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ACU-Unification

I We saw an example how to solve ACU-unification problem.

I Reduction to systems of linear Diophantine equations (LDEs)
over natural numbers.



Elementary ACU-Unification

I Elementary ACU-unification problem

{f(x, f(x, y))
.
=?

ACU f(z, f(z, z))}

reduces to homogeneous linear Diophantine equation

2x+ y = 3z.

I Each equation in the unification problem gives rise to one
linear Diophantine equation.

I A most general ACU-unifier is obtained by combining all the
unifiers corresponding to the minimal solutions of the system
of LDEs.



Elementary ACU-Unification

I Γ = {f(x, f(x, y))
.
=?

ACU f(z, f(z, z))} and
S = {2x+ y = 3z}.

I S has three minimal solutions: (1, 1, 1), (0, 3, 1), (3, 0, 2).

I Three unifiers of Γ:

σ1 ={x 7→ v1, y 7→ v1, z 7→ v1}
σ2 ={x 7→ e, y 7→ f(v2, f(v2, v2)), z 7→ v2}
σ3 ={x 7→ f(v3, f(v3, v3)), y 7→ e, z 7→ f(v3, v3)}

I A most general unifier of Γ:

σ = {x 7→ f(v1, f(v3, f(v3, v3))), y 7→ f(v1, f(v2, f(v2, v2))),

z 7→ f(v1, f(v2, f(v3, v3)))}



ACU-Unification with constants

I ACU-unification problem with constants

Γ = {f(x, f(x, y))
.
=?

ACU f(a, f(z, f(z, z)))}

reduces to inhomogeneous linear Diophantine equation

S = {2x+ y = 3z + 1}.

I The minimal nontrivial natural solutions of S are (0, 1, 0) and
(2, 0, 1).



ACU-Unification with constants

I ACU-unification problem with constants

Γ = {f(x, f(x, y))
.
=?

ACU f(a, f(z, f(z, z)))}

reduces to inhomogeneous linear Diophantine equation

S = {2x+ y = 3z + 1}.

I Every natural solution of S is obtained by as the sum of one
of the minimal solution and a solution of the corresponding
homogeneous LDE 2x+ y = 3z.

I One element of the minimal complete set of unifiers of Γ is
obtained from the combination of one minimal solution of S
with the set of all minimal solutions of 2x+ y = 3z.



ACU-Unification with constants

I ACU-unification problem with constants

Γ = {f(x, f(x, y))
.
=?

ACU f(a, f(z, f(z, z)))}

reduces to inhomogeneous linear Diophantine equation

S = {2x+ y = 3z + 1}.

I The minimal complete set of unifiers of Γ is {σ1, σ2}, where

σ1 = {x 7→ f(v1, f(v3, f(v3, v3))),

y 7→ f(a, f(v1, f(v2, f(v2, v2))),

z 7→ f(v1, f(v2, f(v3, v3)))}
σ2 = {x 7→ f(a, f(a, f(v1, f(v3, f(v3, v3))))),

y 7→ f(v1, f(v2, f(v2, v2)),

z 7→ f(a, f(v1, f(v2, f(v3, v3))))}



How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:

Evelyne Contejean and Hervé Devie.
An Efficient Incremental Algorithm for Solving Systems of
Linear Diophantine Equations.
Information and Computation 113(1): 143–172 (1994).

Generalizes Fortenbacher’s Algorithm for solving a single equation:

Michael Clausen and Albrecht Fortenbacher.
Efficient Solution of Linear Diophantine Equations.
J. Symbolic Computation 8(1,2): 201–216 (1989).



Homogeneous Case

Homogeneous linear Diophantine system with m equations and n
variables: 

a11x1 + · · ·+ a1nxn = 0
...

...
...

am1x1 + · · ·+ amnxn = 0

I aij ’s are integers.

I Looking for nontrivial natural solutions.



Homogeneous Case

Example {
− x1 + x2 + 2x3 − 3x4 = 0
− x1 + 3x2 − 2x3 − x4 = 0

Nontrivial solutions:

I s1 = (0, 1, 1, 1)

I s2 = (4, 2, 1, 0)

I s3 = (0, 2, 2, 2) = 2s1

I s4 = (8, 4, 2, 0) = 2s2

I s5 = (4, 3, 2, 1) = s1 + s2

I s6 = (8, 5, 3, 1) = s1 + 2s2

I . . .



