Rewriting

Part 6. Completion of Term Rewriting Systems

Temur Kutsia

RISC, JKU Linz

Recall the word problem:

Given: A set of identities E and two terms s and t.

Decide: $s \approx_E t$ holds or not.

Recall the word problem:

Given: A set of identities E and two terms s and t.

Decide: $s \approx_E t$ holds or not.

ullet The problem is undecidable for an arbitrary E.

Recall the word problem:

Given: A set of identities E and two terms s and t.

Decide: $s \approx_E t$ holds or not.

- The problem is undecidable for an arbitrary E.
- ightharpoonup Try to construct a decision procedure for a given finite E.

Recall the word problem:

Given: A set of identities E and two terms s and t.

Decide: $s \approx_E t$ holds or not.

- The problem is undecidable for an arbitrary E.
- Try to construct a decision procedure for a given finite E.
- ▶ When E is finite and \rightarrow_E is convergent, the word problem is decidable.

First Approach

Construction of a decision procedure.

First Approach

Construction of a decision procedure.

Show Termination: Try to find a reduction order > which orients all identities in E. If this succeeds, consider the TRS $R \coloneqq \{s \to t \mid s \approx t \in E \text{ or } t \approx s \in E, \text{ and } s > t\}$, and continue with this system in the next step. Otherwise fail.

First Approach

Construction of a decision procedure.

Show Termination: Try to find a reduction order > which orients all identities in E. If this succeeds, consider the TRS $R := \{s \to t \mid s \approx t \in E \text{ or } t \approx s \in E, \text{ and } s > t\}$, and continue with this system in the next step. Otherwise fail.

Show Confluence: Decide confluence of the terminating TRS R, by computing all critical pairs between rules in R and testing them for confluence. If this step succeeds, the rewrite relation \rightarrow_R yields a decision procedure for the word problem for E. Otherwise fail.

Example When The Simple Approach Succeeds

Example 6.1 Let $E := \{x + 0 \approx x, x + s(y) \approx s(x + y)\}.$

Example When The Simple Approach Succeeds

Example 6.1

Let
$$E := \{x + 0 \approx x, x + s(y) \approx s(x + y)\}.$$

Show Termination: Use the Ipo $>_{lpo}$ induced by +>s. We get a terminating term rewriting system

$$R \coloneqq \{x + 0 \to x, x + s(y) \to s(x + y)\}.$$

Example When The Simple Approach Succeeds

Example 6.1

Let
$$E := \{x + 0 \approx x, x + s(y) \approx s(x + y)\}.$$

Show Termination: Use the Ipo $>_{lpo}$ induced by +>s. We get a terminating term rewriting system

$$R \coloneqq \{x + 0 \to x, x + s(y) \to s(x + y)\}.$$

Show Confluence: It is also confluent since there are no critical pairs.

Example When The Simple Approach Does Not Succeed

Example 6.2 Let $E := \{x + 0 \approx x, \ x + s(y) \approx s(x + y)\}.$

Example When The Simple Approach Does Not Succeed

Example 6.2

Let
$$E := \{x + 0 \approx x, \ x + s(y) \approx s(x + y)\}.$$

Show Termination: Now we use the lpo $>_{lpo}$ induced by s>+. We get a terminating term rewriting system

$$R\coloneqq \big\{x+0\to x, s\big(x+y\big)\to x+s\big(y\big)\big\}.$$

Example When The Simple Approach Does Not Succeed

Example 6.2

Let
$$E := \{x + 0 \approx x, \ x + s(y) \approx s(x + y)\}.$$

Show Termination: Now we use the lpo $>_{lpo}$ induced by s>+. We get a terminating term rewriting system

$$R := \{x + 0 \to x, s(x + y) \to x + s(y)\}.$$
It is not confluent since the following crit

Show Confluence: It is not confluent since the following critical pair is not joinable:

$$\begin{array}{c}
s(x+0) \\
\swarrow \\
x+s(0) \\
\end{array}$$

Main Ideas Behind Completion

- If the critical pair $\langle s, t \rangle$ of R is not joinable, then there are distinct normal forms \hat{s}, \hat{t} of s, t.
- Adding $\hat{s} \to \hat{t}$ or $\hat{t} \to \hat{s}$ does not change the equational theory generated by R, because $\hat{s} \approx \hat{t}$ is an equational consequence of R.
- In the extended system, $\langle s,t \rangle$ is joinable.
- ▶ To obtain a terminating new system, we need $\hat{s} > \hat{t}$ or $\hat{t} > \hat{s}$

Input:

A finite set E of Σ -identities and a reduction order > on $T(\Sigma, V)$.

