Introduction to Unification Theory Equational Unification

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria kutsia@risc.jku.at

Overview

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results

Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results

Motivation

- Unifications algorithms are essential components for deduction systems.
- Simple integration of axioms that describe the properties of equality often leads to an unacceptable increase of search space.
- Proposed solution: To build equational axioms into inference, replacing syntactic unification with equational unification.

Motivation

Example

Given: AI-theory $\{f(f(x,y),z) \approx f(x,f(y,z)), f(x,x) \approx x\}$. Apply idempotence to the term

$$f(x_0, f(x_1, \ldots, f(x_{n-1}, f(x_n, f(x_0, \ldots, f(x_{n-1}, x_n) \ldots))))))$$

- Exponentially many ways of rearranging the parentheses with the help of associativity: Very time consuming if the prover has to search for the right one.
- A human mathematician would use words instead of terms, i.e. would work modulo associativity, and apply idempotence xx = x to the word $x_0 \cdots x_n x_0 \cdots x_n$ by unifying x with $x_0 \cdots x_n$.
- To adopt this way of proceeding for a prover, we must replace the syntactic unification algorithm in the resolution step by associative unification.

Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results

Equational Theory

Equational Theory

- E: a set of equations over $\mathcal{T}(\mathcal{F}, \mathcal{V})$, called identities.
- Equational theory \doteq_E defined by E: The least congruence relation on $\mathcal{T}(\mathcal{F},\mathcal{V})$ closed under substitution and containing E i.e., $\dot{=}_E$ is the least binary relation on $\mathcal{T}(\mathcal{F},\mathcal{V})$ with the
 - i.e., $\dot{=}_E$ is the least binary relation on $\mathcal{T}(\mathcal{F},\mathcal{V})$ with the properties:
 - $E \subseteq \doteq_E$.
 - Reflexivity: $s \doteq_E s$ for all s.
 - Symmetry: If $s \doteq_E t$ then $t \doteq_E s$ for all s, t.
 - ▶ Transitivity: If $s \doteq_E t$ and $t \doteq_E r$ then $s \doteq_E r$ for all s, t, r.
 - Congruence: If $s_1 \doteq_E t_1, \ldots, s_n \doteq_E t_n$ then $f(s_1, \ldots, s_n) \doteq_E f(t_1, \ldots, t_n)$ for all s, t, n and n-ary f.
 - Closure under substitution: If $s \doteq_E t$ then $s\sigma \doteq_E t\sigma$ for all s, t, σ .

Notation, Terminology

- ▶ Identities: $s \approx t$.
- $s \doteq_E t$: The term s is equal modulo E to the term t.
- ► E will be called an equational theory as well (abuse of the terminology).
- sig(E): The set of function symbols that occur in E.

Example

- $C := \{f(x,y) \approx f(y,x)\}$: f is commutative. sig(C) = f.
- $f(f(a,b),c) \doteq_C f(c,f(b,a)).$
- ► $AU := \{f(f(x,y),z) \approx f(x,f(y,z)), f(x,e) \approx x, f(e,x) \approx x\}$: f is associative, e is unit. $sig(AU) = \{f,e\}$
- $f(a,f(x,f(e,a))) \doteq_{AU} f(f(a,x),a).$

Notation, Terminology

E-Unification Problem, E-Unifier, E-Unifiability

- E: equational theory.
 F: set of function symbols.
 V: countable set of variables.
- *E*-Unification problem over \mathcal{F} : a finite set of equations

$$\Gamma = \{s_1 \doteq_E^? t_1, \ldots, s_n \doteq_E^? t_n\},\$$

where $s_i, t_i \in \mathcal{T}(\mathcal{F}, \mathcal{V})$.

• *E*-Unifier of Γ : a substitution σ such that

$$s_1 \sigma \doteq_E t_1 \sigma, \ldots, s_n \sigma \doteq_E t_n \sigma.$$

• $u_E(\Gamma)$: the set of E-unifiers of Γ . Γ is E-unifiable iff $u_E(\Gamma) \neq \emptyset$.

E-Unification vs Syntactic Unification

- ▶ Syntactic unification: a special case of *E*-unif. with $E = \emptyset$.
- Any syntactic unifier of an E-unification problem Γ is also an E-unifier of Γ .
- ▶ For $E \neq \emptyset$, $u_E(\Gamma)$ may contain a unifier that is not a syntactic unifier.