Homogeneous Case

Homogeneous linear Diophantine system with m equations and n
variables: 

a11x1 + · · ·+ a1nxn = 0
...

...
...

am1x1 + · · ·+ amnxn = 0

I aij ’s are integers.

I Looking for a basis in the set of nontrivial natural solutions.

I Does it exist?



Homogeneous Case

The basis in the set S of nontrivial natural solutions of a
homogeneous LDS is the set of �-minimal elements S.

� is the ordering on tuples of natural numbers:

(x1, . . . , xn)� (y1, . . . , yn)

if and only if

I xi ≥ yi for all 1 ≤ i ≤ n and

I xi > yi for some 1 ≤ i ≤ n.



Matrix Form

Homogeneous linear Diophantine system with m equations and n
variables:

Ax↓ = 0↓,

where

A :=

a11 · · · a1n
...

...
am1 · · · amn

 x↓ :=

x1...
xn

 0↓ :=

0
...
0





Matrix Form

I Canonical basis in Nn: (e1↓, . . . , en↓).

I ej↓ =


0
...
1
...
0

, with 1 in j’s row.

I Then Ax↓ = x1Ae1↓ + · · ·+ xnAen↓.



Matrix Form

I a: The linear mapping associated to A.

a(x↓) =

a11x1 + · · ·+ a1nxn
...

...
am1x1 + · · ·+ amnxn

 = x1a(e1↓)+· · ·+xna(en↓).



Single Equation: Idea

Case m = 1: Single homogeneous LDE a1x1 + · · ·+ anxn = 0.
Fortenbacher’s idea:

I Search minimal solutions starting from the elements in the
canonical basis of Nn.

I Suppose the current vector v↓ is not a solution.

I It can be nondeterministically increased, component by
component, until it becomes a solution or greater than a
solution.

I To decrease the search space, the following restrictions can be
imposed:

I If a(v↓) > 0, then increase by one some vj with aj < 0.
I If a(v↓) < 0, then increase by one some vj with aj > 0.
I (If a(v↓)a(ej↓) < 0 for some j, increase vj by one.)



Single Equation: Geometric Interpretation of the Idea

I Fortenbacher’s condition
If a(v↓)a(ej↓) < 0 for some j, increase vj by one.

I Increasing vj by one: a(v↓ + ej↓) = a(v↓) + a(ej↓).

I Going to the “right direction”, towards the origin.

O Forbidden

direction

a(v↓)

a(ej↓)



Single Equation: Algorithm

Case m = 1: Single homogeneous LDE a1x1 + · · ·+ anxn = 0.
Fortenbacher’s algorithm:

I Start with the pair P,M of the set of potential solutions
P = {e1↓, . . . , en↓} and the set of minimal nontrivial solutions
M = ∅.

I Apply repeatedly the rules:

1. {v↓} ∪ P ′,M =⇒ P ′,M ,
if v↓ � u↓ for some u↓ ∈M .

2. {v↓} ∪ P ′,M =⇒ P ′, {v↓} ∪M,
if a(v↓) = 0 and rule 1 is not applicable.

3. P,M =⇒ {v↓ + ej↓ | v↓ ∈ P, a(v↓)a(ej↓) < 0, j ∈ 1..n},M ,
if rules 1 and 2 are not applicable.

I If ∅,M is reached, return M .



System of Equations: Idea

I General case: System of homogeneous LDEs.

I a(x↓) = 0↓.
I Generalizing Fortenbacher’s idea:

I Search minimal solutions starting from the elements in the
canonical basis of Nn.

I Suppose the current vector v↓ is not a solution.
I It can be nondeterministically increased, component by

component, until it becomes a solution or greater than a
solution.

I To decrease the search space, increase only those components
that lead to the “right direction”.



System of Equations: How to Restrict

I “Right direction”: Towards the origin.

