Rewriting

Part 5. Confluence of Term Rewriting Systems

Temur Kutsia

RISC, JKU Linz

Confluence Is Undecidable

The following problem is undecidable:

Given: A finite TRS R.

Question: Is R confluent or not?

Confluence Is Undecidable

The following problem is undecidable:

Given: A finite TRS R.

Question: Is R confluent or not?

Proof.

Idea:

- Given a set of identities E such that $Var(l) \approx Var(l)$ for all $l \approx r \in E$, l and r not being variables.
- Construct a TRS whose confluence problem is equivalent to the ground word problem for E.
- Undecidability of the ground word problem for E (see e.g. Example 4.1.4 from the book of Baader and Nipkow) will imply undecidability of the confluence problem.

Confluence Is Undecidable

The following problem is undecidable:

Given: A finite TRS R.

Question: Is R confluent or not?

Proof.

Construction of a TRS:

- 1. $R := E \cup E^{-1}$ is a confluent TRS.
- 2. $R_{st} := R \cup \{a \rightarrow s, a \rightarrow t\}$, where s and t are given ground terms and a is a new constant.
- 3. R_{st} is confluent iff $s \approx_E t$.

Hence, the ground word problem for E reduces to the confluence problem for $R_{s,t}$.

A Decidable Subcase

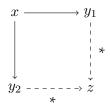
Theorem 5.1

For terminating TRSs, confluence is decidable.

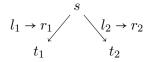
Proof idea:

- By Newman's lemma, if a TRS is terminating and locally confluent, then it is confluent.
- ► To prove the theorem, we need to prove that local confluence is decidable for terminating TRSs.

Local confluence:



To test for local confluence of \rightarrow_R , consider reductions:



That means, there are rules $l_1 \rightarrow r_1, l_2 \rightarrow r_2 \in R$, positions $p_1, p_2 \in \mathcal{P}os(s)$, and substitutions σ_1, σ_2 such that

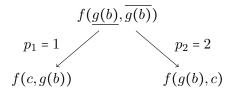
- $|s|_{p_1} = \sigma_1(l_1)$ and $t_1 = s[\sigma_1(r_1)]_{p_1}$.
- $|s|_{p_2} = \sigma_2(l_2)$ and $t_2 = s[\sigma_2(r_2)]_{p_2}$.

Consider several cases, depending on the relative positions of p_1 and p_2 .

Case 1: p_1 and p_2 are parallel positions.

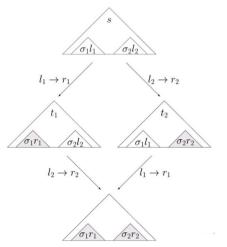
Example: $R := \{f(a, g(x)) \rightarrow f(x, x), g(b) \rightarrow c\}$

Peak:



Case 1: p_1 and p_2 are parallel positions.

Outcome: The reducts are joinable.



Case 1: p_1 and p_2 are parallel positions.

Outcome: The reducts are joinable.

Example: $R := \{f(a, g(x)) \rightarrow f(x, x), g(b) \rightarrow c\}$

Peak:

$$f(\underline{g(b)}, \overline{g(b)})$$

$$p_1 = 1$$

$$f(c, g(b))$$

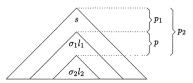
$$f(g(b), c)$$

Joinability:

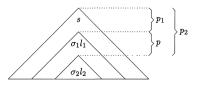
$$f(c, \underline{g(b)}) \rightarrow f(c, c)$$

 $f(g(b), c) \rightarrow f(c, c)$

Case 2: One position is a prefix of another. Say, p_1 is a prefix of p_2 : $p_2 = p_1 p$ for some p.



Case 2: One position is a prefix of another. Say, p_1 is a prefix of p_2 : $p_2 = p_1 p$ for some p.