Example

- Terms f(a,x) and f(b,y):
 - Not syntactically unifiable.
 - Unifiable module commutativity of f.
 C-unifier: {x → b, y → a}
- ▶ Terms f(a,x) and f(y,b):
 - ► Have the most general syntactic unifier $\{x \mapsto b, y \mapsto a\}$.
 - ► If f is associative, then $u_A(\{f(a,x) \stackrel{?}{=}^?_A f(y,b)\})$ contains additional A-unifiers, e.g. $\{x \mapsto f(z,b), y \mapsto f(a,z)\}$.

Notions Adapted

Instantiation Quasi-Ordering (Modified)

- E: equational theory. \mathcal{X} : set of variables.
- A substitution σ is more general modulo E on \mathcal{X} than ϑ , written $\sigma \leq_E^{\mathcal{X}} \vartheta$, if there exists η such that $x \sigma \eta \doteq_E x \vartheta$ for all $x \in \mathcal{X}$.
- ϑ is called an *E-instance* of σ modulo *E* on \mathcal{X} .
- ► The relation $\leq_E^{\mathcal{X}}$ is quasi-ordering, called *instantiation* quasi-ordering.
- $ightharpoonup = \frac{\mathcal{X}}{E}$ is the equivalence relation corresponding to $\leq_E^{\mathcal{X}}$.

No Single MGU

- When comparing unifiers of Γ , the set \mathcal{X} is $vars(\Gamma)$.
- ▶ Unifiable *E*-unification problems might not have an mgu.

Example

- f is commutative.
- $\Gamma = \{f(x,y) \doteq_C^? f(a,b)\}$ has two *C*-unifiers:

$$\sigma_1 = \{x \mapsto a, y \mapsto b\}$$

$$\sigma_2 = \{x \mapsto b, y \mapsto a\}.$$

- On $vars(\Gamma) = \{x, y\}$, any unifier is equal to either σ_1 or σ_2 .
- σ_1 and σ_2 are not comparable wrt $\leq_C^{\{x,y\}}$.
- Hence, no mgu for Γ.

MCSU vs MGU

In *E*-unification, the role of mgu is taken on by a complete set of *E*-unifiers.

Complete and Minimal Complete Sets of E-Unifiers

- Γ : *E*-unification problem over \mathcal{F} .
- $\mathcal{X} = vars(\Gamma)$.
- C is a complete set of E-unifiers of Γ iff
 - **1**. $C \subseteq u_E(\Gamma)$: C's elements are E-unifiers of Γ , and
 - **2.** For each $\vartheta \in u_E(\Gamma)$ there exists $\sigma \in \mathcal{C}$ such that $\sigma \leq_E^{\mathcal{X}} \vartheta$.
- C is a minimal complete set of E-unifiers $(mcsu_E)$ of Γ if it is a complete set of E-unifiers of Γ and
 - 3. two distinct elements of C are not comparable wrt $\leq_E^{\mathcal{X}}$.
- σ is an mgu of Γ iff $mcsu_E(\Gamma) = {\sigma}$.

MCSU's

- $mcsu_E(\Gamma) = \emptyset$ if Γ is not E-unifiable.
- Minimal complete sets of unifiers do not always exist.
- When they exist, they may be infinite.
- When they exist, they are unique up to $=\frac{\mathcal{X}}{E}$.

Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results

Unification Type of a Problem, Theory.

- E: equational theory.
- Γ : *E*-unification problem over \mathcal{F} .
- Γ has unification type
 - *unitary*, if $mcsu(\Gamma)$ has cardinality at most one,
 - finitary, if $mcsu(\Gamma)$ has finite cardinality,
 - *infinitary,* if $mcsu(\Gamma)$ has infinite cardinality,
 - zero, if $mcsu(\Gamma)$ does not exist.
- Abbreviation: type unitary 1, finitary ω , infinitary ∞ , zero 0.
- Ordering: $1 < \omega < \infty < 0$.
- Unification type of E wrt \mathcal{F} : the maximal type of an E-unification problem over \mathcal{F} .

The unification type of an $\it E$ -equational problem over $\it {\cal F}$ depends both

- ▶ on *E*, and
- on *F*.

Examples and more details will follow.

Example (Type Unitary)

Syntactic unification.

- ▶ The empty equational theory \emptyset : Syntactic unification.
- Unitary wrt any $\mathcal F$ because any unifiable syntactic unification problem has an mgu.