I If a(v↓) 6= 0↓, then do a(v↓ + ej↓) = a(v↓) + a(ej↓).

I a(v↓) + a(ej↓) should lie in the half-space containing O.

I Contejean-Devie condition: If a(v↓) · a(ej↓) < 0 for some j,
increase vj by one. (· is the scalar product.)

O

Forbidden

half-space

a(v↓)

a(ej↓)

a(v↓ + ej↓)



How to Restrict: Comparison

I Fortenbacher’s condition
If a(v↓)a(ej↓) < 0 for some j, increase vj by one.

I Contejean-Devie condition
If a(v↓) · a(ej↓) < 0 for some j, increase vj by one.



How to Restrict: Comparison

Fortenbacher’s condition

O Forbidden

direction

a(v↓)

a(ej↓)

Contejean-Devie condition

O

Forbidden

half-space

a(v↓)

a(ej↓)

a(v↓ + ej↓)



System of Equations: Algorithm

System of homogeneous LDEs: a(x↓) = 0↓.
Contejean-Devie algorithm:

I Start with the pair P,M where
I P = {e1↓, . . . , en↓} is the set of potential solutions,
I M = ∅ is the set of minimal nontrivial solutions.

I Apply repeatedly the rules:

1. {v↓} ∪ P ′,M =⇒ P ′,M ,
if v↓ � u↓ for some u↓ ∈M .

2. {v↓} ∪ P ′,M =⇒ P ′, {v↓} ∪M,
if a(v↓) = 0↓ and rule 1 is not applicable.

3. P,M =⇒ {v↓ + ej↓ | v↓ ∈ P, a(v↓) · a(ej↓) < 0, j ∈ 1..n},M ,
if rules 1 and 2 are not applicable.

I If ∅,M is reached, return M .



Contejean-Devie Algorithm on an Example{
−x1 + x2 + 2x3 − 3x4 = 0
−x1 + 3x2 − 2x3 − x4 = 0

e1↓ = (1, 0, 0, 0)T e2↓ = (0, 1, 0, 0)T

e3↓ = (0, 0, 1, 0)T e4↓ = (0, 0, 0, 1)T

Start:{e1↓, . . . , e4↓}, ∅.

1. {v↓} ∪ P ′,M =⇒ P ′,M ,
if v↓ � u↓ for some u↓ ∈M .

2. {v↓} ∪ P ′,M =⇒ P ′, {v↓} ∪M,
if a(v↓) = 0↓ and rule 1 is not
applicable.

3. P,M =⇒ {v↓ + ej↓ | v↓ ∈ P,

a(v↓) · a(ej↓) < 0, j ∈ 1..n},M ,

if rules 1 and 2 are not applicable.
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Contejean-Devie Algorithm on an Example
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Properties of the Algorithm

a(x↓) = 0↓: An n-variate system of homogeneous LDEs.

(e1↓, . . . , en↓): The canonical basis of Nn.

B(a(x↓) = 0↓): Basis in the set of nontrivial natural solutions of
a(x↓) = 0↓.

Theorem

I The Contejean-Devie algorithm terminates on any input.

I Let (e1↓, . . . , en↓), ∅ =⇒∗ ∅,M be the sequence of
transformations performed by the Contejean-Devie algorithm
for a(x↓) = 0↓. Then

B(a(x↓) = 0↓) = M.



Notation

I ‖x↓‖ =
√
x21 + · · ·+ x2n.

I |(s1, . . . , sn)| = s1 + · · ·+ sn.



Completeness

Theorem
Let P0,M0 =⇒∗ ∅,M be the sequence of transformations
performed by the Contejean-Devie algorithm for a(x↓) = 0↓ with
P0 = (e1↓, . . . , en↓) and M0 = ∅. Then B(a(x↓) = 0↓) ⊆M.

Proof.
Assume s↓ ∈ B(a(x↓) = 0↓) and show that there exists a sequence
of vectors

v1↓ = ej0↓ � · · · � vk↓ � vk+1↓ = vk↓+ ejk↓ � · · · � v|s↓|↓ = s↓

such that vi↓ ∈ Pli , where Pli is from the given sequence of
transformations and li < lj for i < j.



