introduced the following hierarchy of unification problems:

- unitary: they have a mcsu with 0 or 1 elements.
- finitary: they have a mcsu with finite number of elements.
- infinitary: they have a mcsu with infinite number of elements.
- nullary: they do not have mcsu.

[Nutt, 1991] proved that the unification hierarchy is undecidable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Unification in theories presented by TRSs

IMPLICIT ASSUMPTIONS: \mathcal{R} is a TRS, and

 =_R is the congruence relation induced by R, viewed as system of equations.

• $s \downarrow_{\mathcal{R}} t : \stackrel{\text{def}}{\longleftrightarrow}$ there exists u s.t. $s \rightarrow_{\mathcal{R}}^{*} u$ and $t \rightarrow_{\mathcal{R}}^{*} u$.

From now on we will consider systems of equations (also known as goals)

$$\Gamma: s_1 = t_1, \ldots, s_n = t_n$$

interpreted in equational theories presented by term rewriting systems. This means that:

- We interpret the equality = as =_R. If R is confluent then =_R coincides with ↓_R.
- We wish to compute a compute set of *R*-unifiers of Γ.
 These *R*-unifiers are also known as solutions of Γ.

(문화)(문화)

Term rewriting systems Important properties

- A TRS ${\mathcal R}$ is
 - terminating (or normalizing) if very sequence of rewrite steps will eventually terminate: t →_R t₁ →_R ... →_R t_n ⇒_R t_n ⇒_R t_n is called a normal form of t.
 - weakly-normalizing if for any term *t* there exists a rewrite termination that ends with a normal form:

 $t = t_0 \rightarrow_{\mathcal{R}} t_1 \rightarrow_{\mathcal{R}} \ldots \rightarrow_{\mathcal{R}} t_n \not\rightarrow_{\mathcal{R}}$

- confluent if $t_1 \downarrow_{\mathcal{R}} t_2$ whenever $t \rightarrow_{\mathcal{R}}^* t_1$ and $t \rightarrow_{\mathcal{R}}^* t_2$.
- semi-complete if it is weakly-normalizing and confluent.
- complete if it is terminating and confluent.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Term rewriting systems Important properties

- A TRS ${\mathcal R}$ is
 - terminating (or normalizing) if very sequence of rewrite steps will eventually terminate: t →_R t₁ →_R ... →_R t_n ⇒_R t_n ⇒_R t_n is called a normal form of t.
 - weakly-normalizing if for any term *t* there exists a rewrite termination that ends with a normal form:

 $t = t_0 \rightarrow_{\mathcal{R}} t_1 \rightarrow_{\mathcal{R}} \ldots \rightarrow_{\mathcal{R}} t_n \not\rightarrow_{\mathcal{R}}$

- confluent if $t_1 \downarrow_{\mathcal{R}} t_2$ whenever $t \rightarrow_{\mathcal{R}}^* t_1$ and $t \rightarrow_{\mathcal{R}}^* t_2$.
- semi-complete if it is weakly-normalizing and confluent.
- complete if it is terminating and confluent.

Remarks

- If \mathcal{R} is confluent then $s =_{\mathcal{R}} t$ iff $s \downarrow_{\mathcal{R}} t$.
- If \mathcal{R} is complete then $=_{\mathcal{R}}$ is decidable.

ヘロン 人間 とくほ とくほう

Computations in FP and FLP

- **Program** = complete TRS defined over a signature $T = T_{\text{res}} || T_{\text{res}}$ where
 - $\mathcal{F} = \mathcal{F}_d \uplus \mathcal{F}_c$ where
 - \mathcal{F}_d : set of defined function symbols
 - \mathcal{F}_c : set of constructors
- Rewrite rules are of the form $f(s_1, \ldots, s_n) \rightarrow t$ where $f \in \mathcal{F}_d$ and $s_1, \ldots, s_n \in \mathcal{T}(\mathcal{F}_c, \mathcal{V})$.
- Computation in FP: computes the (unique) normal form of a term *t*
 - Strict languages: terms are reduced by leftmost innermost rewriting.
 - Lazy languages: terms are reduced by leftmost outermost rewriting.
- Computation in FLP: find a csu (preferably mcsu) of

$$\Gamma: \mathbf{s}_1 = t_1, \ldots, \mathbf{s}_n = t_n$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theoretical results Narrowing

ASSUMPTION: \mathcal{R} is a TRS.

Definition (Fresh variant)

A fresh variant of a rewrite rule $I \rightarrow r$ is a bijective substitution σ with $dom(\sigma) = vars(I)$ and $\sigma(x)$ is a fresh new variable for each $x \in dom(\sigma)$.

Definition (Narrowing [Slagle, 1974])

s is narrowable into *t*, notation $s \rightsquigarrow_{\sigma, \mathcal{R}} t$, if there exist

- a narrowing position $p \in Pos(s)$ such that $s|_p \notin \mathcal{V}$
- a fresh variant $I \rightarrow r$ of a rewrite rule of \mathcal{R}

such that $\sigma = mgu(s|_{\rho}, I)$ and $t = s[r]_{\rho}\sigma$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theoretical results Narrowing

ASSUMPTION: \mathcal{R} is a TRS.

Definition (Fresh variant)

A fresh variant of a rewrite rule $I \rightarrow r$ is a bijective substitution σ with $dom(\sigma) = vars(I)$ and $\sigma(x)$ is a fresh new variable for each $x \in dom(\sigma)$.

Definition (Narrowing [Slagle, 1974])

s is narrowable into *t*, notation $s \rightsquigarrow_{\sigma, \mathcal{R}} t$, if there exist

- a narrowing position $p \in Pos(s)$ such that $s|_p \notin V$
- a fresh variant $I \rightarrow r$ of a rewrite rule of \mathcal{R}

such that $\sigma = mgu(s|_{\rho}, I)$ and $t = s[r]_{\rho}\sigma$.

NOTATION: A derivation $t_0 \rightsquigarrow_{\sigma_1,\mathcal{R}} t_1 \rightsquigarrow_{\sigma_2,\mathcal{R}} \ldots \rightsquigarrow_{\sigma_n,\mathcal{R}} t_n$ is abbreviated $t_0 \rightsquigarrow_{\sigma,\mathcal{R}}^* t_n$, or simply $t_0 \rightsquigarrow_{\sigma}^* t_n$, where $\sigma = \sigma_1 \ldots \sigma_n$.

Theorem ([Hullot, 1985])

If \mathcal{R} is complete then Soundness: If $s = t \rightsquigarrow_{\sigma} s' = t'$ and $\theta = mgu(s', t')$ then $(s\sigma\theta) =_{\mathcal{R}} (t\sigma\theta)$ Completeness: If $s\theta =_{\mathcal{R}} t\theta$ then there exist • $s = t \rightsquigarrow_{\sigma}^{*} s' = t'$ and • $\sigma' \in mgu(s', t')$ such that $\sigma\sigma' \leq_{\mathcal{R}} \theta$ [vars(s, t)].

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem ([Hullot, 1985])

If \mathcal{R} is complete then Soundness: If $s = t \rightsquigarrow_{\sigma} s' = t'$ and $\theta = mgu(s', t')$ then $(s\sigma\theta) =_{\mathcal{R}} (t\sigma\theta)$ Completeness: If $s\theta =_{\mathcal{R}} t\theta$ then there exist • $s = t \rightsquigarrow_{\sigma}^{*} s' = t'$ and • $\sigma' \in mgu(s', t')$ such that $\sigma\sigma' \leq_{\mathcal{R}} \theta$ [vars(s, t)].