We restrict our attention to $\sigma_1(l_1)$, because

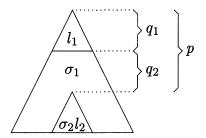
$$\sigma_1(l_1)$$

$$\sigma_1(r_1) \qquad \sigma_1(l_1)[\sigma_2(r_2)]_p$$

implies $s[\sigma_1(r_1)]_{p_1} \stackrel{*}{\to} s[t] \stackrel{*}{\leftarrow} s[\sigma_1(l_1)[\sigma_2(r_2)]_p]_{p_1} = s[\sigma_2(r_2)]_{p_2}.$

Case 2.1: The redex $\sigma_2(l_2)$ does not overlap with l_1 itself, but is contained in σ_1 .

 $p = q_1q_2$ such that q_1 is a variable position in l_1 . $\sigma_1(l_1)$ has the form:



Non-critical overlap.

Case 2.1: The redex $\sigma_2(l_2)$ does not overlap with l_1 itself, but is contained in σ_1 . $p = q_1 q_2$ such that q_1 is a variable position in l_1 .

Example: $R := \{f(a, g(x)) \rightarrow f(x, x), g(b) \rightarrow c\}$ Peak:

$$f(a, g(g(g(b))))$$

$$p_{1} = \epsilon$$

$$p_{2} = 211$$

$$f(g(g(b)), g(g(b)))$$

$$f(a, g(g(c)))$$

$$l_{1} = f(a, g(x)), \sigma_{1} = \{x \mapsto g(g(b))\}, l_{2} = g(b), \sigma_{2} = \epsilon.$$

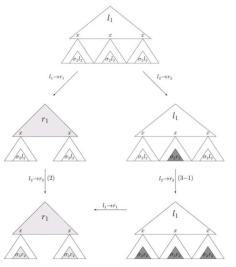
$$p = 211, q_{1} = 21, q_{2} = 1.$$

Case 2.1: The redex $\sigma_2(l_2)$ does not overlap with l_1 itself, but is contained in σ_1 . $p = q_1q_2$ such that q_1 is a variable position in l_1 .

Outcome: The reducts are joinable.

The analysis is complicated by the fact that x = $l_1|_{q_1}$ may occur repeatedly both in l_1 and r_1 .

Case 2.1: Instance: x appears three times in l_1 and twice in r_1 .



Case 2.1: The redex $\sigma_2(l_2)$ does not overlap with l_1 itself, but is contained in σ_1 . $p = q_1q_2$ such that q_1 is a variable position in l_1 .

Example: $R := \{f(a, g(x)) \rightarrow f(x, x), g(b) \rightarrow c\}$

Peak:

$$f(a, g(g(\overline{g(b)})))$$

$$p_1 = \epsilon$$

$$f(g(g(b)), g(g(b)))$$

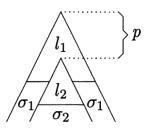
$$f(a, g(g(c)))$$

The reducts are joinable.

$$f(g(g(b)), g(g(b)) \xrightarrow{2} f(g(c), g(c)).$$

$$f(a, g(g(c))) \to f(g(c), g(c)).$$

Case 2.2: Two left-hand sides l_1 and l_2 overlap. $p \in \mathcal{P}os(l_1), \ l_1|_p$ is not a variable, and $\sigma_1(l_1|_p) = \sigma_2(l_2).$ $\sigma_1(l_1)$ has the form:

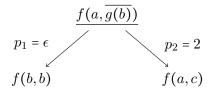


Critical overlap.

Case 2.2: Two left-hand sides l_1 and l_2 overlap. $p \in \mathcal{P}os(l_1), \ l_1|_p$ is not a variable, and $\sigma_1(l_1|_p) = \sigma_2(l_2)$.

In the case of critical overlap, local confluence need not hold.

Example: $R := \{f(a, g(x)) \rightarrow f(x, x), g(b) \rightarrow c\}$



$$l_1 = f(a, g(x)), \ \sigma_1 = \{x \mapsto b\}, \ l_2 = g(b), \ \sigma_2 = \varepsilon.$$

 $p = 2.$

Case 2.2: Two left-hand sides l_1 and l_2 overlap. $p \in \mathcal{P}os(l_1), \ l_1|_p$ is not a variable, and $\sigma_1(l_1|_p) = \sigma_2(l_2)$.

Problem: Critical overlaps must be checked for local

confluence. How to do that?