Output:

A finite convergent TRS R that is equivalent to E, if the procedure terminates successfully;

"Fail", if the procedure terminates unsuccessfully.

Initialization:

```
If there exists (s \approx t) \in E such that s \neq t, s \not> t and t \not> s, then terminate with output Fail.
Otherwise, i := 0 and R_0 := \{l \to r \mid (l \approx r) \in E \cup E^{-1} \land l > r\}.
```

```
repeat R_{i+1} := R_i;
```

```
for all \langle s,t 
angle \in CP(R_i) do
```

- (a) Reduce s, t to some R_i -normal forms \widehat{s}, \widehat{t} ;
- (b) If $\hat{s} \neq \hat{t}$ and neither $\hat{s} > \hat{t}$ nor $\hat{t} > \hat{s}$, then terminate with output Fail;
- (c) If $\widehat{s} > \widehat{t}$, then $R_{i+1} := R_{i+1} \cup \{\widehat{s} \to \widehat{t}\}$;
- (d) If $\hat{t} > \hat{s}$, then $R_{i+1} := R_{i+1} \cup \{\hat{t} \to \hat{s}\};$

```
i := i + 1;
```

```
until R_i = R_{i-1}; output R_i;
```


The procedure shows three different types of behavior, depending on particular input E and >:

 It may terminate with failure because one of the nontrivial input identities can not be ordered using >, or the normal forms of the terms in one of the critical pairs are distinct and can not be oriented by using >. Not much is gained. One can restart the procedure with a different reduction order.

The procedure shows three different types of behavior, depending on particular input E and >:

- It may terminate with failure because one of the nontrivial input identities can not be ordered using >, or the normal forms of the terms in one of the critical pairs are distinct and can not be oriented by using >. Not much is gained. One can restart the procedure with a different reduction order.
- 2. It may terminate successfully with output R_n because in nth step of the iteration all critical pairs are joinable. R_n is a finite convergent system equivalent to E. It can be used to decide the word problem for E.

The procedure shows three different types of behavior, depending on particular input E and >:

- It may terminate with failure because one of the nontrivial input identities can not be ordered using >, or the normal forms of the terms in one of the critical pairs are distinct and can not be oriented by using >. Not much is gained. One can restart the procedure with a different reduction order.
- 2. It may terminate successfully with output R_n because in nth step of the iteration all critical pairs are joinable. R_n is a finite convergent system equivalent to E. It can be used to decide the word problem for E.
- 3. It may run forever since infinitely many new rules are generated. In this case, $R_{\infty}\coloneqq \bigcup_{i\geq 0} R_i$ is an infinite convergent system that is equivalent to E. Yields a semidecision procedure for \approx_E .

Input:

$$E := \{f(f(x)) \approx g(x)\}, \text{ LPO } >_{lpo} \text{ induced by } f > g.$$

Input:

$$E \coloneqq \{f(f(x)) \approx g(x)\}, \text{ LPO } >_{lpo} \text{ induced by } f > g.$$

 $R_0 := \{f(f(x)) \to g(x)\}$ has a non-joinable critical pair:

$$f(f(f(x)))$$

$$f(g(x)) \qquad g(f(x))$$

Input:

$$E := \{f(f(x)) \approx g(x)\}, \text{ LPO } >_{lpo} \text{ induced by } f > g.$$

 $R_0 := \{f(f(x)) \to g(x)\}$ has a non-joinable critical pair:

$$f(f(f(x)))$$

$$f(g(x)) \qquad g(f(x))$$

$$R_1 := \{ f(f(x)) \to g(x), f(g(x)) \to g(f(x)) \}$$
 is confluent. $R_2 = R_1$.

Input:

$$E \coloneqq \{f(f(x)) \approx g(x)\}, \text{ LPO } >_{lpo} \text{ induced by } f > g.$$

 $R_0 := \{f(f(x)) \to g(x)\}$ has a non-joinable critical pair:

$$f(f(f(x)))$$

$$f(g(x)) \qquad g(f(x))$$

$$R_1 := \{ f(f(x)) \to g(x), f(g(x)) \to g(f(x)) \}$$
 is confluent. $R_2 = R_1$.