Completeness

Theorem
Let P0,M0 =⇒∗ ∅,M be the sequence of transformations
performed by the Contejean-Devie algorithm for a(x↓) = 0↓ with
P0 = (e1↓, . . . , en↓) and M0 = ∅. Then B(a(x↓) = 0↓) ⊆M.

Proof (cont.)

For ej0↓, any basic vector � s↓ can be chosen. Such basic vectors
do exist (since s↓ 6= 0↓) and are in P0. Assume now we have
v1↓ � · · · � vk↓ � s↓ with vk↓ ∈ Plk . Then there exists sk↓ with
s↓ = vk↓ + sk↓ and
0 = ‖a(s↓)‖2 = ‖a(vk↓)‖2 + ‖a(sk↓)‖2 + 2a(vk↓) · a(sk↓), which
implies a(vk↓) · a(sk↓) < 0.



Completeness

Theorem
Let P0,M0 =⇒∗ ∅,M be the sequence of transformations
performed by the Contejean-Devie algorithm for a(x↓) = 0↓ with
P0 = (e1↓, . . . , en↓) and M0 = ∅. Then B(a(x↓) = 0↓) ⊆M.

Proof (cont.)

Hence, there exists ejk↓ with sk↓ � ejk↓ such that
a(vk↓) · a(ejk↓) < 0. We take vk+1↓ = vk↓ + ejk↓. Then
s↓ � vk+1↓ and by rule 3, vk+1↓ ∈ Plk+1

. After |s↓| steps, we
reach s. Hence, s↓ ∈ Pl|s| . Since a(s↓) = 0, application of rule 2
moves s↓ to M .



Soundness

Theorem
Let P0,M0 =⇒∗ ∅,M be the sequence of transformations
performed by the Contejean-Devie algorithm for a(x↓) = 0↓ with
P0 = (e1↓, . . . , en↓) and M0 = ∅. Then M ⊆ B(a(x↓) = 0↓).

Proof.
Any s↓ ∈M is a solution. Show that it is minimal. Assume it is
not: s↓ = s1↓ + s2↓, where s1↓ and s2↓ are non-null solutions
smaller than s. Assume s↓ was obtained during the
transformations as s↓ = vi↓ + eji↓, where vi↓ ∈ Pi. But then
vi↓ � s1↓ or vi↓ = s1↓ or vi↓ � s2↓ or vi↓ = s1↓ and vi↓ is greater
than an already computed minimal solution. Therefore, it should
have been removed from Pi. A contradiction.



Termination

Theorem
Let v1↓, v2↓, . . . be an infinite sequence satisfying the
Contejean-Devie condition for a(x↓) = 0↓:

I u1 is a basic vector and for each i ≥ 1 there exists 1 ≤ j ≤ n
such that a(vi↓) · a(ej↓) < 0 and vi+1↓ = vi↓ + ej↓.

Then there exist v↓ and k such that

I v↓ is a solution of a(x↓) = 0↓, and

I v↓ � vk↓.



Non-Homogeneous Case

Non-homogeneous linear Diophantine system with m equations
and n variables:

a11x1 + · · ·+ a1nxn = b1
...

...
...

am1x1 + · · ·+ amnxn = bm

I a’s and b’s are integers.

I Matrix form: a(x↓) = b↓.



Non-Homogeneous Case. Solving Idea

Turn the system into a homogeneous one, denoted S0:{
−b1x0 + a11x1 + · · · + a1nxn = 0

...
...

...
...

−bmx0 + am1x1 + · · · + amnxn = 0

I Solve S0 and keep only the solutions with x0 ≤ 1.

I x0 = 1: a minimal solution for a(x↓) = b↓.

I x0 = 0: a minimal solution for a(x↓) = 0↓.
I Any solution of the non-homogeneous system a(x↓) = b↓ has

the form x↓ + y↓ where:
I x↓ is a minimal solution of a(x↓) = b↓.
I y↓ is a linear combination (with natural coefficients) of

minimal solutions of a(x↓) = 0↓.



Back to ACU-Unification

Theorem
The decision problem for ACU-Matching and ACU-unification is
NP-complete.