Example (Type Finitary)

Commutative unification: $\{f(x,y) \approx f(y,x)\}$

- $\{f(x,y) \doteq_C^? f(a,b)\}$ does not have an mgu. *C*-unification is not unitary.
- Show that it is finitary for any F:
 - ▶ Let $\Gamma = \{s_1 \stackrel{?}{=} {}^?_C t_1, \dots, s_n \stackrel{?}{=} {}^?_C t_n\}$ be a *C*-unification problem.
 - Consider all possible syntactic unification problems $\Gamma' = \{s'_1 \stackrel{\dot{=}}{=} t'_1, \dots, s'_n \stackrel{\dot{=}}{=} t'_n\}$, where $s'_i \stackrel{\dot{=}}{=}_C s_i$ and $t'_i \stackrel{\dot{=}}{=}_C t_i$ for each $1 \le i \le n$.
 - There are only finitely many such Γ 's, because the C-equivalence class for a given term t is finite.
 - It can be shown that collection of all mgu's of Γ 's is a complete set of C-unifiers of Γ . This set if finite.
 - If this set is not minimal (often the case), it can be minimized by removing redundant C-unifiers.

Example (Type Infinitary)

Associative unification: $\{f(f(x,y),z) \approx f(x,f(y,z))\}.$

- $\{f(x,a) \doteq_A^? f(a,x)\}$ has an infinite mcsu: $\{\{x \mapsto a\}, \{x \mapsto f(a,a)\}, \{x \mapsto f(a,f(a,a))\}, \ldots\}$
- ► Hence, *A*-unification can not be unitary or finitary.
- ▶ It is not of type zero because any *A*-unification problem has an *mcsu* that can be enumerated by the procedure from

G. Plotkin.

Building in equational theories.

In B. Meltzer and D. Michie, editors, *Machine Intelligence*, volume 7, pages 73–90. Edinburgh University Press, 1972.

• A-unification is infinitary for any \mathcal{F} .

Example (Type Zero)

Associative-Idempotent unification:

$${f(f(x,y),z) \approx f(x,f(y,z)),f(x,x) \approx x}.$$

• $\{f(x,f(y,x)) \doteq_{AI}^{?} f(x,f(z,x))\}$ does not have a minimal complete set of unifiers, see

F. Baader.

Unification in idempotent semigroups is of type zero. *J. Automated Reasoning*, 2(3):283–286, 1986.

AI-unification is of type zero.

Unification Type. Signature Matters

Associative-commutative unification with unit:

$$ACU = \{ f(f(x, y), z) \approx f(x, f(y, z)), f(x, y) \approx f(y, x), f(x, e) \approx x \}.$$

- Any ACU problem built using only f and variables has an mgu (i.e. is unitary).
- There are ACU problems that contain function symbols other than f and e, which are finitary, not unitary. For instance, $mcsu(\{f(x,y) \doteq_{ACU}^{?} f(a,b)\})$ consists of four unifiers (which ones?).

Kinds of *E*-unification.

Kinds of *E*-Unification

One may distinguish three kinds of *E*-unification problems, depending on the function symbols that are allowed to occur in them.

E-Unification Problems: Elementary, with Constants, General.

- E: an equational Theory.
 Γ: an E-unification problem over F.
- Γ is an elementary *E*-unification problem iff $\mathcal{F} = sig(E)$.
- Γ is an E-unification problem with constants iff $\mathcal{F} \setminus sig(E)$ consists of constants.
- ▶ Γ is a general E-unification problem iff $\mathcal{F} \setminus sig(E)$ may contain arbitrary function symbols.

Unification Types of Theories wrt Kinds

- Unification type of E wrt elementary unification: Maximal unification type of E wrt all \mathcal{F} such that $\mathcal{F} = sig(E)$.
- Unification type of E wrt unification with constants: Maximal unification type of E wrt all \mathcal{F} such that $\mathcal{F} \setminus sig(E)$ is a set of constants.
- Unification type of E wrt general unification: Maximal unification type of E wrt all \mathcal{F} such that $\mathcal{F} \setminus sig(E)$ is a set of arbitrary function symbols.

Unification Types of Theories wrt Kinds

The same equational theory can have different unification types for different kinds. Examples:

- ACU (Abelian monoids): Unitary wrt elementary unification, finitary wrt unification with constants and general unification.
- AG (Abelian groups): Unitary wrt elementary unification and unification with constants, finitary wrt general unification.