Question: Can we drop the condition of termination of \mathcal{R} , and still have soundness and completeness?

Answer: Yes, if we restrict ourselves to normalized unifiers: $NSol(\Gamma) = \{\theta \in Sol(\Gamma) \mid x\theta \text{ is normal form, for all } x \in dom(\theta)\}.$

イロト 不得 とくほ とくほ とうほ

Narrowing computations

 $\mathcal{R} = \{0 + x \to x, s(x) + y \to s(x + y), x = x \to \text{true}\}.$ Let's solve z + z = s(s(0)):

$$\begin{split} \underline{z+z} &= s(s(0)) \rightsquigarrow_{\{y_1 \mapsto s(x_1), z \mapsto s(x_1)\}, s(x_1) + y_1 \rightarrow s(x_1 + y_1)} \\ s(\underline{x_1 + s(x_1)}) &= (s(0)) \rightsquigarrow_{\{x_1 \mapsto 0, x_2 \mapsto s(0)\}, 0 + x_2 \mapsto x_2} \\ \overline{s(s(0))} &= s(s(0)) \rightsquigarrow_{\{x_3 \mapsto s(s(0))\}, x_3 + x_3 \rightarrow \text{true}} \text{ true} \end{split}$$

Solution: $\{y_1 \mapsto s(x_1), z \mapsto s(x_1)\}\{x_1 \mapsto 0, x_2 \mapsto s(0)\}\{x_3 \mapsto s(s(0))\}$ = $\{y_1 \mapsto s(0), z \mapsto s(0), x_1 \mapsto 0, x_2 \mapsto s(0), x_3 \mapsto s(s(0))\}$ restricted to *vars*(z + z = 0) = $\{z\}$, is $\theta = \{z \mapsto s(0)\}$ There are also several failed attempts to compute \mathcal{R} -unifiers:

$$\underline{z+z} = s(s(0)) \rightsquigarrow_{\{z \mapsto 0, x_1 \mapsto 0\}, 0+x_1 \to x_1} 0 = s(s(0)) \not \rightarrow$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let \mathcal{R} be a confluent TRS, Γ : $s_1 = t_1, \ldots, s_n = t_n$, and

•
$$\mathcal{R}_+ := \mathcal{R} \cup \{(x = x) \rightarrow \texttt{true}\}$$

• T := generic notation for system containing only true-s

Definition

 $\leadsto_{\mathcal{R}}$ is extended to act on systems of equations as follows:

$$\Gamma_1, \boldsymbol{e}, \Gamma_2 \leadsto_{\sigma, \mathcal{R}} (\Gamma_1, \boldsymbol{e}', \Gamma_2) \sigma$$

if $e \rightsquigarrow_{\sigma, \mathcal{R}} e'$ where e is a non-true equation.

NOTATION: Like before, we abbreviate $\Gamma_0 \rightsquigarrow_{\sigma_1} \ldots \rightsquigarrow_{\sigma_n} \Gamma_n$ with $\Gamma_0 \rightsquigarrow_{\sigma}^* \Gamma_n$, where $\sigma = \sigma_1 \ldots \sigma_n$. Also, we define the set of answers computed by narrowing: $Ans(\Gamma) = \{\sigma \mid \Gamma \rightsquigarrow_{\sigma}^* \top\}$

Corollary

Ans(Γ) is a csu of Γ .

The computation of $Ans(\Gamma)$ is highly nondeterministic, due to the selection of

- the narrowing position
- 2 the rewrite rule to be applied at the narrowing position

A more deterministic version of narrowing, still sound and complete w.r.t. normalized unifiers, is <u>basic narrowing</u> ([Hullot, 1987], [Middeldorp *et al*, 1996])

Definition (Position constraint)

A position constraint for Γ is a mapping that assigns to every equation $e \in \Gamma$ a subset of $Pos_{\mathcal{F}}(e) = \{p \in Pos(e) \mid e|_p \notin \mathcal{V}\}$. The position constraint that assigns to every $e \in \Gamma$ the set $Pos_{\mathcal{F}}(e)$ is denoted by $\overline{\Gamma}$.

(人間) 人 国 医 人 国 医

Containing the high nondeterminism (2) Basic narrowing

Definition (Basic derivation)

 $\Gamma_1 \rightsquigarrow_{\sigma_1, e_1, p_1, l_1 \rightarrow r_1} \dots \rightsquigarrow_{\sigma_{n-1}, e_{n-1}, p_{n-1}, l_{n-1} \rightarrow r_{n-1}} \Gamma_n$ is based on a position constraint B_1 for Γ_1 if $p_i \in B_i(e_i)$ for $1 \le i \le n-1$, where

$$egin{aligned} B_{i+1}(m{e}) &:= \left\{egin{aligned} B_i(m{e}') & ext{if } m{e}' \in \Gamma_i \setminus \{m{e}_i\} \ \mathcal{B}(B_i(m{e}_i),m{p}_i,r_i) & ext{if } m{e}' = m{e}_i[r_i]_{m{p}_i} \end{aligned}
ight. \end{aligned}$$

for all $1 \le i < n-1$ and $e = e' \sigma_i \in \Gamma_{i+1}$, with $\mathcal{B}(B_i(e_i), p_i, r_i)$ abbreviating the set of positions

 $B_i(e_i) \setminus \{q \in B_i(e_i) \mid q \ge p_i\} \cup \{p_i \cdot q \in Pos_{\mathcal{F}}(e) \mid q \in Pos_{\mathcal{F}}(r_i)\}.$

Such a narrowing derivation of Γ_1 is basic if $B_1 = \overline{\Gamma}_1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

REMARK: In a basic narrowing derivation, narrowing is never applied to a subterm introduced by a previous narrowing substitution.

Theorem ([Hullot, 1987], [Middeldorp and Hamoen, 1994])

Let \mathcal{R} be a confluent TRS and Γ a system of equations. For every normalized unifier θ of G there exists a basic narrowing refutation $\Gamma \rightsquigarrow_{\sigma}^* \top$ such that $\sigma \leq_{\mathcal{R}} \theta$ [vars(Γ)] provided one of the following conditions is satisfied:

- R is terminating
- **2** \mathcal{R} is orthogonal and $\Gamma\theta$ has an \mathcal{R} -normal form
- R is right-linear

ヘロト ヘアト ヘビト ヘビト

Narrowing derivations

 $\mathcal{R} = \{rev(rev(x)) \rightarrow x\}$ specifies a property of the reverse operation on lists.

• An infinite non-basic narrowing derivation

The only basic narrowing derivation of the same Γ is

$$\Gamma: \underline{rev}(x) = x \rightsquigarrow_{\{x \mapsto rev(x_1)\}, 1, rev(rev(x_1)) \to x_1} x_1 = \underline{rev}(x_1)$$

Basic narrowing prohibits any further narrowing steps $\Rightarrow \Gamma$ has no unifiers.

|| (同) || (回) || (\cup) |

Theorem ([Hullot, 1980])

If $\mathcal{R} = \{l_i \rightarrow r_i \mid 1 \le i \le n\}$ is a complete TRS, and any basic narrowing derivation starting from r_i terminates, then all basic narrowing derivations starting from any term terminate.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Theorem ([Hullot, 1980])

If $\mathcal{R} = \{l_i \rightarrow r_i \mid 1 \le i \le n\}$ is a complete TRS, and any basic narrowing derivation starting from r_i terminates, then all basic narrowing derivations starting from any term terminate.