Output:

$$R_2 := \{ f(f(x)) \to g(x), f(g(x)) \to g(f(x)) \}.$$

Example: The Procedure Terminates with Failure

Input:

```
\begin{split} E \coloneqq \{x * (y+z) \approx (x*y) + (x*z), (u+v) * w \approx (u*w) + (v*w)\}, \\ \mathsf{LPO}>_{lpo} \mathsf{induced} \mathsf{\ by} \ *>+. \end{split}
```


Example: The Procedure Terminates with Failure

Input:

$$E\coloneqq\{x*(y+z)\approx(x*y)+(x*z),(u+v)*w\approx(u*w)+(v*w)\},$$
 LPO $>_{lpo}$ induced by $*>+$.

 $R_0 \coloneqq \{x * (y+z) \rightarrow (x * y) + (x * z), (u+v) * w \rightarrow (u * w) + (v * w)\}$ has a non-joinable critical pair:

Example: The Procedure Terminates with Failure

Input:

$$E\coloneqq\{x*(y+z)\approx(x*y)+(x*z),(u+v)*w\approx(u*w)+(v*w)\},$$
 LPO $>_{lpo}$ induced by $*>+$.

 $R_0 \coloneqq \{x * (y+z) \rightarrow (x * y) + (x * z), (u+v) * w \rightarrow (u * w) + (v * w)\}$ has a non-joinable critical pair:

$$((u+v)*(y+z) \\ ((u+v)*y) + ((u+v)*z) \\ (u*(y+z)) + (v*(y+z)) \\ \downarrow \\ ((u*y)+(v*y)) + ((u*z)+(v*z)) \neq \\ \not \downarrow \\ ((u*y)+(u*z)) + ((v*y)+(v*z)) \\ \not \downarrow$$

The procedure fails.

Input:

$$E\coloneqq\{x+0\approx x,\ x+s(y)\approx s(x+y)\}\text{, LPO}>_{lpo}\text{ induced by }s>+.$$

Input:

$$E := \{x + 0 \approx x, x + s(y) \approx s(x + y)\}, LPO >_{lpo} induced by s > +.$$

$$R_0 := \{x + 0 \to x, \ x + s(y) \to s(x + y)\}.$$

$$R_1 \coloneqq R_0 \cup \{x + s(0) \to s(x)\}.$$

Input:

$$E \coloneqq \{x + 0 \approx x, \ x + s(y) \approx s(x + y)\}, \ \mathsf{LPO} >_{lpo} \mathsf{induced by } s > +.$$

$$R_0 := \{x + 0 \to x, \ x + s(y) \to s(x + y)\}.$$

$$R_1 := R_0 \cup \{x + s(0) \to s(x)\}.$$

 ${\it R}_{\rm 1}$ is not confluent since the following critical pair is not joinable:

$$\begin{array}{c}
s(x+s(0)) \\
x+s(s(0)) \\
\end{array}$$

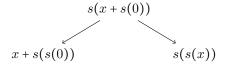
Input:

$$E := \{x + 0 \approx x, x + s(y) \approx s(x + y)\}, LPO >_{lpo} induced by s > +.$$

$$R_0 := \{x + 0 \to x, \ x + s(y) \to s(x + y)\}.$$

$$R_1 := R_0 \cup \{x + s(0) \to s(x)\}.$$

 R_1 is not confluent since the following critical pair is not joinable:



At each step of the iteration a new rule of the form $x + s^n(0) \to s^n(0)$ is generated. The procedure does not stop.

Drawbacks of the Basic Completion

- In practice, the basic completion procedure generates a huge number of rules.
- All of them should be taken into account when computing critical pairs.
- It makes both time and space requirement often unacceptably high.

Addressing the Drawbacks

- All implementations of completion "simplify" rules by reducing them with the help of other rules.
- ▶ If both sides of a rule reduce to the same term, the rule can be removed.
- Yields smaller rules.
- Improved completion procedure.

Example 6.3

$$R \coloneqq \{ f(f(x,y),z) \to f(x,f(y,z)), \ f(x,f(y,z)) \to f(x,z) \}$$

Addressing the Drawbacks

- All implementations of completion "simplify" rules by reducing them with the help of other rules.
- If both sides of a rule reduce to the same term, the rule can be removed.
- Yields smaller rules.
- Improved completion procedure.

Example 6.3

$$R \coloneqq \{ f(f(x,y),z) \to f(x,f(y,z)), \ f(x,f(y,z)) \to f(x,z) \}$$

$$f(f(x,y),z) \longrightarrow f(x,f(y,z))$$

$$\downarrow$$

$$f(x,z)$$

Addressing the Drawbacks

- All implementations of completion "simplify" rules by reducing them with the help of other rules.
- If both sides of a rule reduce to the same term, the rule can be removed.
- Yields smaller rules.
- Improved completion procedure.

