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ACU-Unification

» We saw an example how to solve ACU-unification problem.

» Reduction to systems of linear Diophantine equations (LDEs)
over natural numbers.

/Ny
%



Elementary ACU-Unification

» Elementary ACU-unification problem
.7
{f(xa f(xa y)) —=ACU f(Z> f(za Z))}
reduces to homogeneous linear Diophantine equation
2 +y = 3z.

» Each equation in the unification problem gives rise to one
linear Diophantine equation.
> A most general ACU-unifier is obtained by combining all the
unifiers corresponding to the minimal solutions of the system
of LDEs.
128
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Elementary ACU-Unification

T ={f(z, f(2,)) =hcv (2 f(2,2))} and
S ={2x+y=3z}.

S has three minimal solutions: (1,1,1),(0,3,1), (3,0,2).
Three unifiers of I':

v

v

v

o1 ={z— v,y = v,z 01}
oy ={x e,y — f(va, f(v2,v2)), 2 = va}
g3 :{‘T — f(U3af(U3,US))ay = e,z f(v37v3)}

v

A most general unifier of I':
g = {l‘ = f(Uh f(U3af(U37U3)))7y = f(vhf(’UZ,f(UZ,UQ)))y
zZ = f(Ula f(’UQ,f(’Ug,’Ug)))}
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ACU-Unification with constants
» ACU-unification problem with constants
I'= {f(z. f(x.9)) Zhev Fla, f(z. £ (.2))}
reduces to inhomogeneous linear Diophantine equation
S={2r+y=3z+1}.

» The minimal nontrivial natural solutions of S are (0,1,0) and
(2,0,1).
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ACU-Unification with constants

» ACU-unification problem with constants
D= {f(z, f(,9)) Zhcv fla f(z f(z2)}
reduces to inhomogeneous linear Diophantine equation
S={2r+y=3z+1}.

» Every natural solution of S is obtained by as the sum of one
of the minimal solution and a solution of the corresponding
homogeneous LDE 2z + y = 3z.

» One element of the minimal complete set of unifiers of I is
obtained from the combination of one minimal solution of S
with the set of all minimal solutions of 2z + y = 3z.
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ACU-Unification with constants

» ACU-unification problem with constants
D= {f(z, f(,9)) Zhcv fla f(z f(z2)}
reduces to inhomogeneous linear Diophantine equation
S={2r+y=3z+1}.
» The minimal complete set of unifiers of I is {01, 02}, where

o1 = {z > f(v1, f(vs, f(vs,v3))),
y = f(a, f(vr, fv2, f(v2,02))),
z = f(vr, f(v2, f(v3,v3)))}
oo = {z — f(a, f(a, f(v1, f(vs, f(v3,03))))),
y = f(vr, fog, f(v2,v2)),
(

z = f(a, f(v1, f(v2, f(v3,v3))))} N,
%



How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:

[d Evelyne Contejean and Hervé Devie.

An Efficient Incremental Algorithm for Solving Systems of
Linear Diophantine Equations.

Information and Computation 113(1): 143-172 (1994).

Generalizes Fortenbacher’s Algorithm for solving a single equation:

[ Michael Clausen and Albrecht Fortenbacher.
Efficient Solution of Linear Diophantine Equations.
J. Symbolic Computation 8(1,2): 201-216 (1989).



Homogeneous Case

Homogeneous linear Diophantine system with m equations and n

variables:
a1y +-o-+ apmr, = 0

am1T1 +- o+ QppTn, = 0

> a;;'s are integers.

» Looking for nontrivial natural solutions.
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Homogeneous Case

Example
{:clJr 2o 4+ 223 — 314
— x1 4+ 3x9y — 2x3 — x4
Nontrivial solutions:
> sy =(0,1,1,1)
> 5o =(4,2,1,0)
> s5=(0,2,2,2) = 2
> sy = (8,4,2,0) = 25,
> s5=1(4,3,2,1) = s1 + $2
> s6=(8,5,3,1) = s1 + 289



Homogeneous Case

Homogeneous linear Diophantine system with m equations and n

variables:
a1y +-o-+ apmr, = 0

am1T1 +- o+ QppTn, = 0

> a;;'s are integers.
» Looking for a basis in the set of nontrivial natural solutions.

» Does it exist?
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Homogeneous Case

The basis in the set S of nontrivial natural solutions of a
homogeneous LDS is the set of >>-minimal elements S.