Corollary

Basic narrowing becomes a decision procedure for *E*-unification if the conditions of the previous theorem hold.

イロト イポト イヨト イヨト 三日

Narrowing calculi

- Computational model of several functional logic programming languages.
- Narrowing is a complicated operation ⇒ various narrowing calculi consisting of more elementary inference rules that simulate narrowing have been proposed
- Properties of narrowing calculi
 - Easier to analyse than the narrowing operation
 - Three sources of nondeterminism, due to the choice of
 - the equation of the system
 - 2 the inference rule to be applied
 - the rewrite rule of the TRS (for certain inference rules)
- Several criteria have been proposed to reduce these sources of nondeterminism under reasonable assumptions.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Lazy narrowing calculi LNC [Middeldorp and Okui, 1999]

[o] outermost narrowing: $\frac{\Gamma_1, f(s_1, \dots, s_n) \simeq t, \Gamma_2}{\Gamma_1, s_1 = l_1, \dots, s_n = l_n, r = t, \Gamma_2}$ if $f(I_1, \ldots, I_n) \rightarrow r$ is a fresh variant of a rule from \mathcal{R} [*i*] imitation: $\frac{\Gamma_1, f(s_1, \dots, s_n) \simeq x, \Gamma_2}{(\Gamma_1, s_1 = x_1, \dots, s_n = x_n, \Gamma_2)\theta}$ if $\theta = \{x \mapsto f(x_1, \dots, x_n)\}$ with x_1, \dots, x_n fresh variables. [d] decomposition: $\frac{\Gamma_1, f(s_1, \dots, s_n) = f(t_1, \dots, t_n), \Gamma_2}{\Gamma_1, s_1 = t_1, \dots, s_n = t_n, \Gamma_2}$ [*v*] variable elimination: $\frac{\Gamma_1, x \simeq t, \Gamma_2}{(\Gamma_1, \Gamma_2)\sigma}$ if $x \notin vars(t)$ and $\sigma = \{x \mapsto t\}$ [*t*] removal of trivial equations: $\frac{\Gamma_1, x = x, \Gamma_2}{\Gamma_1, \Gamma_2}$ The red equations produced by [o] are called

parameter-passing equations.

NOTATION:

- Γ ⇒_{[α],σ} Γ' if Γ and Γ' are the upper and lower parts of an inference rule [α] (α ∈ {o, i, d, v, t}) and σ is the substitution computed by that inference rule.
- □ denotes the system with no equations.
- An LNC-derivation $\Gamma_0 \Rightarrow_{[\alpha_1],\sigma_1} \ldots \Rightarrow_{[\alpha_n],\sigma_n} \Gamma_n$ is abbreviated $\Gamma_0 \Rightarrow^*_{\sigma} \Box$ where $\sigma = \sigma_1 \ldots \sigma_n$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Theorem

If \mathcal{R} is confluent and θ is a normalized \mathcal{R} -unifier of Γ then there exists $\Gamma \Rightarrow_{\sigma}^* \Box$ respecting leftmost equation selection strategy such that $\sigma \leq \theta$ [vars(Γ)].

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Theorem

If \mathcal{R} is confluent and θ is a normalized \mathcal{R} -unifier of Γ then there exists $\Gamma \Rightarrow_{\sigma}^* \Box$ respecting leftmost equation selection strategy such that $\sigma \leq \theta$ [vars(Γ)].

Theorem

Let \mathcal{R} be a confluent TRS, Γ a system of equations, and S any selection function for equations from a system. For every normalized solution θ of Γ there exists an LNC-refutation $\Gamma \Rightarrow_{\sigma}^* \Box$ respecting S such that $\sigma \leq \theta$ [vars(Γ)] provided one of the following conditions holds:

- R is terminating
- **2** \mathcal{R} is orthogonal and $\Gamma \theta$ has an \mathcal{R} -normal form
- R is right-linear

Refinements of LNC LNC with eager variable elimination [Middeldorp and Okui, 1996]

Refinement of LNC which performs eager variable elimination for descendants of parameter-passing equations:

 Whenever we select an equation x ≃ t with x ∉ vars(t), which is descendant of a parameter-passing equation, we apply inference rule [v].

Theorem

Let \mathcal{R} be an orthogonal TRS and Γ a system of equations. For every \mathcal{R} -normalized unifier θ of Γ there exists an eager LNC-refutation $G \Rightarrow_{\sigma}^* \Box$ respecting leftmost equation selection strategy, such that $\sigma \leq \theta$ [vars(Γ)].

Note that a TRS ${\mathcal R}$ is orthogonal if

- It is left-linear, i.e., no equation appears twice in any lhs of some rewrite rule
- It's rewrite rules are non-overlapping

ヘロア ヘビア ヘビア・

Designed for strict solving of systems of equations

Definition

Let \mathcal{R} be a TRS. A substitution σ is a strict solution of a system Γ if for every equation s = t in Γ there exists a constructor term u such that $s\sigma \rightarrow_{\mathcal{R}}^* u$ and $t\sigma \rightarrow_{\mathcal{R}}^* u$.

LNC_d is a refinement of calculus LNC which distinguishes:

•
$$\mathcal{F} = \mathcal{F}_{c} \uplus \mathcal{F}_{d}$$
, where
 $\mathcal{F}_{d} := \{ f \in \mathcal{F} \mid \exists (f(s_{1}, \dots, s_{n}) \to r) \in \mathcal{R} \} \text{ and } \mathcal{F}_{c} = \mathcal{F} \setminus \mathcal{F}_{d}$

Descendants of initial equations (written as s = t) from descendants of parameter-passing equations (written as s > t). We write s ≅ t if s ≡ t or t ≡ s

(本間) (本語) (本語)

LNC_d Inference rules for initial equations

 $[o]_{\equiv}$ outermost narrowing: $\frac{f(s_1, \dots, s_n) \cong t, \Gamma}{s_1 \rhd l_1, \dots, s_n \rhd l_n, r \equiv t, \Gamma}$ if $root(t) \notin \mathcal{F}_d$ and $f(s_1, \ldots, s_n) \to r$ is a fresh variant of a rewrite rule from \mathcal{R} $[i]_{\equiv}$ imitation: $\frac{f(s_1, \dots, s_n) \cong x, \Gamma}{(s_1 \equiv x_1, \dots, s_n \equiv x_n, \Gamma)\sigma}$ if $f \in \mathcal{F}_c$, $c \notin vars_c(f(s_1, \ldots, s_n))$, $f(s_1, \ldots, s_n) \notin \mathcal{T}(\mathcal{F}_c, \mathcal{V})$, and $\sigma = \{x \mapsto f(x_1, \ldots, x_n)\}$ with x_1, \ldots, x_n fresh variables. $[d]_{\equiv} \text{ decomposition: } \frac{f(s_1, \dots, s_n) \equiv f(t_1, \dots, t_n), \Gamma}{s_1 \equiv t_1, \dots, s_n \equiv t_n, \Gamma}$ $[v]_{\equiv}$ variable elimination: $\frac{s \cong x, \Gamma}{\Gamma_{\tau}}$ if $x \notin vars(s)$ and $\sigma = \{x \mapsto s\}$ $[t]_{\pm}$ removal of trivial equations: $\frac{x \equiv x, \Gamma}{\Gamma}$