Example 6.3

$$R := \{ f(f(x,y),z) \to f(x,f(y,z)), \ f(x,f(y,z)) \to f(x,z) \}$$

$$f(f(x,y),z) \longrightarrow f(x,f(y,z))$$

$$\downarrow$$

$$f(x,z)$$

Simpler rules:

$$R = \{ f(f(x,y), z) \to f(x,z), \ f(x,f(y,z)) \to f(x,z) \}.$$

An Improved Completion Procedure

- Described as a set of inference rules.
- Specific completion procedure is obtained by fixing a strategy for application of the rules.
- Works on pairs (E,R), where E is a set of identities and R is a set of rewrite rules.
- ightharpoonup E contains input identities and not-yet-oriented critical pairs with the input reduction ordering >.
- R is a set of rewrite rules oriented with input ordering >.
- ▶ Goal: To transform an initial pair (E_0, \emptyset) into (\emptyset, R) such that R is convergent and equivalent to E.

An Improved Completion Procedure

DEDUCE	$\frac{E,R}{E \cup \{s \approx t\},R}$	if $s \leftarrow_R u \rightarrow_R t$
ORIENT	$\frac{E \cup \{s \stackrel{.}{\approx} t\}, R}{E, R \cup \{s \rightarrow t\}}$	if $s > t$
DELETE	$\frac{E \cup \{s \approx s\}, R}{E, R}$	
SIMPLIFY-IDENTITY	$\frac{E \cup \{s \stackrel{.}{\approx} t\}, R}{E \cup \{u \approx t\}, R}$	if $s \to_R u$
R-SIMPLIFY-RULE	$\frac{E,R \cup \{s \to t\}}{E,R \cup \{s \to u\}}$	if $t \to_R u$
L-Simplify-rule	$\frac{E,R \cup \{s \to t\}}{E \cup \{u \approx t\},R}$	if $s \stackrel{\sqsupset}{\to}_R u$

▶ In the L-SIMPLIFY-RULE, $s \xrightarrow{\neg}_R u$ says that s is reduced by a rule $l \to r \in R$ such that l can not be reduced by $s \to t$.

- ▶ In the L-SIMPLIFY-RULE, $s \xrightarrow{\neg}_R u$ says that s is reduced by a rule $l \to r \in R$ such that l can not be reduced by $s \to t$.
- ▶ If $R := \{f(x,x) \to x, f(x,y) \to x\}$, then L-SIMPLIFY-RULE can be applied to $f(x,x) \to x$.

- ▶ In the L-SIMPLIFY-RULE, $s \xrightarrow{\exists}_R u$ says that s is reduced by a rule $l \to r \in R$ such that l can not be reduced by $s \to t$.
- ▶ If $R := \{f(x,x) \to x, f(x,y) \to x\}$, then L-SIMPLIFY-RULE can be applied to $f(x,x) \to x$.
- ▶ If $R := \{f(x,y) \to x, f(x,y) \to y\}$, then L-SIMPLIFY-RULE can not be applied.

- ▶ In the L-SIMPLIFY-RULE, $s \xrightarrow{\exists}_R u$ says that s is reduced by a rule $l \to r \in R$ such that l can not be reduced by $s \to t$.
- ▶ If $R := \{f(x,x) \to x, f(x,y) \to x\}$, then L-SIMPLIFY-RULE can be applied to $f(x,x) \to x$.
- ▶ If $R := \{f(x,y) \to x, f(x,y) \to y\}$, then L-SIMPLIFY-RULE can not be applied.
- Notation: $(E,R) \vdash_{\mathcal{C}} (E',R')$ means that (E,R) can be transformed into (E',R') by one of the inference rules.

Termination

Lemma 6.1 (Termination)

If $R \subseteq >$ and $(E,R) \vdash_{\mathcal{C}} (E',R')$, then $R' \subseteq >$.

Proof.

All rules are oriented wrt the reduction order >.

Lemma 6.2 (Soundness)

If $(E_1, R_2) \vdash_{\mathcal{C}} (E_2, R_2)$, then $\approx_{E_1 \cup R_1} = \approx_{E_2 \cup R_2}$.

Lemma 6.2 (Soundness)

If
$$(E_1, R_2) \vdash_{\mathcal{C}} (E_2, R_2)$$
, then $\approx_{E_1 \cup R_1} = \approx_{E_2 \cup R_2}$.