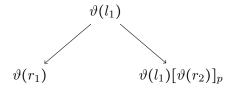
Answer: It is enough to check finitely many critical pairs.

Definition 5.1

Let

- ▶ $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$ be two rules which do not share variables,
- $p \in \mathcal{P}os(l_1)$ be a position such that $l_1|_p$ is not a variable, and
- ϑ be an mgu of $l_1|p$ and l_2

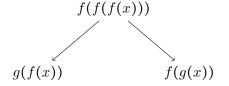
Then the pair $\langle \vartheta(r_1), \vartheta(l_1)[\vartheta(r_2)]_p \rangle$ is called a critical pair.



- ▶ The critical pairs of a TRS R are the critical pairs between any of two of its renamed rules and are denoted by CP(R).
- Includes overlaps of a rule with a renamed copy of itself.

Example 5.1

- ▶ Let $R := \{ f(f(x)) \to g(x) \}.$
- ► Take a critical pair between the rule and its renamed copy, $f(f(x)) \rightarrow g(x)$ and $f(f(y)) \rightarrow g(y)$

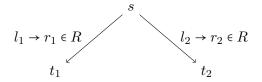


- ▶ The terms in the critical pair, g(f(x)) and f(g(x)), are not joinable.
- ightharpoonup R is not locally confluent.

- Hence, local confluence test reduces to checking joinability of critical pairs.
- ► The analysis of the cases on the previous slides leads to the Critical Pair Lemma.

Lemma 5.1 (Critical Pair Lemma)

If R is a TRS and



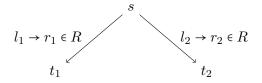
then $t_1 \downarrow_R t_2$, or $t_1 = s[u_1]_{p_1}$ and $t_2 = s[u_2]_{p_2}$ for some p_1, p_2 , where $\langle u_1, u_2 \rangle$ or $\langle u_2, u_1 \rangle$ is an instance of a critical pair of R.

Proof.

- When there is no overlap or a non-critical overlap, then $t_1 \downarrow_R t_2$.
- When there is a critical overlap, then $s|_{p_1} = \sigma(l_1)$ and $\sigma(l_1|_p) = \sigma(l_2)$.

Lemma 5.1 (Critical Pair Lemma)

If R is a TRS and



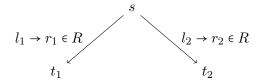
then $t_1 \downarrow_R t_2$, or $t_1 = s[u_1]_{p_1}$ and $t_2 = s[u_2]_{p_2}$ for some p_1, p_2 , where $\langle u_1, u_2 \rangle$ or $\langle u_2, u_1 \rangle$ is an instance of a critical pair of R.

Proof (cont.)

- Hence, σ unifies $l_1|_p$ and l_2 and, therefore, is an instance of their mgu ϑ .
- ► Therefore, $\langle \sigma(r_1), \sigma(l_1)[\sigma(r_2)]_p \rangle$ is an instance of the critical pair $\langle \vartheta(r_1), \vartheta(l_1)[\vartheta(r_2)]_p \rangle$

Lemma 5.1 (Critical Pair Lemma)

If R is a TRS and



then $t_1 \downarrow_R t_2$, or $t_1 = s[u_1]_{p_1}$ and $t_2 = s[u_2]_{p_2}$ for some p_1, p_2 , where $\langle u_1, u_2 \rangle$ or $\langle u_2, u_1 \rangle$ is an instance of a critical pair of R.

Proof (cont.)

$$t_1 = s[\sigma(r_1)]_{p_1}, t_2 = s[\sigma(l_1)[\sigma(r_2)]_p]_{p_1}, p_2 = p_1 p.$$

Theorem 5.2 (Critical Pair Theorem)

A TRS is locally confluent iff all its critical pairs are joinable.

Proof.

(\Leftarrow) Using the Critical Pair Lemma: Given $t_i = s[u_i]_p$, i = 1, 2, where $\langle u_1, u_2 \rangle$ (wlog) is an instance of some critical pair $\langle v_1, v_2 \rangle$ under a substitution φ , then $v_i \xrightarrow{*} t$ for some term t implies $u_i \xrightarrow{*} \varphi(t)$ and, hence, $t_i \xrightarrow{*} s[\varphi(t)]_p$, i = 1, 2.