$[o]_{\triangleright}$ outermost narrowing:

$$\frac{f(s_1,\ldots,s_n) \rhd t, \Gamma}{s_1 \rhd l_1,\ldots,s_n \rhd l_n, r \rhd t, \Gamma}$$

if $root(t) \notin \mathcal{F}_d$ and $f(s_1, \ldots, s_n) \to r$ is a fresh variant of a rewrite rule from \mathcal{R}

$$\begin{bmatrix} \boldsymbol{d} \end{bmatrix}_{\triangleright} \text{ decomposition: } \frac{f(\boldsymbol{s}_1, \dots, \boldsymbol{s}_n) \triangleright f(t_1, \dots, t_n), \Gamma}{\boldsymbol{s}_1 \triangleright t_1, \dots, \boldsymbol{s}_n \triangleright t_n, \Gamma} \\ \begin{bmatrix} \boldsymbol{v} \end{bmatrix}_{\triangleright} \text{ variable elimination: } \frac{\boldsymbol{s} \triangleright \boldsymbol{x}, \Gamma}{\Gamma \sigma} \quad \frac{\boldsymbol{x} \triangleright \boldsymbol{s}, \Gamma}{\Gamma \sigma} \\ \text{ if } \boldsymbol{x} \notin vars(\boldsymbol{s}) \text{ and } \sigma = \{\boldsymbol{x} \mapsto \boldsymbol{s}\} \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Theorem

Let \mathcal{R} be a left-linear confluent constructor system and Γ a system of equations. For every strict and normalized solution θ of Γ there exists an LNC_d-refutation $G \Rightarrow_{\sigma}^* \Box$ such that $\sigma \leq_{\mathcal{R}} \theta$ [vars(Γ)]

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Theorem

Let \mathcal{R} be a left-linear confluent constructor system and Γ a system of equations. For every strict and normalized solution θ of Γ there exists an LNC_d-refutation $G \Rightarrow_{\sigma}^* \Box$ such that $\sigma \leq_{\mathcal{R}} \theta$ [vars(Γ)]

Remark

The only source of nondeterminism of the lazy narrowing calculus LNC_d is the choice of the rewrite rule when applying inference rules $[o]_{\equiv}$ and $[o]_{\triangleright}$.

The other sources of nondeterminism disappeared:

- The selected equation is always the leftmost
- Interest of the second seco

ヘロン 人間 とくほ とくほとう

3

Extensions to larger classes of TRSs

A conditional TRS (CTRS) consists of conditional rewrite rules $l \rightarrow r \leftarrow c$ where the conditional part is a (possibly empty) sequence $s_1 = t_1, \ldots, s_n = t_n$ of equations. We require $l \notin \mathcal{V}$.

$$evars(l \rightarrow r \leftarrow c) := vars(r, c) \setminus vars(l)$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Extensions to larger classes of TRSs

A conditional TRS (CTRS) consists of conditional rewrite rules $l \rightarrow r \leftarrow c$ where the conditional part is a (possibly empty) sequence $s_1 = t_1, \ldots, s_n = t_n$ of equations. We require $l \notin V$.

$$evars(l \rightarrow r \leftarrow c) := vars(r, c) \setminus vars(l)$$

CTRSs are classified according to the distribution of variables in rewrite rules, into:

1-CTRS vars(r, c) \subseteq vars(l)for all rules $l \rightarrow r \leftarrow c$ 2-CTRS vars(r) \subset vars(l)for all rules $l \rightarrow r \leftarrow c$

3-CTRS vars(r) \subseteq vars(l, c)

for all rules $l \rightarrow r \leftarrow c$

REMARK: Extra variables enable a note natural style of writing program specifications

Example (Fibonacci numbers)

$$\begin{array}{l} 0+y \rightarrow y, \ s(x)+y \rightarrow s(x+y), \\ \textit{fib}(0) \rightarrow \langle 0, s(0) \rangle, \\ \textit{fib}(s(x)) \rightarrow \langle z, y+z \rangle \Leftarrow \textit{fib}(x) = \langle y, z \rangle \end{array}$$

Rewriting with conditional TRSs

ASSUMPTIONS:

- every CTRS *R* contains the rewrite rule *x* = *x* → true
- true and = do not occur in other rewrite rules of ${\cal R}$
- T denotes any sequence of trues

We define inductively the unconditional TRSs \mathcal{R}_n for $n \ge 0$:

$$\mathcal{R}_0 := \{ x = x \to \text{true} \}$$
$$\mathcal{R}_{n+1} := \{ I\sigma \to r\sigma \mid I \to r \Leftarrow c \in \mathcal{R} \text{ and } c\sigma \to_{\mathcal{R}_n}^* \top \}$$

and abbreviate $\rightarrow_{\mathcal{R}_n}$ by \rightarrow_n

・ 「 ト ・ ヨ ト ・ 日 ト …

Rewriting with conditional TRSs

ASSUMPTIONS:

- every CTRS \mathcal{R} contains the rewrite rule $x = x \rightarrow \texttt{true}$
- true and = do not occur in other rewrite rules of ${\cal R}$
- T denotes any sequence of trues

We define inductively the unconditional TRSs \mathcal{R}_n for $n \ge 0$:

$$\mathcal{R}_0 := \{ x = x \to \text{true} \}$$
$$\mathcal{R}_{n+1} := \{ l\sigma \to r\sigma \mid l \to r \Leftarrow c \in \mathcal{R} \text{ and } c\sigma \to_{\mathcal{R}_n}^* \top \}$$

and abbreviate $\rightarrow_{\mathcal{R}_n}$ by \rightarrow_n

Remarks

We interpret equality as joinability; such kind of CTRSs are known as join CTRSs in the literature.

<回と < 回と < 回と

Level confluence: \mathcal{R} is level-confluent if every \mathcal{R}_n is confluent.

Shallow-confluence: \mathcal{R} is shallow-confluent if

$${}^*_m \leftarrow \circ \rightarrow^*_n \subseteq {}^*_n \leftarrow \circ \rightarrow^*_m \text{ for all } m, n \ge 0.$$

Decreasingness: \mathcal{R} is decreasing if there exists a well-founded

- \succ order on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ with the following properties:
 - \succ contains $\rightarrow_{\mathcal{R}}$
 - ≻ has the subterm property (i.e., ⊲⊆≻ where s ⊳ t iff t is a proper subterm of s)
 - tσ ≻ sσ and sσ ≻ tσ for every l → r ⇐ c ∈ R, every s = t from c, and every substitution σ.

Remark

Shallow-confluent CTRSs are level-confluent, but the reverse is not true.

ヘロト ヘワト ヘビト ヘビト

ъ

Assumption: \mathcal{R} is a CTRS $\frac{\Gamma', e, \Gamma''}{(\Gamma', e[r]_{p}, c, \Gamma'')\sigma}$ if there is rewrite if

if there exist a fresh variant $l \rightarrow r \leftarrow c$ of a rewrite rule in \mathcal{R} , a non-variable position p in e, and $\sigma = mgu(e|_p, l)$.