Proof.

Trivial for the first three rules.

Lemma 6.2 (Soundness)

If
$$(E_1, R_2) \vdash_{\mathcal{C}} (E_2, R_2)$$
, then $\approx_{E_1 \cup R_1} = \approx_{E_2 \cup R_2}$.

Proof.

Trivial for the first three rules.

For SIMPLIFY-IDENTITY, $E_1 = E \cup \{s \approx t\}$, $E_2 = E \cup \{u \approx t\}$, $R_1 = R = R_2$, and $s \to_R u$. We have $u \approx_{E_1 \cup R_1} t$, which implies $\approx_{E_2 \cup R_2} \subseteq \approx_{E_1 \cup R_1}$. Conversely, $u \approx t \in E_2$, $s \to_R u$, and $R = R_2$ imply that $s \approx_{E_2 \cup R_2} t$ and, hence, $\approx_{E_1 \cup R_1} \subseteq \approx_{E_2 \cup R_2}$.

Lemma 6.2 (Soundness)

If $(E_1, R_2) \vdash_{\mathcal{C}} (E_2, R_2)$, then $\approx_{E_1 \cup R_1} = \approx_{E_2 \cup R_2}$.

Proof.

Trivial for the first three rules.

For SIMPLIFY-IDENTITY, $E_1 = E \cup \{s \approx t\}$, $E_2 = E \cup \{u \approx t\}$, $R_1 = R = R_2$, and $s \to_R u$. We have $u \approx_{E_1 \cup R_1} t$, which implies $\approx_{E_2 \cup R_2} \subseteq \approx_{E_1 \cup R_1}$. Conversely, $u \approx t \in E_2$, $s \to_R u$, and $R = R_2$ imply that $s \approx_{E_2 \cup R_2} t$ and, hence, $\approx_{E_1 \cup R_1} \subseteq \approx_{E_2 \cup R_2}$.

For R-SIMPLIFY, we have E_1 = E = E_2 , R_1 = $R \cup \{s \rightarrow t\}$, R_2 = $R \cup \{s \rightarrow u\}$, and $t \rightarrow_R u$. $s \rightarrow t \in R_1$, $t \rightarrow_R u$, and $R \subseteq R_1$ imply $s \approx_{E_1 \cup R_1} u$. $s \rightarrow u \in R_2$, $t \rightarrow_R u$, and $R \subseteq R_2$ imply $s \approx_{E_2 \cup R_2} u$. Hence, $\approx_{E_1 \cup R_1} = \approx_{E_2 \cup R_2}$.

Lemma 6.2 (Soundness)

If
$$(E_1, R_2) \vdash_{\mathcal{C}} (E_2, R_2)$$
, then $\approx_{E_1 \cup R_1} = \approx_{E_2 \cup R_2}$.

Proof.

Trivial for the first three rules.

For SIMPLIFY-IDENTITY, $E_1 = E \cup \{s \approx t\}$, $E_2 = E \cup \{u \approx t\}$, $R_1 = R = R_2$, and $s \to_R u$. We have $u \approx_{E_1 \cup R_1} t$, which implies $\approx_{E_2 \cup R_2} \subseteq \approx_{E_1 \cup R_1}$. Conversely, $u \approx t \in E_2$, $s \to_R u$, and $R = R_2$ imply that $s \approx_{E_2 \cup R_2} t$ and, hence, $\approx_{E_1 \cup R_1} \subseteq \approx_{E_2 \cup R_2}$.

For R-SIMPLIFY, we have $E_1=E=E_2$, $R_1=R\cup\{s\to t\}$, $R_2=R\cup\{s\to u\}$, and $t\to_R u.$ $s\to t\in R_1,$ $t\to_R u$, and $R\subseteq R_1$ imply $s\approx_{E_1\cup R_1} u.$ $s\to u\in R_2,$ $t\to_R u$, and $R\subseteq R_2$ imply $s\approx_{E_2\cup R_2} u.$ Hence, $\approx_{E_1\cup R_1}=\approx_{E_2\cup R_2}.$

For $L\text{-}\mathrm{SIMPLIFY}$ the proof is similar.

Definition 6.1 (Completion Procedure)

A completion procedure is a program that accepts as input a finite set of identities and a reduction order >, and uses the inference rules to generate a (finite or infinite) sequence

$$(E_0, R_0) \vdash_{\mathcal{C}} (E_1, R_1) \vdash_{\mathcal{C}} (E_2, R_2) \vdash_{\mathcal{C}} (E_3, R_3) \vdash_{\mathcal{C}} \cdots,$$

where $R_0 \coloneqq 0$. The sequence is called a run of the procedure on input E_0 and >.