> is the ordering on tuples of natural numbers:

(1, yxn) > (Y1, Yn)

if and only if
> x; >y, forall1 <¢<mnand

> x; > y; for some 1 <1 < n.
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Matrix Form

Homogeneous linear Diophantine system with m equations and n

variables:
A:L‘i = Oi’
where
aiyr - aip T 0
A = (lii = 0¢ =
Aml - QAmn Tn 0
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Matrix Form

» Canonical basis in N™: (e1,...,e,).
0

> e = 1|, with 1in j's row.
0

» Then AIE¢ = xlAeu -+ e +anen¢-
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Matrix Form

» a: The linear mapping associated to A.

apixy +---+ apTs
aw) = | | = mater) - ranalen,).

am1T1 +- -t GmpTn
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Single Equation: ldea

Case m = 1: Single homogeneous LDE a1 + -+ - + apxy, = 0.
Fortenbacher's idea:

» Search minimal solutions starting from the elements in the
canonical basis of N”.

> Suppose the current vector v is not a solution.

> It can be nondeterministically increased, component by
component, until it becomes a solution or greater than a
solution.
» To decrease the search space, the following restrictions can be
imposed:
» If a(vy) > 0, then increase by one some v; with a; < 0.
» If a(v;) < 0, then increase by one some v; with a; > 0.
> (If a(v))a(e;,) < 0 for some j, increase v; by one.)
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Single Equation: Geometric Interpretation of the Idea

> Fortenbacher’s condition

If a(v))a(e;;) <0 for some j, increase v; by one.
> Increasing v; by one: a(vy +€;,) = a(vy) + a(e; ).
» Going to the “right direction”, towards the origin.

(0] a(vy) ‘ Forbidden
alej) ‘ direction
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Single Equation: Algorithm

Case m = 1: Single homogeneous LDE a1 + -+ - + apxy, = 0.
Fortenbacher's algorithm:
» Start with the pair P, M of the set of potential solutions
P ={e1},...,en} and the set of minimal nontrivial solutions
M =.
> Apply repeatedly the rules:
1. {v,} UP' M = P', M,
if vy > uy for some uy € M.
2. {vy}UP' M = P',{v,} UM,
if a(v;) =0 and rule 1 is not applicable.

3. PM = {v, +¢; |v, €P alvyale;) <0, j€l.n}, M,
if rules 1 and 2 are not applicable.

» If ), M is reached, return M.
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System of Equations: Idea

» General case: System of homogeneous LDEs.
> a(xy) =0.
» Generalizing Fortenbacher’s idea:

» Search minimal solutions starting from the elements in the
canonical basis of N™.

» Suppose the current vector v is not a solution.

» It can be nondeterministically increased, component by
component, until it becomes a solution or greater than a
solution.

» To decrease the search space, increase only those components
that lead to the “right direction”.
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System of Equations: How to Restrict

> “Right direction”: Towards the origin.
> If a(vy) # 0, then do a(v) +¢;)) = a(vy) + a(e;)).
> a(vy) +a(e;,) should lie in the half-space containing O.

> Contejean-Devie condition: If a(v,) - a(e;;) < 0 for some j,
increase v;j by one. (- is the scalar product.)

Forbidden
half-space
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How to Restrict: Comparison

» Fortenbacher’s condition
If a(v))a(e; ;) <0 for some j, increase v; by one.

» Contejean-Devie condition
If a(v)) - a(ej;) < 0 for some j, increase v; by one.
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How to Restrict: Comparison

Fortenbacher’s condition

O a(vy) ‘ Forbidden
a(ej) ‘ direction

Contejean-Devie condition

Forbidden
half-space

a(vy + eu)
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System of Equations: Algorithm

System of homogeneous LDEs: a(x;) = 0.
Contejean-Devie algorithm:
» Start with the pair P, M where

» P={ey,...,e, } is the set of potential solutions,
» M = () is the set of minimal nontrivial solutions.

> Apply repeatedly the rules:

1. {v,}UP M= P' M,
if vp > u for some uy € M.

2. {vy}UP M= P, {v,}UM,
if a(v;) =0y and rule 1 is not applicable.

3. P,M:> {oy+ej lv € 1'3, a(vy) -a(e;;) <0, j € L.n}, M,
if rules 1 and 2 are not applicable.

» If (), M is reached, return M.
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Contejean-Devie Algorithm on an Example

—x1 +x2 4+ 2x3 —3x4 =0
—x1+3x2 —2x3 — x4 =0
e1y = (1,0,0,0)" ez =(0,1,0,0)7
€3, = (0707 170)T €4 = (070707 1)T

Start:{e1),...,eq;},0.

1. {v,}UP M= P M,
if v, > uy for some uy € M.
2. {’Ui}UP,,MﬁP,,{QL}UM,
if a(vy) =0y and rule 1 is not
applicable.

3. P,M:}{v¢+e]~¢|v¢ep,

a(vy) -a(e;) <0,j € L.n}, M,
if rules 1 and 2 are not applicable.