Decision and Unification Procedures

- Poecision procedure for an equational theory E (wrt \mathcal{F}): An algorithm that for each E-unification problem Γ (wrt \mathcal{F}) returns success if Γ is E-unifiable, and failure otherwise.
- *E* is decidable if it admits a decision procedure.
- (Minimal) E-unification algorithm (wrt F): An algorithm that computes a (minimal) finite complete set of E-unifiers for all E-unification problems over F.
- *E*-unification algorithm yields a decision procedure for *E*.
- (Minimal) E-unification procedure: A procedure that enumerates a possible infinite (minimal) complete set of E-unifiers.
- *E*-unification procedure does not yield a decision procedure for *E*.

Decidability wrt Kinds

Decidability of an equational theory might depend on the kinds of *E*-unification.

There exists an equational theory for which elementary unification is decidable, but unification with constants is undecidable:

H.-J. Bürckert.

Some relationships between unification, restricted unification, and matching.

In J. Siekmann, editor, *Proc. 8th Int. Conference on Automated Deduction*, volume 230 of *LNCS*. Springer, 1986.

Decidability wrt Kinds

Decidability of an equational theory might depend on the kinds of *E*-unification.

There exists an equational theory for which unification with constants is decidable, but general unification is undecidable:

J. Otop.

E-unification with constants vs. general E-unification. *Journal of Automated Reasoning*, 48(3):363–390, 2012.

Single Equation vs Systems of Equations

- In syntactic unification, solving systems of equations can be reduced to solving a single equation.
- For equational unification, the same holds only for general unification.
- For elementary unification and for unification with constants it is not the case.

Single Equation vs Systems of Equations

There exists an equational theory E such that

- all elementary E-unification problems of cardinality 1 (single equations) have minimal complete sets of E-unifiers, but
- ▶ *E* is of type zero wrt to elementary unification: There exists an elementary *E*-unification problem of cardinality > 1 that does not have a minimal complete set of unifiers.
- H.-J. Bürckert, A. Herold, and M. Schmidt-Schauß. On equational theories, unification, and decidability. *J. Symbolic Computation* **8**(3,4), 3–49. 1989.

Single Equation vs Systems of Equations

There exists an equational theory *E* such that

- unifiability of elementary E-unification problems of cardinality 1 (single equations) is decidable, but
- for elementary problems of larger cardinality it is undecidable.

P. Narendran and H. Otto. Some results on equational unification.

In M. E. Stickel, editor, *Proc. 10th Int. Conference on Automated Deduction*, volume 449 of *LNAI*. Springer, 1990.

Three Main Questions in Unification Theory

For a given E, unification theory is mainly concerned with finding answers to the following three questions:

Decidability: Is it decidable whether an *E*-unification problem is solvable? If yes, what is the complexity of this decision problem?

Unification type: What is the unification type of the theory *E*?

Unification algorithm: How can we obtain an (efficient) *E*-unification algorithm, or a (preferably minimal) *E*-unification procedure?

Three Main Questions in Unification Theory

- Unification type depends on
 - equational theory,
 - signature (kinds),
 - cardinality of unification problems.
- Decidability depends on
 - equational theory,
 - signature (kinds),
 - cardinality of unification problems.

Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results

Summary of Results for Specific Theories

General unification:

Theory	Decidability	Type	Algorithm/Procedure
Ø, BR	Yes	1	Yes
A, AU	Yes	∞	Yes
C, AC, ACU	Yes	ω	Yes
I, CI, ACI	Yes	ω	Yes
Al	Yes	0	?
$D_{\{f,g\}}A_g$	No	∞	?
$ig egin{aligned} D_{\{f,g\}}A_g \ AG \end{aligned}$	Yes	ω	Yes
CRU	No	? (∞ or 0)	?

BR - Boolean ring, D - distributivity, CRU - commutative ring with unit.

Commutative Unification and Matching

• C-unification inference system \mathcal{U}_C can be obtained from the \mathcal{U} by adding the C-Decomposition rule:

C-Decomposition:
$$\{f(s_1, s_2) \stackrel{?}{=_{\mathbf{C}}} f(t_1, t_2)\} \uplus P'; S \Longrightarrow \{s_1 \stackrel{?}{=_{\mathbf{C}}} t_2, s_2 \stackrel{?}{=_{\mathbf{C}}} t_1\} \cup P'; S,$$
 if f is commutative.

- C-Decomposition and Decomposition transform the same system in different ways.
- C-matching algorithm \mathcal{M}_C is obtained analogously from $\mathcal{M}.$

C-Unification

In order to C-unify s and t:

- 1. Create an initial system $\{s \doteq_{\mathbf{C}}^{?} t\}; \varnothing$.
- 2. Apply successively rules from $\mathcal{U}_{\mathbb{C}}$, building a complete tree of derivations. **C-Decomposition** and **Decomposition** rules have to be applied concurrently and form branching points in the derivation tree.