Remarks

- ▷ The previous inference rule is also written as $(\Gamma', e, \Gamma'') \rightsquigarrow_{\sigma, p, l \to r \leftarrow c} (\Gamma', e[r]_p, c, \Gamma'')\sigma$ or simply $(\Gamma', e, \Gamma'') \rightsquigarrow_{\sigma} (\Gamma', e[r]_p, c, \Gamma'')\sigma$.
- ▷ CNC is sound: If $\Gamma \rightsquigarrow_{\sigma}^* \top$ then $\sigma|_{vars(G)}$ is an \mathcal{R} -unifier of Γ.
- We can define basic conditional narrowing, similar to basic narrowing:
 - Main idea: no narrowing steps should take place at positions introduced by previous narrowing substitutions.

<ロ> (四) (四) (三) (三) (三) (三)

A CNC-derivation

$$\Gamma_1 \rightsquigarrow_{\theta_1, p_1, l_1 \to r_1 \Leftarrow c_1} \cdots \rightsquigarrow_{\theta_{n-1}, p_{n-1}, l_{n-1} \to r_{n-1} \Leftarrow c_{n-1}} \Gamma_n$$

is based on a position constraint B_1 for Γ_1 if $p_i \in B_i(e_i)$ for $1 \le i \le n-1$, where the position constraints B_2, \ldots, B_{n-1} for $\Gamma_2, \ldots, \Gamma_{n-1}$ are defined inductively by

$$B_{i+1}(e) = \left\{egin{array}{ll} B_i(e') & ext{if } e' \in \Gamma_i \setminus \{e_i\}\ \mathcal{B}(B_i(e_i), p_i, r_i) & ext{if } e' = e_i[r_i]_{p_i}\ \mathcal{Pos}_\mathcal{F}(e') & ext{if } e' \in c_i \end{array}
ight.$$

for all $1 \le i < n-1$ and $e = e'\theta_i \in \Gamma_{i+1}$, with $\mathcal{B}(B_i(e_i), p_i, r_i)$ abbreviating the set of positions

 $(B_i(e_i) \setminus \{q \in B_i(e_i) \mid q \ge p_i\}) \cup \{p_i \cdot q \in \textit{Pos}_{\mathcal{F}}(e) \mid q \in \textit{Pos}_{\mathcal{F}}(r_i)\}$

▲圖 > ▲ 臣 > ▲ 臣 > ― 臣

Basic conditional narrowing (2)

- ▷ The position constraint on Γ that assigns the set of positions Pos_F(e) to every e in G is denoted by G
- \triangleright A CNC derivation is basic it it is based on \overline{G}
 - Basic CNC has much smaller search space than CNC

CNC is complete for

- semi-complete 1-CTRSs
- semi-confluent 1-CTRSs w.r.t. normalizable substitutions
- level-semi-complete 2-CTRSs
- Ievel-complete 3-CTRSs

Basic conditional narrowing is complete for

- decreasing and confluent 1-CTRSs
- semi-complete orthogonal 1-CTRSs
- **REFERENCE:** [Middeldorp and Hamoen, 1994]

LCNC = lazy conditional narrowing calculus The only change is inference rule [*o*]:

[*o*] outermost narrowing $\frac{\Gamma', f(s_1, \dots, s_n) \simeq t, \Gamma''}{\Gamma', s_1 = l_1, s_n = l_n, r = t, c, \Gamma''}$ if $l \to r \Leftarrow c$ is a fresh variant of a rewrite rule in \mathcal{R} .

The other inference rules ([i], [d], [v], [t]) are like those of LNC.

LCNC Example

$$\mathcal{R} = \{ \begin{array}{l} 0 + y = y, \mathbf{s}(x) + y \to \mathbf{s}(x + y), fib(0) = \langle 0, \mathbf{s}(0) \rangle, \\ fib(\mathbf{s}(x)) \to \langle z, y + z \rangle \Leftarrow fib(x) = \langle y, z \rangle \} \\ \hline fib(x) = \langle x, x \rangle \Rightarrow_{[o]} & x = \mathbf{s}(x_1), \langle z_1, y_1 + z_1 \rangle = \langle x, x \rangle, fib(x_1) = \langle y_1, z_1 \rangle \\ \Rightarrow_{[d]} & x = \mathbf{s}(x_1), \overline{z_1 = x}, y_1 + z_1 = x, fib(x_1) = \langle y_1, z_1 \rangle \\ \Rightarrow_{[v], \{z_1 \mapsto x\}} & x = \mathbf{s}(x_1), y_1 + x = x, fib(x_1) = \langle y_1, x \rangle \\ \Rightarrow_{[o]} & x = \mathbf{s}(x_1), y_1 + x = x, \overline{x_1 = 0}, \langle 0, \mathbf{s}(0) \rangle = \langle y_1, x \rangle \\ \Rightarrow_{[o]} & x = \mathbf{s}(0), y_1 + x = x, \overline{x_1 = 0}, \langle 0, \mathbf{s}(0) \rangle = \langle y_1, x \rangle \\ \Rightarrow_{[d]} & x = \mathbf{s}(0), y_1 + x = x, \overline{(0, \mathbf{s}(0))} = \langle y_1, x \rangle \\ \Rightarrow_{[d]} & x = \mathbf{s}(0), y_1 + x = x, \overline{\mathbf{s}(0)} = x \\ \Rightarrow_{[v], \{y_1 \mapsto 0\}} & \overline{\mathbf{x} = \mathbf{s}(0)}, 0 + x = x, \overline{\mathbf{s}(0)} = x \\ \Rightarrow_{[v], \{x \mapsto \mathbf{s}(0)\}} & 0 + \mathbf{s}(0) = \mathbf{s}(0), \overline{\mathbf{0} = 0} \Rightarrow_{[d]} \underbrace{0 + \mathbf{s}(0) = \mathbf{s}(0)}_{\Rightarrow_{[d]} & 0 = 0, \overline{\mathbf{s}(0)} = x \\ \Rightarrow_{[v], \{y_1 \mapsto \mathbf{s}(0)\}} & 0 = 0, \overline{\mathbf{s}(0)} = \mathbf{s}(0) \\ \Rightarrow_{[d]} & 0 = 0, \overline{\mathbf{s}(0)} = \mathbf{s}(0) \\ \Rightarrow_{[d]} \Rightarrow_{[d]} & \Box \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