-1
1 ‘ 1000

1
3

‘ 0100

s1
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Contejean-Devie Algorithm on an Example

a(es)

oles) afes)
a(es)

ales)

aler

G(C1)

1

! 0100

I ‘1000 3 ‘ 5 ‘0010 1 ‘0001
l l il

g ‘1100 f ‘0110 g ‘0101 :; ‘0011
[ N

-1 ‘2100 : ‘1110 3 ‘ 1101

52

3211
> s1
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Properties of the Algorithm

a(z;) = 0;: An n-variate system of homogeneous LDEs.

(€1y,--.,eny): The canonical basis of N".

B(a(z;) = 0y): Basis in the set of nontrivial natural solutions of
a(zy) =0;.

Theorem

» The Contejean-Devie algorithm terminates on any input.

> Let (e1y,...,eny),0 =" 0, M be the sequence of
transformations performed by the Contejean-Devie algorithm
for a(x)) = 0y. Then

B(a(xz)) =0y) = M.
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Notation

> oyl = Va4 2k
> [(S1,...,80)] =814+ sn.



Completeness

Theorem

Let Py, My =* (), M be the sequence of transformations
performed by the Contejean-Devie algorithm for a(x|) = 0, with
Py=(e1y,...,eny) and My = 0. Then B(a(zy) =0;,) C M.

Proof.
Assume s| € B(a(z) = 0;) and show that there exists a sequence
of vectors

vl\L:ejO‘L <KL Uk¢<<vk+l\|(:vki+e]ki<< R U'suizs\L

such that v;| € P}, where P, is from the given sequence of
transformations and [; < [; for i < j.
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Completeness

Theorem

Let Py, My =* (), M be the sequence of transformations
performed by the Contejean-Devie algorithm for a(x|) = 0, with
Py=(e1y,...,eny) and My = 0. Then B(a(zy) =0;,) C M.

Proof (cont.)

For ejo,, any basic vector <5y can be chosen. Such basic vectors
do exist (since s| # 0;) and are in Py. Assume now we have

v K - L g K sy with vy € By, . Then there exists si| with
8, = vk + sk and

0= [la(s)l? = la(or )II? + la(sk)II? + 2a(vk,) - alsk,), which
implies a(vy) - a(sk;) < 0.
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Completeness

Theorem

Let Py, My =* (), M be the sequence of transformations
performed by the Contejean-Devie algorithm for a(x|) = 0, with
Py=(e1y,...,eny) and My = 0. Then B(a(zy) =0;,) C M.

Proof (cont.)

Hence, there exists e;, | with s > ej; | such that

a(vky) - a(ej, ) < 0. We take vpy1) = vk +€j, . Then

8, > vgy1, and by rule 3, vgy1) € B, . After |s)| steps, we
reach s. Hence, 5| € Pl‘s‘- Since a(si) = 0, application of rule 2
moves s| to M. ]
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Soundness

Theorem

Let Py, My ="* (), M be the sequence of transformations
performed by the Contejean-Devie algorithm for a(x|) = 0, with
Py=(e1y,...,eny) and My =10. Then M C B(a(z)) =0y).

Proof.

Any s, € M is a solution. Show that it is minimal. Assume it is
not: s, = s1 + s2|, where s1| and sz are non-null solutions
smaller than s. Assume s; was obtained during the
transformations as s| = v;| + €y where v;| € P;. But then

Vi 3> 81 OF U3 = S1| O ;| > S| OfF V| = S1 and Vi is greater
than an already computed minimal solution. Therefore, it should
have been removed from P,. A contradiction. ]
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Termination

Theorem

Let vi|,va,... be an infinite sequence satisfying the
Contejean-Devie condition for a(z|) = 0,:

> wy is a basic vector and for each i > 1 there exists 1 < j <n
such that a(vi)) - a(e;)) <0 and vip1) = vi| +¢€;,.
Then there exist v| and k such that
» v, is a solution of a(x)) =0, and

> v L Vg
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Non-Homogeneous Case

Non-homogeneous linear Diophantine system with m equations
and n variables:

a1z +-oo+ awrT, = b
Am1Z1 + 4 GnTn = b

» a's and b’s are integers.

» Matrix form: a(z)) = b;.
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Non-Homogeneous Case. Solving Idea

Turn the system into a homogeneous one, denoted Sy:

{—51960 + anzi + -+ awz, = 0

—bmro + @pmir1 + 0 A+ GunxT, = 0

v

Solve Sy and keep only the solutions with x¢ < 1.

» x9 = 1: a minimal solution for a(x)) = b,.

v

xo = 0: a minimal solution for a(x;) = 0.

v

Any solution of the non-homogeneous system a(x|) = b, has
the form x| + y; where:
» x, is a minimal solution of a(z,) = b;.
» y, is a linear combination (with natural coefficients) of
minimal solutions of a(x;) = 0,.
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Back to ACU-Unification

Theorem
The decision problem for ACU-Matching and ACU-unification is
NP-complete.
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