Example. C-Unification

C-unify g(f(x,y),z) and g(f(f(a,b),f(b,a)),c), commutative f.

$$\{g(f(x,y),z) \stackrel{?}{=}_{\mathbb{C}}^{?} g(f(f(a,b),f(b,a))),c)\}; \varnothing$$

$$\{f(x,y) \stackrel{?}{=}_{\mathbb{C}}^{?} f(f(a,b),f(b,a)),z \stackrel{?}{=}_{\mathbb{C}}^{?} c\}; \varnothing$$

$$\{x \stackrel{?}{=}_{\mathbb{C}}^{?} f(a,b),y \stackrel{?}{=}_{\mathbb{C}}^{?} f(b,a),z \stackrel{?}{=}_{\mathbb{C}}^{?} c\}; \varnothing$$

$$\{x \stackrel{?}{=}_{\mathbb{C}}^{?} f(b,a),y \stackrel{?}{=}_{\mathbb{C}}^{?} f(a,b),z \stackrel{?}{=}_{\mathbb{C}}^{?} c\}; \varnothing$$

$$\{y \stackrel{?}{=}_{\mathbb{C}}^{?} f(b,a),z \stackrel{?}{=}_{\mathbb{C}}^{?} c\}; \{x \stackrel{?}{=} f(a,b)\}$$

$$\{y \stackrel{?}{=}_{\mathbb{C}}^{?} f(a,b),z \stackrel{?}{=}_{\mathbb{C}}^{?} c\}; \{x \stackrel{?}{=} f(b,a)\}$$

$$\{z \stackrel{?}{=}_{\mathbb{C}}^{?} c\}; \{x \stackrel{?}{=} f(a,b),y \stackrel{?}{=} f(b,a)\}$$

$$\{z \stackrel{?}{=}_{\mathbb{C}}^{?} c\}; \{x \stackrel{?}{=} f(b,a),y \stackrel{?}{=} f(a,b)\}$$

$$\emptyset; \{x \stackrel{?}{=} f(a,b),y \stackrel{?}{=} f(b,a),z \stackrel{?}{=} c\}$$

$$\varnothing; \{x \stackrel{?}{=} f(b,a),y \stackrel{?}{=} f(a,b),z \stackrel{?}{=} c\}$$

Not minimal.

Properties of the C-Unification Algorithm

Theorem

Applied to a C-unification problem *P*, the C-unification algorithm terminates and computes a complete set of C-unifiers of *P*.

Proof.

- Termination is proved using the same measure as for syntactic unification.
- Completeness is based on the following two facts:
 - If Γ is transformed by only one rule of $\mathcal{U}_{\mathbb{C}}$ into Γ' , then $u_{\mathbb{C}}(\Gamma) = u_{\mathbb{C}}(\Gamma')$.
 - If Γ is transformed by two rules of $\mathcal{U}_{\mathbb{C}}$ into Γ_1 and Γ_2 , then $u_{\mathbb{C}}(\Gamma) = u_{\mathbb{C}}(\Gamma_1) \cup u_{\mathbb{C}}(\Gamma_2)$.

MCSU for C-Unification/Matching Problems Can Be Large

Example

- ► Problem: $f(f(x_1,x_2),f(x_3,x_4)) \stackrel{?}{=}_{\mathbf{C}} f(f(a,b),f(c,d))$.
- mcsu contains 4! substitutions.

Properties of the C-Unification Algorithm

- The algorithm, in general, does not return a minimal complete set of C-unifiers.
- The obtained complete set can be further minimized, removing redundant unifiers.
- Not clear how to design a C-unification algorithm that computes a minimal complete set of unifiers directly.

Properties of the C-Unification Algorithm

Theorem

The decision problem of C-matching and unification is NP-complete.

Proof.

Exercise.

ACU-Unification

$$\mathsf{ACU} = \{ f(f(x,y),z) \approx f(x,f(y,z)), f(x,y) \approx f(y,x), f(x,e) \approx x \}$$

- 1. Associativity, commutativity, unit element.
- **2**. *f* is associative and commutative, *e* is the unit element.

Example: Elementary ACU-Unification

Elementary ACU-unification problem:

$$\Gamma = \{ f(x, f(x, y)) \doteq_{\mathsf{ACLL}}^{?} f(z, f(z, z)) \}$$

Solving idea:

- 1. Associate with the equation in Γ a homogeneous linear Diophantine equation 2x + y = 3z.
- 2. The equation states that the number of new variables introduced by a unifier σ in both sides of $\Gamma \sigma$ must be the same.