▶ To treat finite and infinite runs simultaneously, we extend every finite run $(E_0,R_0) \vdash_{\mathcal{C}} \cdots \vdash_{\mathcal{C}} (E_n,R_n)$ to an infinite one by setting $(E_{n+i},R_{n+i})\coloneqq (E_n,R_n)$ for all $i\geq 1$.

- ▶ To treat finite and infinite runs simultaneously, we extend every finite run $(E_0, R_0) \vdash_{\mathcal{C}} \cdots \vdash_{\mathcal{C}} (E_n, R_n)$ to an infinite one by setting $(E_{n+i}, R_{n+i}) \coloneqq (E_n, R_n)$ for all $i \ge 1$.
- Result of the run: persistent identities and rules:

$$E_{\omega}\coloneqq\bigcup_{i\geq 0}\bigcap_{j\geq i}E_j \text{ and } R_{\omega}\coloneqq\bigcup_{i\geq 0}\bigcap_{j\geq i}R_j.$$

- ▶ To treat finite and infinite runs simultaneously, we extend every finite run $(E_0, R_0) \vdash_{\mathcal{C}} \cdots \vdash_{\mathcal{C}} (E_n, R_n)$ to an infinite one by setting $(E_{n+i}, R_{n+i}) \coloneqq (E_n, R_n)$ for all $i \ge 1$.
- Result of the run: persistent identities and rules:

$$E_{\omega}\coloneqq\bigcup_{i\geq 0}\bigcap_{j\geq i}E_j \text{ and } R_{\omega}\coloneqq\bigcup_{i\geq 0}\bigcap_{j\geq i}R_j.$$

• If the run is finite, then E_{ω} = E_n and R_{ω} = R_n .

- ▶ To treat finite and infinite runs simultaneously, we extend every finite run $(E_0, R_0) \vdash_{\mathcal{C}} \cdots \vdash_{\mathcal{C}} (E_n, R_n)$ to an infinite one by setting $(E_{n+i}, R_{n+i}) \coloneqq (E_n, R_n)$ for all $i \ge 1$.
- Result of the run: persistent identities and rules:

$$E_{\omega}\coloneqq\bigcup_{i\geq 0}\bigcap_{j\geq i}E_{j}\text{ and }R_{\omega}\coloneqq\bigcup_{i\geq 0}\bigcap_{j\geq i}R_{j}.$$

- If the run is finite, then $E_{\omega} = E_n$ and $R_{\omega} = R_n$.
- If the run is infinite, persistent identities (rules) are those that belong to some E_i (R_i) and are never removed in later inference steps.

Definition 6.2 (Success, Failure, Correctness)

A run on input E_o of a completion procedure

- succeeds iff E_{ω} = \varnothing and R_{ω} is convergent and equivalent to E_0 ,
- fails iff $E_{\omega} \neq \emptyset$,
- is correct iff every run that does not fail succeeds.

For the basic completion procedure,

- failure occurs if an input identity can not be oriented, or the normal forms of a critical pair are distinct (can not be removed by Delete) and can not be oriented using >.
- ► The other two cases (terminates successfully, does not terminate) are successful in terms of Definition 6.2.

An arbitrary completion procedure may also have infinite failing runs.

Example 6.4

Input:

$$E_0 = \{h(x,y) \approx f(x), h(x,y) \approx f(y), f(g(f(x))) \approx f(g(x))\}$$
 $>_{lpo}$ induced by $g > h > f > a$.

The procedure generates an infinite run with

$$E_{\omega} = \{ f(x) \approx f(y) \}$$

$$R_{\omega} = \{ h(x,y) \to f(x), h(x,y) \to f(y) \} \cup$$

$$\{ fg^{n}f(x) \to fg^{n}(x) \mid n \ge 1 \}.$$

- It makes sense not to terminate with failure if a reduced and nonorientable identity is encountered.
- One simply defers the orientation of this identity until new rules are obtained.
- If the new set of rules allows one to simplify the identity to an orientable or trivial one, then one can apply ORIENT or DELETE.
- Otherwise, the treatment of this identity is deferred again.