LCNC Example

$$\mathcal{R} = \{ \begin{array}{l} 0 + y = y, s(x) + y \rightarrow s(x + y), fib(0) = \langle 0, s(0) \rangle, \\ fib(s(x)) \rightarrow \langle z, y + z \rangle \leftarrow fib(x) = \langle y, z \rangle \} \\ \hline \\ \hline \\ fib(x) = \langle x, x \rangle \Rightarrow_{[o]} & x = s(x_1), \langle z_1, y_1 + z_1 \rangle = \langle x, x \rangle, fib(x_1) = \langle y_1, z_1 \rangle \\ \Rightarrow_{[d]} & x = s(x_1), \overline{z_1 = x}, y_1 + z_1 = x, fib(x_1) = \langle y_1, z_1 \rangle \\ \Rightarrow_{[v], \{z_1 \mapsto x\}} & x = s(x_1), y_1 + x = x, fib(x_1) = \langle y_1, x \rangle \\ \Rightarrow_{[o]} & x = s(x_1), y_1 + x = x, fib(x_1) = \langle y_1, x \rangle \\ \Rightarrow_{[o]} & x = s(0), y_1 + x = x, \overline{x_1 = 0}, \langle 0, s(0) \rangle = \langle y_1, x \rangle \\ \Rightarrow_{[v], \{x_1 \mapsto 0\}} & x = s(0), y_1 + x = x, \overline{\langle 0, s(0) \rangle} = \langle y_1, x \rangle \\ \Rightarrow_{[o]} & x = s(0), y_1 + x = x, \overline{\langle 0, s(0) \rangle} = \langle y_1, x \rangle \\ \Rightarrow_{[o]} & x = s(0), 0 + x = x, \overline{s(0)} = x \\ \Rightarrow_{[v], \{y_1 \mapsto 0\}} & x = s(0), 0 + x = x, \overline{s(0)} = x \\ \Rightarrow_{[v], \{x \mapsto s(0)\}} & 0 + s(0) = s(0), \underline{s(0)} = s(0) \\ \Rightarrow_{[o]} & 0 + s(0) = s(0), 0 = 0 \Rightarrow_{[d]} 0 + s(0) = s(0) \\ \Rightarrow_{[o]} & 0 = 0, \overline{s(0)} = s(0) \\ \Rightarrow_{[o]} & 0 = 0, \overline{s(0)} = s(0) \\ \Rightarrow_{[o]} & 0 = 0, \overline{s(0)} = s(0) \\ \Rightarrow_{[o]} & 0 = 0, \overline{s(0)} = s(0) \\ \Rightarrow_{[o]} & 0 = 0, \overline{0} = 0 \\ \Rightarrow_{[o]} \Rightarrow_{[o]} & \Box \end{array}$$

Computed substitution: $\{x \mapsto s(0)\}$

・ロト・四ト・モート ヨー うへの

Properties of LCNC

Theorem

Let \mathcal{R} be a confluent 1-CTRS and Γ a system of equations. For every normalized unifier θ of Γ there exists an LCNC-refutation $\Gamma \Rightarrow_{\sigma}^* \Box$ respecting leftmost equation selection strategy such that $\sigma \leq \theta$ [vars(Γ)]

Theorem

Let \mathcal{R} be an arbitrary CTRS and $\Gamma \rightsquigarrow_{\theta}^{*} \top$ be a basic CNC-refutation. For every selection function \mathcal{S} there exists an LCNC-refutation respecting \mathcal{S} such that $\sigma \leq \theta$ [vars(Γ)].

Theorem

Let \mathcal{R} be a terminating and level-confluent CTRS. For every \mathcal{R} -unifier θ of a system Γ there exists an LCNC-refutation $\Gamma \Rightarrow_{\sigma}^* \Box$ such that $\sigma \leq \theta$ [vars(Γ)].

Unification for deterministic CTRSs (1)

We will consider equations of two kinds: s = t and s > t

Definition

Let *X* be a set of variables. A system of equations $\Gamma : e_1, \ldots, e_n$ is *X*-deterministic if

- $vars(s_i) \subseteq X \cup \bigcup_{j=1}^{i-1} vars(e_j)$ when e_i is $s_i \rhd t_i$
- $vars(e_i) \subseteq X \cup \bigcup_{j=1}^{i-1} vars(e_j)$ when e_i is $s_i = t_i$

A CTRS \mathcal{R} is deterministic if it is made of rewrite rules of the form $l \rightarrow r \leftarrow c$ where *c* is an *vars*(*l*)-deterministic system of equations. \mathcal{R} is fresh if *vars*(*t*) \cap *vars*(*l*) = \emptyset for every $s \triangleright t$ in the condition *c* of any rewrite rule $l \rightarrow r \leftarrow c$ from \mathcal{R} .

When rewriting with deterministic CTRSs, = is interpreted as joinability (\downarrow_R) , and \triangleright as reducibility (\rightarrow_R) :

• If \mathcal{R} is deterministic then $s \to_{\mathcal{R}} t$ if there exist $l \to r \leftarrow c \in \mathcal{R}$, $p \in Pos_{\mathcal{F}}(s)$ and θ such that $s|_{p} = l\theta$, $t = s[r\theta]_{p}$, and for all $e_{i} \in c$: $s_{i}\theta \downarrow_{\mathcal{R}} t_{i}\theta$ if e_{i} is $s_{i} = t_{i}$; $s_{i}\theta \to_{\mathcal{R}}^{*} t_{i}\theta$ if e_{i} is $s_{i} \triangleright t_{i}$.

Deterministic CTRSs and X-deterministic goals

$$\begin{array}{ll} \mathcal{R} = \{ & 0 + y \rightarrow y, & \textit{fst}(\langle x, y \rangle) \rightarrow x, \\ & s(x) + y \rightarrow s(x + y), & \textit{snd}(\langle x, y \rangle) \rightarrow y, \\ & \textit{fib}(0) \rightarrow \langle 0, s(0) \rangle, \\ & \textit{fib}(s(x)) \rightarrow \langle y, y + z \rangle \Leftarrow \textit{fib}(x) \rhd \langle y, z \rangle \end{array}$$

The goal

$$\Gamma : \textit{fib}(s(x)) \rhd \langle s(s(s(0))), y \rangle, y \rhd s(z) \rangle$$

is $\{x\}$ -deterministic.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

2

Unification for deterministic CTRSs (2)

The calculus $LCNC_{\ell}^{\dagger}$ [Marin and Middeldorp, 2004]

Given an X-deterministic goal Γ and a deterministic CTRS $\mathcal R$

Compute a complete set of X-normalized \mathcal{R} -unifiers of Γ . A substitution θ is X-normalized if $\theta(x)$ is an \mathcal{R} -normal form for all $x \in X$.

 $LCNC_{\ell}^{\dagger}$: refinement of LCNC adjusted to resolve this problem

- Works on terms from *T*(*F* ∪ *F*[†], *V* ∪ *V*[†]) where *F*[†] (resp. *V*[†]) is the set of marked function symbols (resp. marked variables). The purpose of marking is to avoid computing many non-normalised solutions.
- We write t[†] for the term obtained from t by marking its root symbol, if not already marked.
- We write u(t) for the term obtained by removing all markers from t. E.g., u(f[†](x, g(y[†]))) = f(x, g(y))

Same as LCNC, except that the leftmost equation is always selected, and the inference rules [i], [d], [v], [t] are adjusted as follows:

・ 同 ト ・ ヨ ト ・ ヨ ト ・

ъ

The calculus $\text{LCNC}^{\dagger}_{\ell}$

Inference rules (2)

$$\begin{bmatrix} v \end{bmatrix} \begin{array}{l} \frac{x^{\dagger} \simeq s, \Gamma}{\Gamma \theta'} \text{ if } s \notin \mathcal{V} \cup \mathcal{V}^{\dagger} & \frac{s \simeq x^{\dagger}, \Gamma}{\Gamma \theta'} & \frac{s \rhd x, \Gamma}{\Gamma \theta} \\ \text{with } x \notin vars(u(s)), \simeq \in \{=, \rhd\}, \\ \theta = \{x \mapsto s, x^{\dagger} \mapsto s^{\dagger}\}, \text{ and} \\ \theta' = \{x, x^{\dagger} \mapsto s^{\dagger}\} \cup \{y \mapsto y^{\dagger} \mid y \in vars(u(s))\} \\ \begin{bmatrix} t \end{bmatrix} & \frac{s \simeq t, \Gamma}{\Gamma} \text{ if } u(s) = u(t) \text{ and } \simeq \in \{=, \rhd\} \end{bmatrix}$$