(Continues on the next slide.)

Example. Elementary ACU-Unification (Cont.)

3. Solve 2x + y = 3z over nonnegative integers. Three minimal solutions:

$$x = 1, y = 1, z = 1$$

 $x = 0, y = 3, z = 1$
 $x = 3, y = 0, z = 2$

Any other solution of the equation can be obtained as a nonnegative linear combination of these three solutions.

(Continues on the next slide.)

Example. Elementary ACU-Unification (Cont.)

4. Introduce new variables v_1 , v_2 , v_3 for each solution of the Diophantine equation:

5. Each row corresponds to a unifier of Γ :

$$\sigma_1 = \{x \mapsto v_1, y \mapsto v_1, z \mapsto v_1\}$$

$$\sigma_2 = \{x \mapsto e, y \mapsto f(v_2, f(v_2, v_2)), z \mapsto v_2\}$$

$$\sigma_3 = \{x \mapsto f(v_3, f(v_3, v_3)), y \mapsto e, z \mapsto f(v_3, v_3)\}$$

However, none of them is an mgu.

Example. Elementary ACU-Unification (Cont.)

6. To obtain an mgu, we should combine all three solutions:

$$\begin{array}{c|ccccc} & x & y & z \\ \hline v_1 & 1 & 1 & 1 \\ v_2 & 0 & 3 & 1 \\ v_3 & 3 & 0 & 2 \\ \hline \end{array}$$

The columns indicate that the mgu we are looking for should have

- in the binding for x one v_1 , zero v_2 , and three v_3 's,
- in the binding for y one v_1 , three v_2 's, and zero v_3 ,
- in the binding for z one v_1 , one v_2 , and two v_3 's
- 7. Hence, we can construct an mgu:

$$\sigma = \{x \mapsto f(v_1, f(v_3, f(v_3, v_3))), y \mapsto f(v_1, f(v_2, f(v_2, v_2))), \\ z \mapsto f(v_1, f(v_2, f(v_3, v_3)))\}$$

Example: ACU-Unification with constants

ACU-unification problem with constants

$$\Gamma = \{ f(x, f(x, y)) \doteq_{\mathsf{ACU}}^? f(a, f(z, f(z, z))) \}$$

reduces to inhomogeneous linear Diophantine equation

$$S = \{2x + y = 3z + 1\}.$$

► The minimal nontrivial natural solutions of S are (0,1,0) and (2,0,1).

Example: ACU-Unification with constants

ACU-unification problem with constants

$$\Gamma = \{ f(x, f(x, y)) \stackrel{!}{=}^{?}_{\mathsf{ACU}} f(a, f(z, f(z, z))) \}$$

reduces to inhomogeneous linear Diophantine equation

$$S = \{2x + y = 3z + 1\}.$$

- ► Every natural solution of S is obtained as the sum of one of its minimal solutions and a solution of the corresponding homogeneous LDE 2x + y = 3z.
- One element of the minimal complete set of unifiers of Γ is obtained from the combination of one minimal solution of S with the set of all minimal solutions of 2x + y = 3z.

Example: ACU-Unification with constants

ACU-unification problem with constants

$$\Gamma = \{ f(x, f(x, y)) \doteq_{\mathsf{ACU}}^{?} f(a, f(z, f(z, z))) \}$$

reduces to inhomogeneous linear Diophantine equation

$$S = \{2x + y = 3z + 1\}.$$

▶ The minimal complete set of unifiers of Γ is $\{\sigma_1, \sigma_2\}$, where

$$\sigma_{1} = \{x \mapsto f(v_{1}, f(v_{3}, f(v_{3}, v_{3}))), \\ y \mapsto f(a, f(v_{1}, f(v_{2}, f(v_{2}, v_{2}))), \\ z \mapsto f(v_{1}, f(v_{2}, f(v_{3}, v_{3})))\} \\ \sigma_{2} = \{x \mapsto f(a, f(a, f(v_{1}, f(v_{3}, f(v_{3}, v_{3})))), \\ y \mapsto f(v_{1}, f(v_{2}, f(v_{2}, v_{2})), \\ z \mapsto f(a, f(v_{1}, f(v_{2}, f(v_{3}, v_{3}))))\}$$

ACU-Unification with constants

- If an ACU-unification problem contains more than one constant, solve the corresponding inhomogeneous LDE for each constant.
- The unifiers in the minimal complete set correspond to all possible combinations of the minimal solutions of these inhomogeneous equations.