Theorem 5.2 (Critical Pair Theorem)

A TRS is locally confluent iff all its critical pairs are joinable.

Proof.

- (\Leftarrow) Using the Critical Pair Lemma: Given $t_i = s[u_i]_p$, i = 1, 2, where $\langle u_1, u_2 \rangle$ (wlog) is an instance of some critical pair $\langle v_1, v_2 \rangle$ under a substitution φ , then $v_i \overset{*}{\to} t$ for some term t implies $u_i \overset{*}{\to} \varphi(t)$ and, hence, $t_i \overset{*}{\to} s[\varphi(t)]_p$, i = 1, 2.
- (\Rightarrow) Every critical pair is the product of a fork $\vartheta(r_1) \leftarrow \vartheta(l_1) \rightarrow \vartheta(l_1) [\vartheta(r_2)]_p$. Joinability follows from local confluence.

Theorem 5.2 (Critical Pair Theorem)

A TRS is locally confluent iff all its critical pairs are joinable.

Corollary 5.1

A terminating TRS is confluent iff all its critical pairs are joinable.

- The problem of testing local confluence reduces to critical pair joinability test.
- For terminating TRSs, the problem whether two terms are joinable can be decided.
- For finite TRSs, the number of critical pairs is finite.
- Hence, for terminating and finite TRSs local confluence is decidable.
- Therefore, for terminating and finite TRSs confluence is decidable.

Let R be a terminating finite TRS.

Let R be a terminating finite TRS.

Decision procedure:

For each pair of rules $l_1 \to r_1$ and $l_2 \to r_2$ (there are $|R|^2$ of them) and for every $p \in \mathcal{P}os(l_1)$ with a nonvariable $l_1|_p$ (there are at most $|l_1|$ of them) try to generate critical pairs.

Let R be a terminating finite TRS.

- For each pair of rules $l_1 \to r_1$ and $l_2 \to r_2$ (there are $|R|^2$ of them) and for every $p \in \mathcal{P}os(l_1)$ with a nonvariable $l_1|_p$ (there are at most $|l_1|$ of them) try to generate critical pairs.
- It involves unification of $l_1|_p$ and l_2 (decidable, unitary).

Let R be a terminating finite TRS.

- For each pair of rules $l_1 \to r_1$ and $l_2 \to r_2$ (there are $|R|^2$ of them) and for every $p \in \mathcal{P}os(l_1)$ with a nonvariable $l_1|_p$ (there are at most $|l_1|$ of them) try to generate critical pairs.
- ▶ It involves unification of $l_1|_p$ and l_2 (decidable, unitary).
- Result: finitely many critical pairs.

Let R be a terminating finite TRS.

- For each pair of rules $l_1 \to r_1$ and $l_2 \to r_2$ (there are $|R|^2$ of them) and for every $p \in \mathcal{P}os(l_1)$ with a nonvariable $l_1|_p$ (there are at most $|l_1|$ of them) try to generate critical pairs.
- ▶ It involves unification of $l_1|_p$ and l_2 (decidable, unitary).
- Result: finitely many critical pairs.
- For each critical pair $\langle u_1, u_2 \rangle$, reduce u_i , to some R-normal form \hat{u}_i , i = 1, 2.

Let R be a terminating finite TRS.

- For each pair of rules $l_1 \to r_1$ and $l_2 \to r_2$ (there are $|R|^2$ of them) and for every $p \in \mathcal{P}os(l_1)$ with a nonvariable $l_1|_p$ (there are at most $|l_1|$ of them) try to generate critical pairs.
- ▶ It involves unification of $l_1|_p$ and l_2 (decidable, unitary).
- Result: finitely many critical pairs.
- For each critical pair $\langle u_1, u_2 \rangle$, reduce u_i , to some R-normal form \hat{u}_i , i = 1, 2.
- If $\hat{u}_1 = \hat{u}_2$ for all such pairs, R is confluent (Corollary 5.1).

Let R be a terminating finite TRS.