NOTATION: Γ^{\dagger} is the result of replacing all variables x with x^{\dagger} in Γ

Theorem

Let \mathcal{R} be a deterministic CTRS and θ a normalized \mathcal{R} -unifier of Γ . There exists an LCNC[†]_{ℓ}-refutation $G^{\dagger} \Rightarrow^*_{\sigma} \Box$ such that $u(\sigma) \leq \theta$ [vars(Γ)]

▲ (部) ▶ (▲ 第) ▶ (

The calculus $\text{LCNC}_{\ell}^{\dagger}$

Nondeterminism due to selection of inference rules

• For unoriented equation s = t

$\operatorname{root}(s)^{\operatorname{root}(t)}$	${\cal F}^{\dagger}$	$\mathcal{F}_{\mathcal{C}}$	$\mathcal{F}_{\mathcal{D}}$	\mathcal{V}^{\dagger}	ν
${\cal F}^{\dagger}$	[t]; [d]	[t]; [d]	$[\mathtt{t}]; [\mathtt{d}], [\mathtt{o}]_2$	[v]	×
$\mathcal{F}_{\mathcal{C}}$	[t]; [d]	[t]; [d]	$[o]_2$	[i], [v]	×
$\mathcal{F}_\mathcal{D}$	$[t]; [d], [o]_1$	$[o]_1$	$[\mathtt{t}]; [\mathtt{d}], [\mathtt{o}]_1, [\mathtt{o}]_2$	$\left[\mathbf{o}\right]_1, [\mathtt{i}], [\mathtt{v}]$	×
\mathcal{V}^{\dagger}	$[\mathbf{v}]$	[i], [v]	$[\mathtt{o}]_2, [\mathtt{i}], [\mathtt{v}]$	[t]; [v]	×
ν	×	×	×	×	×

For oriented equation *s* ⊳ *t*

$\operatorname{root}(s)^{\operatorname{root}(t)}$	\mathcal{F}^{\dagger}	$\mathcal{F}_{\mathcal{C}}$	$\mathcal{F}_{\mathcal{D}}$	$\mathcal{V} \cup \mathcal{V}^{\dagger}$
\mathcal{F}^{\dagger}	[t]; [d]	[t]; [d]	[t]; [d]	[v]
$\mathcal{F}_{\mathcal{C}}$	[t]; [d]	[t]; [d]	×	$[\mathtt{i}], [\mathtt{v}]$
$\mathcal{F}_\mathcal{D}$	$[t]; [d], [o]_1$	$[o]_1$	$[\mathtt{t}]; [\mathtt{d}], [\mathtt{o}]_1$	$\left[o \right]_1, [\mathtt{i}], [\mathtt{v}]$
\mathcal{V}^{\dagger}	[v]	[v]	$[\mathbf{v}]$	[t]; [v]
ν	×	×	×	×

・ 同 ト ・ ヨ ト ・ ヨ ト

Unification for deterministic CTRSs

LCNC $_{\ell}^{eve}$: a lazy narrowing calculus with eager variable elimination (1)

MAIN IDEA: Like LNC, the calculus LCNC can apply eagerly variable elimination for descendants of parameter-passing equations without losing completeness

- Descendants of parameter-passing equations are defined in exactly the same way as for LNC; we write *s* ► *t* to distinguish them from other kinds of equations.
- LCNC $_{\ell}^{\text{eve}}$: adjustment of LCNC $_{\ell}^{\dagger}$ with the following strategy to solve parameter-passing equations:

$\operatorname{root}(s)^{\operatorname{root}(t)}$	$\mathcal{F}_{\mathcal{C}}$	$\mathcal{F}_\mathcal{D}$	ν	$\mathcal{F}^{\dagger} \cup \mathcal{V}^{\dagger}$
${\cal F}^{\dagger}$	[t]; [d]	[t]; [d]	[v]	×
$\mathcal{F}_{\mathcal{C}}$	[t]; [d]	×	[v]	×
$\mathcal{F}_\mathcal{D}$	$[o]_1$	$[\mathtt{t}]; [\mathtt{d}], [\mathtt{o}]_1$	[v]	×
\mathcal{V}^{\dagger}	[v]	$[\mathbf{v}]$	[v]	×
\mathcal{V}	×	×	×	×
		۰ ا	1 🕨 🔺 🗗	▶ ★ 臣 ▶ ★ 臣 ▶ …

Unification for deterministic CTRSs

LCNC^{eve}: a lazy narrowing calculus with eager variable elimination (2)

BAD NEWS: LCNC $_{\ell}^{\text{eve}}$ is incomplete for left-linear deterministic CTRSs.

Example

•
$$\mathcal{R} = \{f(x) \to x, g(x, y) \to x \Leftarrow x \rhd y\}$$

•
$$\Gamma: g(x, f(y)) = a$$

 \mathcal{R} is left-linear and deterministic, but not fresh; $\theta = \{x \mapsto a, y \mapsto a\}$ is a normalized solution of Γ . θ can not be computed with $\text{LCNC}_{\ell}^{\text{eve}}$, because the only maximal $\text{LCNC}_{\ell}^{\text{eve}}$ -derivation is

$$\begin{array}{ll} & \Gamma^{\dagger} \Rightarrow_{[o]} & x^{\dagger} \blacktriangleright x_{1}, f(y^{\dagger}) \blacktriangleright y_{1}, x_{1} \rhd y_{1}, x_{1} = a \\ \Rightarrow_{[v], \{x_{1} \mapsto x^{\dagger}, x_{1}^{\dagger} \mapsto x^{\dagger}\}} & f(y^{\dagger}) \blacktriangleright y_{1}, x^{\dagger} \rhd y_{1}, x^{\dagger} = a \\ \Rightarrow_{[v], \{y_{1} \mapsto f(y^{\dagger}), y_{1}^{\dagger} \mapsto f^{\dagger}(y^{\dagger})\}} & x^{\dagger} \rhd f(y^{\dagger}), x^{\dagger} = a \\ \Rightarrow_{[v], \{x \mapsto f^{\dagger}(y^{\dagger}), x^{\dagger} \mapsto f^{\dagger}(y^{\dagger})\}} & f^{\dagger}(y^{\dagger}) = a \end{array}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Unification for deterministic CTRSs

LCNC^{eve}: a lazy narrowing calculus with eager variable elimination (2)

BAD NEWS: $LCNC_{\ell}^{eve}$ is incomplete for left-linear deterministic CTRSs.