ACU-Unification with constants

Example

 $xxy \doteq_{ACU}^{?} aabbb$:

- Equation for a: 2x + y = 2. Minimal solutions: (1,0) and (0,2).
- ► Corresponding unifiers: $\{x \mapsto a, y \mapsto e\}$, $\{x \mapsto e, y \mapsto aa\}$
- Equation for b: 2x + y = 3. Minimal solutions: (0,3) and (1,1).
- Corresponding unifiers: $\{x \mapsto e, y \mapsto bbb\}, \{x \mapsto b, y \mapsto b\}$
- Unifiers in the minimal complete set: $\{x \mapsto a, y \mapsto bbb\}$, $\{x \mapsto ab, y \mapsto b\}$, $\{x \mapsto e, y \mapsto aabbb\}$, $\{x \mapsto b, y \mapsto aab\}$.

From ACU to AC

Example

- ► How to solve $\Gamma_1 = \{f(x, f(x, y)) = \frac{?}{AC} f(z, f(z, z))\}$?
- We "know" how to solve $\Gamma_2 = \{f(x, f(x, y)) \stackrel{?}{=}_{\mathsf{ACU}}^? f(z, f(z, z))\}$, but its mgu is not an mgu for Γ_1 .
- Mgu of Γ_2 :

$$\sigma = \{x \mapsto f(v_1, f(v_3, f(v_3, v_3))), y \mapsto f(v_1, f(v_2, f(v_2, v_2))), \\ z \mapsto f(v_1, f(v_2, f(v_3, v_3)))\}$$

- Unifier of Γ_1 : $\vartheta = \{x \mapsto v_1, y \mapsto v_1, z \mapsto v_1\}$.
- σ is not more general modulo AC than ϑ .

From ACU to AC

Example

- Idea: Take the mgu of Γ_2 .
- Compose it with all possible erasing substitutions that map a subset of $\{v_1, v_2, v_3\}$ to the unit element.
- Restriction: The result of the composition should not map x, y, and z to the unit element.

From ACU to AC

Example

Minimal complete set of unifiers for Γ_1 :

```
\sigma_{1} = \{x \mapsto f(v_{1}, f(v_{3}, f(v_{3}, v_{3}))), y \mapsto f(v_{1}, f(v_{2}, f(v_{2}, v_{2}))), \\ z \mapsto f(v_{1}, f(v_{2}, f(v_{3}, v_{3})))\} 
\sigma_{2} = \{x \mapsto f(v_{3}, f(v_{3}, v_{3})), y \mapsto f(v_{2}, f(v_{2}, v_{2})), \\ z \mapsto f(v_{2}, f(v_{3}, v_{3}))\} 
\sigma_{3} = \{x \mapsto f(v_{1}, f(v_{3}, f(v_{3}, v_{3}))), y \mapsto v_{1}, z \mapsto f(v_{1}, f(v_{3}, v_{3}))\} 
\sigma_{4} = \{x \mapsto v_{1}, y \mapsto f(v_{1}, f(v_{2}, f(v_{2}, v_{2}))), z \mapsto f(v_{1}, v_{2})\} 
\sigma_{5} = \{x \mapsto v_{1}, y \mapsto v_{1}, z \mapsto v_{1}\}
```


How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:

Evelyne Contejean and Hervé Devie.

An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations.

Information and Computation 113(1): 143–172 (1994).

Generalizes Fortenbacher's Algorithm for solving a single equation:

Michael Clausen and Albrecht Fortenbacher. Efficient Solution of Linear Diophantine Equations.

J. Symbolic Computation 8(1,2): 201–216 (1989).

Will be discussed in the next lecture.

Example. E-Unification of Type 0

Example

- ► Equational theory: $E = \{f(e,x) \approx x, g(f(x,y)) \approx g(y)\}.$
- *E*-unification problem: $\Gamma = \{g(x) \stackrel{?}{=} g(e)\}.$
- Complete (why?) set of solutions:

$$\sigma_{0} = \{x \mapsto e\}$$

$$\sigma_{1} = \{x \mapsto f(x_{0}, e)\}$$

$$\sigma_{2} = \{x \mapsto f(x_{1}, f(x_{0}, e))\}$$

$$\dots$$

$$\sigma_{n} = \{x \mapsto f(x_{n-1}, x\sigma_{n-1})\}$$

No mcsu. $\sigma_i = {x \atop E} \sigma_{i+1} \{x_i \mapsto e\}.$ $\sigma_i \nleq_E^{\{x\}} \sigma_j \text{ for } i > j.$ Infinite descending chain: $\sigma_0 \gt_E^{\{x\}} \sigma_1 \gt_E^{\{x\}} \sigma_2 \gt_E^{\{x\}} \cdots$

Example. E-Unification of Type 0

Example (Cont.)