Example 6.5

Input:

```
\begin{split} E_0 &= \{h(x,y) \approx f(x), h(x,y) \approx f(y), g(x,y) \approx h(x,y), g(x,y) \approx a\} \\ >_{lpo} &\text{ induced by } g > h > f > a. \end{split}
```


Example 6.5

Input:

$$E_0 = \{h(x,y) \approx f(x), h(x,y) \approx f(y), g(x,y) \approx h(x,y), g(x,y) \approx a\}$$
 $>_{lpo}$ induced by $g > h > f > a$.

Apply Orient 4 times:

$$E_4 = \emptyset$$

$$R_4 = \{h(x,y) \to f(x), h(x,y) \to f(y),$$

$$g(x,y) \to h(x,y), g(x,y) \to a\}$$

Example 6.5

Input:

$$E_0 = \{h(x,y) \approx f(x), h(x,y) \approx f(y), g(x,y) \approx h(x,y), g(x,y) \approx a\}$$

$$>_{lpo} \text{ induced by } g > h > f > a.$$

Apply ORIENT 4 times:

$$E_4 = \emptyset$$

$$R_4 = \{h(x,y) \to f(x), h(x,y) \to f(y),$$

$$g(x,y) \to h(x,y), g(x,y) \to a\}$$

Apply DEDUCE twice:

$$E_6 = \{ f(x) \approx f(y), h(x, y) \approx a \}$$

$$R_6 = \{ h(x, y) \rightarrow f(x), h(x, y) \rightarrow f(y),$$

$$g(x, y) \rightarrow h(x, y), g(x, y) \rightarrow a \}$$

Example 6.6

Input:

$$E_0 = \{h(x,y) \approx f(x), h(x,y) \approx f(y), g(x,y) \approx h(x,y), g(x,y) \approx a\}$$
>_{lpo} induced by $g > h > f > a$.

$$E_6 = \{ f(x) \approx f(y), h(x,y) \approx a \}$$

$$R_6 = \{ h(x,y) \rightarrow f(x), h(x,y) \rightarrow f(y),$$

$$g(x,y) \rightarrow h(x,y), g(x,y) \rightarrow a \}$$

Example 6.6

Input:

$$E_0 = \{h(x,y) \approx f(x), h(x,y) \approx f(y), g(x,y) \approx h(x,y), g(x,y) \approx a\}$$
>_{lpo} induced by $g > h > f > a$.

$$E_6 = \{ f(x) \approx f(y), h(x,y) \approx a \}$$

$$R_6 = \{ h(x,y) \rightarrow f(x), h(x,y) \rightarrow f(y),$$

$$g(x,y) \rightarrow h(x,y), g(x,y) \rightarrow a \}$$

Apply Orient:

$$E_7 = \{f(x) \approx f(y)\}$$

$$R_7 = \{h(x,y) \rightarrow f(x), h(x,y) \rightarrow f(y),$$

$$g(x,y) \rightarrow h(x,y), g(x,y) \rightarrow a, h(x,y) \rightarrow a\}$$

Example 6.7

Input:

$$E_0 = \{h(x,y) \approx f(x), h(x,y) \approx f(y), g(x,y) \approx h(x,y), g(x,y) \approx a\}$$
 >_{lpo} induced by $g > h > f > a$.

$$\begin{split} E_7 &= \{f(x) \approx f(y)\} \\ R_7 &= \{h(x,y) \rightarrow f(x), h(x,y) \rightarrow f(y), \\ g(x,y) \rightarrow h(x,y), g(x,y) \rightarrow a, h(x,y) \rightarrow a\} \end{split}$$

Example 6.7

Input:

$$E_0 = \{h(x,y) \approx f(x), h(x,y) \approx f(y), g(x,y) \approx h(x,y), g(x,y) \approx a\}$$
>_{lpo} induced by $g > h > f > a$.

$$E_7 = \{f(x) \approx f(y)\}$$

$$R_7 = \{h(x,y) \rightarrow f(x), h(x,y) \rightarrow f(y),$$

$$g(x,y) \rightarrow h(x,y), g(x,y) \rightarrow a, h(x,y) \rightarrow a\}$$

Apply DEDUCE: (The basic completion would fail here, since the critical pair $f(x) \approx f(y)$ is unoriantable.)

$$E_8 = \{ f(x) \approx f(y), f(x) \approx a \}$$

$$R_8 = \{ h(x,y) \rightarrow f(x), h(x,y) \rightarrow f(y),$$

$$g(x,y) \rightarrow h(x,y), g(x,y) \rightarrow a, h(x,y) \rightarrow a \}$$

Example 6.8

Input:

$$E_0 = \{h(x,y) \approx f(x), h(x,y) \approx f(y), g(x,y) \approx h(x,y), g(x,y) \approx a\}$$
>_{lpo} induced by $g > h > f > a$.