Example

•
$$\mathcal{R} = \{f(x) \to x, g(x, y) \to x \Leftarrow x \rhd y\}$$

•
$$\Gamma: g(x, f(y)) = a$$

 \mathcal{R} is left-linear and deterministic, but not fresh; $\theta = \{x \mapsto a, y \mapsto a\}$ is a normalized solution of Γ . θ can not be computed with $\text{LCNC}_{\ell}^{\text{eve}}$, because the only maximal $\text{LCNC}_{\ell}^{\text{eve}}$ -derivation is

$$\begin{array}{ll} & \Gamma^{\dagger} \Rightarrow_{[o]} & x^{\dagger} \blacktriangleright x_{1}, f(y^{\dagger}) \blacktriangleright y_{1}, x_{1} \rhd y_{1}, x_{1} = a \\ \Rightarrow_{[v], \{x_{1} \mapsto x^{\dagger}, x_{1}^{\dagger} \mapsto x^{\dagger}\}} & f(y^{\dagger}) \blacktriangleright y_{1}, x^{\dagger} \rhd y_{1}, x^{\dagger} = a \\ \Rightarrow_{[v], \{y_{1} \mapsto f(y^{\dagger}), y_{1}^{\dagger} \mapsto f^{\dagger}(y^{\dagger})\}} & x^{\dagger} \rhd f(y^{\dagger}), x^{\dagger} = a \\ \Rightarrow_{[v], \{x \mapsto f^{\dagger}(y^{\dagger}), x^{\dagger} \mapsto f^{\dagger}(y^{\dagger})\}} & f^{\dagger}(y^{\dagger}) = a \end{array}$$

GOOD NEWS: LCNC $_{\ell}^{eve}$ is complete for left-linear fresh deterministic CTRSs

Definition

A substitution θ is a strict solution of an equation

- s ▷ t if sθ →^{*}_R tθ and tθ ∈ T(F_c, V) (that is, tθ is a term without defined function symbols)
- s = t if there exists a term u ∈ T(F_c, V) such that sθ →^{*}_R u and tθ →^{*}_R u.

 θ is a strict solution of a goal Γ if it is a strict solution of every equation from Γ .

CHALLENGE: Find a refinement of LCNC which computes a complete set of strict solutions of a given goal Γ .

・ロト ・回 ト ・ヨト ・ヨト

Definition

A substitution θ is a strict solution of an equation

- *s* ▷ *t* if *s*θ →^{*}_R *t*θ and *t*θ ∈ *T*(*F_c*, *V*) (that is, *t*θ is a term without defined function symbols)
- s = t if there exists a term u ∈ T(F_c, V) such that sθ →^{*}_R u and tθ →^{*}_R u.

 θ is a strict solution of a goal Γ if it is a strict solution of every equation from Γ .

CHALLENGE: Find a refinement of LCNC which computes a complete set of strict solutions of a given goal Γ .

 The calculus LCNC^s_l [Marin and Middeldorp, 2004] was designed for this purpose.

・ロト ・四ト ・ヨト ・ヨト

The lazy narrowing calculus LCNC^s_ℓ Inference rules (1)

$$[o] \quad \frac{f(s_1, \dots, s_n) \simeq t, \Gamma}{s_1 \blacktriangleright l_1, \dots, s_n \blacktriangleright l_n, c, \Gamma} \text{ where } \simeq \in \{=, =^{-1}, \rhd, \blacktriangleright\}$$

if $f(l_1, \dots, l_n) \rightarrow r \leftarrow c$ is a fresh variant of a rewrite rule in \mathcal{R}
$$[i] \quad \frac{g(s_1, \dots, s_n) \simeq x, \Gamma}{(s_1 \simeq x_1, \dots, s_n \simeq x_n, \Gamma)\theta} \text{ where } \simeq \in \{=, =^{-1}, \rhd\}, g \in \mathcal{F}_c$$

if $g(s_1, \dots, s_n) \notin \mathcal{T}(\mathcal{F}_c, \mathcal{V}), \theta = \{x \mapsto g(x_1, \dots, x_n)\}.$
$$\frac{g(s_1, \dots, s_n) \blacktriangleright x, \Gamma}{(s_1 \blacktriangleright x_1, \dots, s_n \triangleright x_n, \Gamma)\theta'}$$

if $\theta' = \{x \mapsto f(x_1, \dots, x_n)\}$
$$[d] \quad \frac{g(s_1, \dots, s_n) \simeq g(t_1, \dots, t_n), \Gamma}{s_1 \simeq t_1, s_n \simeq t_n, \Gamma}$$

where $\simeq \in \{=, \rhd\}$ and $g \in \mathcal{F}_c$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

The lazy narrowing calculus $LCNC_{\ell}^{s}$ Inference rules (2)

$$\begin{bmatrix} v \end{bmatrix} \begin{array}{c} \frac{x \blacktriangleright s, \Gamma}{\Gamma \theta} \text{ were } s \notin \mathcal{V} \\ \frac{s \blacktriangleright x, \Gamma}{\Gamma \theta} \\ \text{where } x \notin vars(s), \simeq \in \{=, \rhd\}, \text{ and } \theta = \{x \mapsto s\} \end{array} \\ \begin{bmatrix} t \end{bmatrix} \begin{array}{c} \frac{s \rhd s, \Gamma}{\Gamma} \\ \frac{s \rhd s, \Gamma}{\Gamma} \\ \frac{s \rhd s, \Gamma}{\Gamma} \\ \frac{s \simeq s, \Gamma}{\Gamma} \\$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

The lazy narrowing calculus $LCNC^s_\ell$

Inference rule selection strategy

Theorem

Let \mathcal{R} be a deterministic CTRS and θ an \mathcal{R} -normalized strict solution of Γ . Then there exists an LCNC^s_{ℓ}-refutation $\Gamma \Rightarrow^*_{\sigma} \Box$ such that $\sigma \leq \theta$ [vars(Γ)].

프 🕨 🗉 프

▲ □ ▶ ▲ 三 ▶ ▲

Higher-order extensions of the narrowing calculus

- Functional programming operates with functions as values
- The lambda calculus is suitable to express functional computations (function abstractions and function calls)
 ⇒ it is natural to try to extend narrowing to solve systems of equations between λ-terms
 - $\begin{array}{rl} t & ::= x & \text{variable} \\ \lambda x.t & \text{abstraction} \\ (t \ t) & \text{application} \end{array}$

where x ranges over a countably infinite set of variables.

Conversion rules for λ -terms

 λ -terms are identified modulo the following conversion rules:

- $\lambda x.t \rightarrow \lambda y.(t\{x \mapsto y\})$ if $y \in \mathcal{V} \setminus vars(t)$
- $(\lambda x.s) t = s\{x \mapsto t\}$
- $(\lambda x.(t x) = t \text{ if } x \in \mathcal{V} \setminus vars(t)$

(α -conversion)

 $(\beta$ -conversion)

 $(\eta$ -conversion)

Rewriting systems for λ -terms

- Usually, higher-order *E*-unification is performed between simply-typed λ -terms, which can be represented in a standard form called long $\beta\eta$ -normal form
- TRSs have been generalised to pattern rewrite systems (PRS), and CTRSs to conditional PRSs
- Narrowing has been generalised to higher-order lazy narrowing with PRSs.
 - 1998: Prehofer proposed lazy narrowing calculus for PRS \mathcal{R} , called LN. LN performs higher-order \mathcal{R} -preunification.
 - Main challenge: reduce the search space for solutions
- since 2000: several refinements of LN which reduce nondeterminism have been proposed.

- 4 回 🕨 - 4 回 🕨 - -