Why does $\sigma_0 >_E^{\{x\}} \sigma_1 >_E^{\{x\}} \sigma_2 >_E^{\{x\}} \cdots$ imply that there is no *mcsu*?

- Let $S = \{\sigma_0, \sigma_1, \ldots\}.$
- Let S' be an arbitrary complete set of unifiers of Γ .
- Since *S* is complete, for any $\vartheta \in S'$ there exists $\sigma_i \in S$ such that $\sigma_i \leq_F^{\{x\}} \vartheta$.
- Since $\sigma_{i+1} \lessdot_E^{\{x\}} \sigma_i$, we get $\sigma_{i+1} \lessdot_E^{\{x\}} \vartheta$.
- On the other hand, since S' is complete, there exists $\eta \in S'$ such that $\eta \leq_E^{\{x\}} \sigma_{i+1}$.
- ▶ Hence, $\eta \lessdot_E^{\{x\}} \vartheta$ which implies that S' is not minimal.

Specific vs General Results

For each specific equational theory separately studying

- decidability,
- unification type,
- unification algorithm/procedure.

Can one study these problems for bigger classes of equational theories?

Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results

Specific vs General Results

For each specific equational theory separately studying

- decidability,
- unification type,
- unification algorithm/procedure.

Can one study these problems for bigger classes of equational theories?

In general, unification modulo equational theories

- is undecidable.
- unification type of a given theory is undecidable,
- admits a complete unification procedure (Gallier & Snyder, called an universal E-unification procedure).

Universal *E*-unification procedure \mathcal{U}_E .

Rules:

- ► Trivial, Orient, Decomposition, Variable Elimination from U, plus
- Lazy Paramodulation:

$$\{e[u]\} \cup P'; S \Longrightarrow \{l \stackrel{\stackrel{\cdot}{=}}{=} u, e[r]\} \cup P'; S,$$

for a fresh variant of the identity $l \approx r$ from $E \cup E^{-1}$, where

- e[u] is an equation where the term u occurs,
- u is not a variable,
- ▶ if l is not a variable, then the top symbol of l and u are the same.

Universal *E*-unification procedure. Control.

In order to solve a unification problem Γ modulo a given E:

- Create an initial system Γ ; \varnothing .
- Apply successively rules from \mathcal{U}_E , building a complete tree of derivations.
- No other inference rule may be applied to the equation $l \doteq^{?} u$ that is generated by the Lazy Paramodulation rule before it is subjected to a Decomposition step.

Universal *E*-unification procedure.

Example

$$E = \{ f(a,b) \approx a, a \approx b \}.$$

Unification problem: $\{f(x,x) \doteq_E^? x\}$.

Computing a unifier $\{x \mapsto a\}$ by the universal procedure:

$$\{f(x,x) \doteq_E^? x\}; \varnothing \Longrightarrow_{LP} \{f(a,b) \doteq_E^? f(x,x), a \doteq_E^? x\}; \varnothing$$

$$\Longrightarrow_D \{a \doteq_E^? x, b \doteq_E^? x, a \doteq_E^? x\}; \varnothing$$

$$\Longrightarrow_O \{x \doteq_E^? a, b \doteq_E^? x, a \doteq_E^? x\}; \varnothing$$

$$\Longrightarrow_S \{b \doteq_E^? a, a \triangleq_E^? a\}; \{x \doteq a\}$$

$$\Longrightarrow_{LP} \{a \triangleq_E^? a, b \triangleq_E^? b, a \triangleq_E^? a\}; \{x \triangleq a\}$$

$$\Longrightarrow_T^+ \varnothing; \{x \triangleq a\}$$

Pros and cons of the universal procedure:

- ▶ Pros: Is sound and complete. Can be used for any *E*.
- Cons: Very inefficient. Usually does not yield a decision procedure or a (minimal) E-unification algorithm even for unitary or finitary theories with decidable unification.

More useful results can be obtained by imposing additional restrictions on equational theories:

- Syntactic approaches: Restricting syntactic form of the identities defining equational theories.
- Semantic approaches: Depend on properties of the free algebras defined by the equational theory.