- For each pair of rules $l_1 \to r_1$ and $l_2 \to r_2$ (there are $|R|^2$ of them) and for every $p \in \mathcal{P}os(l_1)$ with a nonvariable $l_1|_p$ (there are at most $|l_1|$ of them) try to generate critical pairs.
- ▶ It involves unification of $l_1|_p$ and l_2 (decidable, unitary).
- Result: finitely many critical pairs.
- For each critical pair $\langle u_1, u_2 \rangle$, reduce u_i , to some R-normal form \hat{u}_i , i = 1, 2.
- If $\hat{u}_1 = \hat{u}_2$ for all such pairs, R is confluent (Corollary 5.1).
- ▶ If $\hat{u}_1 \neq \hat{u}_2$ for such a pair, we have a non-confluent situation: $\hat{u}_1 \stackrel{*}{\leftarrow} u_1 \leftarrow u \rightarrow u_2 \stackrel{*}{\rightarrow} \hat{u}_2$.

Example 5.2

Recall the TRS $\{f(f(x)) \rightarrow g(x)\}\$, which is not locally confluent.

The only critical pair $\langle g(f(x)), f(g(x)) \rangle$ is not joinable.

$$\begin{array}{ccc}
f(f(f(x))) \\
g(f(x)) & f(g(x))
\end{array}$$

Example 5.2

Recall the TRS $\{f(f(x)) \to g(x)\}$, which is not locally confluent. The only critical pair $\langle g(f(x)), f(g(x)) \rangle$ is not joinable.

Example 5.2

Recall the TRS $\{f(f(x)) \to g(x)\}$, which is not locally confluent. The only critical pair $\langle g(f(x)), f(g(x)) \rangle$ is not joinable.

This example illustrates that the two conditions in the definition of the critical pairs are necessary:

Example 5.2

Recall the TRS $\{f(f(x)) \to g(x)\}$, which is not locally confluent. The only critical pair $\langle g(f(x)), f(g(x)) \rangle$ is not joinable.

This example illustrates that the two conditions in the definition of the critical pairs are necessary:

Rules are to be renamed. Otherwise f(f(x)) and f(x) are not unifiable.

Example 5.2

Recall the TRS $\{f(f(x)) \to g(x)\}$, which is not locally confluent. The only critical pair $\langle g(f(x)), f(g(x)) \rangle$ is not joinable.

This example illustrates that the two conditions in the definition of the critical pairs are necessary:

- Rules are to be renamed. Otherwise f(f(x)) and f(x) are not unifiable.
- The critical pair of a rule and (a renamed copy of) itself has to be taken into account. Otherwise all one-rule systems would appear to be locally-confluent.

Example 5.2

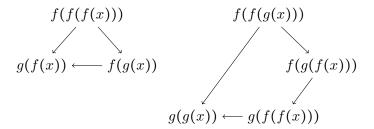
Recall the TRS $\{f(f(x)) \to g(x)\}$, which is not locally confluent. The only critical pair $\langle g(f(x)), f(g(x)) \rangle$ is not joinable.

This example illustrates that the two conditions in the definition of the critical pairs are necessary:

- Rules are to be renamed. Otherwise f(f(x)) and f(x) are not unifiable.
- The critical pair of a rule and (a renamed copy of) itself has to be taken into account. Otherwise all one-rule systems would appear to be locally-confluent.
- ▶ Critical pairs can be helpful lemmas: $g(f(x)) \approx_R f(g(x))$ is an interesting consequence of $f(f(x)) \rightarrow_R g(x)$ which may not be apparent at first sight.

Example 5.3

The TRS $\{f(f(x)) \rightarrow g(x), f(g(x)) \rightarrow g(f(x))\}$ is locally confluent. Both critical pairs are joinable:



Since the TRS is also terminating (use LPO with f>g), it is also confluent.

- Because critical pairs are equational consequences, adding a critical pair as a new rewrite rule does not change the induced equality.
- ▶ If R is a TRS and R' is obtained from R by adding a critical pair as a new rule, then $\approx_R = \approx_{R'}$.
- The idea of adding a critical pair as a new rule is called "completion".