$$E_8 = \{ f(x) \approx f(y), f(x) \approx a \}$$

$$R_8 = \{ h(x,y) \to f(x), h(x,y) \to f(y),$$

$$g(x,y) \to h(x,y), g(x,y) \to a, h(x,y) \to a \}$$

Example 6.8

Input:

$$E_0 = \{h(x,y) \approx f(x), h(x,y) \approx f(y), g(x,y) \approx h(x,y), g(x,y) \approx a\}$$
>_{lpo} induced by $g > h > f > a$.

$$E_8 = \{ f(x) \approx f(y), f(x) \approx a \}$$

$$R_8 = \{ h(x,y) \rightarrow f(x), h(x,y) \rightarrow f(y),$$

$$g(x,y) \rightarrow h(x,y), g(x,y) \rightarrow a, h(x,y) \rightarrow a \}$$

Apply Orient

$$E_9 = \{f(x) \approx f(y)\}$$

$$R_9 = \{h(x,y) \rightarrow f(x), h(x,y) \rightarrow f(y), g(x,y) \rightarrow h(x,y)$$

$$g(x,y) \rightarrow a, h(x,y) \rightarrow a, f(x) \rightarrow a\}$$

Example 6.9

Input:

$$E_0 = \{h(x,y) \approx f(x), h(x,y) \approx f(y), g(x,y) \approx h(x,y), g(x,y) \approx a\}$$
>_{lpo} induced by $g > h > f > a$.

$$E_9 = \{f(x) \approx f(y)\}$$

$$R_9 = \{h(x,y) \rightarrow f(x), h(x,y) \rightarrow f(y), g(x,y) \rightarrow h(x,y)$$

$$g(x,y) \rightarrow a, h(x,y) \rightarrow a, f(x) \rightarrow a\}$$

Example 6.9

Input:

$$E_0 = \{h(x,y) \approx f(x), h(x,y) \approx f(y), g(x,y) \approx h(x,y), g(x,y) \approx a\}$$
>_{lpo} induced by $g > h > f > a$.

$$E_9 = \{f(x) \approx f(y)\}$$

$$R_9 = \{h(x,y) \rightarrow f(x), h(x,y) \rightarrow f(y), g(x,y) \rightarrow h(x,y)$$

$$g(x,y) \rightarrow a, h(x,y) \rightarrow a, f(x) \rightarrow a\}$$

Apply SIMPLIFY-IDENTITY twice

$$E_{11} = \{a \approx a\}$$

$$R_{11} = \{h(x,y) \to f(x), h(x,y) \to f(y), g(x,y) \to h(x,y)$$

$$g(x,y) \to a, h(x,y) \to a, f(x) \to a\}$$

Example 6.10

Input:

$$E_0 = \{h(x,y) \approx f(x), h(x,y) \approx f(y), g(x,y) \approx h(x,y), g(x,y) \approx a\}$$
>_{lpo} induced by $g > h > f > a$.

$$E_{11} = \{a \approx a\}$$

$$R_{11} = \{h(x,y) \to f(x), h(x,y) \to f(y), g(x,y) \to h(x,y)$$

$$g(x,y) \to a, h(x,y) \to a, f(x) \to a\}$$

Example 6.10

Input:

$$E_0 = \{h(x,y) \approx f(x), h(x,y) \approx f(y), g(x,y) \approx h(x,y), g(x,y) \approx a\}$$

$$>_{lpo} \text{ induced by } g > h > f > a.$$

$$E_{11} = \{a \approx a\}$$

$$R_{11} = \{h(x,y) \to f(x), h(x,y) \to f(y), g(x,y) \to h(x,y)$$

$$g(x,y) \to a, h(x,y) \to a, f(x) \to a\}$$

Apply Delete

$$E_{11} = \emptyset$$

$$R_{11} = \{h(x,y) \to f(x), h(x,y) \to f(y), g(x,y) \to h(x,y)$$

$$g(x,y) \to a, h(x,y) \to a, f(x) \to a\}$$

Hence, we manage to simplify and delete an unorientable identity.

Fairness

Definition 6.3 (Fairness)

A run of a completion procedure is called fair iff

$$CP(R_{\omega}) \subseteq \bigcup_{i \geq 0} E_i.$$

A completion procedure is fair iff every non-failing run is fair.

Theorem 6.1

Every fair completion procedure is correct.