Rewriting

Part 3.2 Equational Problems. Syntactic Unification

Temur Kutsia

RISC, JKU Linz

Validity and Satisfiability

Notation: $s \approx_E t$ iff $s \approx t$ belongs to the equational theory generated by E.

Validity and Satisfiability

Notation: $s \approx_E t$ iff $s \approx t$ belongs to the equational theory generated by E.

Validity problem:

Given: A set of identities E and terms s and t.

Decide: $s \approx_E t$.

Validity and Satisfiability

Notation: $s \approx_E t$ iff $s \approx t$ belongs to the equational theory generated by E.

Validity problem:

Given: A set of identities E and terms s and t.

Decide: $s \approx_E t$.

Satisfiability problem:

Given: A set of identities E and terms s and t. Find: A substitution σ such that $\sigma(s) \approx_E \sigma(t)$.

Equational Problems

The following methods solve special cases:

► Term rewriting decides \approx_E if \rightarrow_E is convergent. (Discussed in the previous lecture)

Equational Problems

The following methods solve special cases:

- ► Term rewriting decides \approx_E if \rightarrow_E is convergent. (Discussed in the previous lecture)
- Congruence closure decided \approx_E when E is variable-free. (Discussed in the previous lecture)

Equational Problems

The following methods solve special cases:

- ► Term rewriting decides \approx_E if \rightarrow_E is convergent. (Discussed in the previous lecture)
- Congruence closure decided \approx_E when E is variable-free. (Discussed in the previous lecture)
- Syntactic unification computes σ such that $\sigma(s) = \sigma(t)$. (Today)

Unification is the process of solving satisfiability problems:

Given: A set of identities E and two terms s and t.

Find: A substitution σ such that $\sigma(s) \approx_E \sigma(t)$.

Unification is the process of solving satisfiability problems:

Given: A set of identities E and two terms s and t.

Find: A substitution σ such that $\sigma(s) \approx_E \sigma(t)$.

- ▶ In syntactic unification, $E = \emptyset$.
- $r_1 \approx_{\varnothing} r_2$ iff $r_1 = r_2$.

Unification is the process of solving satisfiability problems:

Given: A set of identities E and two terms s and t.

Find: A substitution σ such that $\sigma(s) \approx_E \sigma(t)$.

▶ In syntactic unification, $E = \emptyset$.

• $r_1 \approx_{\varnothing} r_2$ iff $r_1 = r_2$.

Syntactic unification:

Given: Two terms s and t.

Find: A substitution σ such that $\sigma(s) = \sigma(t)$.

Syntactic unification:

Given: Two terms s and t.

Find: A substitution σ such that $\sigma(s) = \sigma(t)$.

• σ : a unifier of s and t.

• σ : a solution of the equation s = t.

Examples

```
f(x) = f(a): exactly one unifier \{x \mapsto a\}
x = f(y): infinitely many unifiers
\{x \mapsto f(y)\}, \{x \mapsto f(a), y \mapsto a\}, \dots
f(x) = g(y): no unifiers
x = f(x): no unifiers
```


Examples

$$x = f(y)$$
: infinitely many unifiers $\{x \mapsto f(y)\}, \{x \mapsto f(a), y \mapsto a\}, \dots$

▶ Some solutions are better than the others: $\{x \mapsto f(y)\}$ is more general than $\{x \mapsto f(a), y \mapsto a\}$

Instantiation Quasi-Ordering

- A substitution σ is more general than ϑ , written $\sigma \lesssim \vartheta$, if there exists η such that $\eta \sigma = \vartheta$.
- ϑ is called an instance of σ .
- ► The relation ≤ is quasi-ordering (reflexive and transitive binary relation), called instantiation quasi-ordering.
- ▶ ~ is the equivalence relation corresponding to \leq , i.e., the relation \leq \cap \geq .

Let
$$\sigma = \{x \mapsto y\}$$
, $\rho = \{x \mapsto a, y \mapsto a\}$, $\vartheta = \{y \mapsto x\}$.

- $\sigma \lesssim \rho$, because $\{y \mapsto a\}\sigma = \rho$.
- $\sigma \lesssim \vartheta$, because $\{y \mapsto x\} \sigma = \vartheta$.
- $\vartheta \lesssim \sigma$, because $\{x \mapsto y\}\vartheta = \sigma$.
- $\sigma \sim \vartheta$.

Definition 3.2 (Variable Renaming)

A substitution $\sigma = \{x_1 \mapsto y_1, x_2 \mapsto y_2, \dots, x_n \mapsto y_n\}$ is called variable renaming iff $\{x_1, \dots, x_n\} = \{y_1, \dots, y_n\}$. (Permuting the domain variables.)

- $\{x \mapsto y, y \mapsto z, z \mapsto x\}$ is a variable renaming.
- $\{x\mapsto a\}$, $\{x\mapsto y\}$, and $\{x\mapsto z, y\mapsto z, z\mapsto x\}$ are not.

Definition 3.3 (Idempotent Substitution)

A substitution σ is idempotent iff $\sigma \sigma = \sigma$.

Let
$$\sigma = \{x \mapsto f(z), y \mapsto z\}, \ \vartheta = \{x \mapsto f(y), y \mapsto z\}.$$

- σ is idempotent.
- ϑ is not: $\vartheta\vartheta = \sigma \neq \vartheta$.

Lemma 3.2

 $\sigma \sim \vartheta$ iff there exists a variable renaming ρ such that $\rho \sigma = \vartheta$.

Proof.

Exercise.

Lemma 3.2

 $\sigma \sim \vartheta$ iff there exists a variable renaming ρ such that $\rho \sigma = \vartheta$.

Proof.

Exercise.

- $\sigma = \{x \mapsto y\}.$
- $\vartheta = \{y \mapsto x\}.$
- $\sigma \sim \vartheta$.
- $\{x \mapsto y, y \mapsto x\}\sigma = \vartheta$.

Theorem 3.4

 σ is idempotent iff $\mathcal{D}om(\sigma) \cap \mathcal{VR}an(\sigma) = \emptyset$.

Proof.

Exercise.

Definition 3.4 (Unification Problem, Unifier, MGU)

• Unification problem: A finite set of equations $\Gamma = \{s_1 = {}^{?}t_1, \dots, s_n = {}^{?}t_n\}.$

Definition 3.4 (Unification Problem, Unifier, MGU)

- Unification problem: A finite set of equations $\Gamma = \{s_1 = {}^{?}t_1, \dots, s_n = {}^{?}t_n\}.$
- Unifier or solution of Γ : A substitution σ such that $\sigma(s_i) = \sigma(t_i)$ for all $1 \le i \le n$.

Definition 3.4 (Unification Problem, Unifier, MGU)

- Unification problem: A finite set of equations $\Gamma = \{s_1 = {}^{?}t_1, \dots, s_n = {}^{?}t_n\}.$
- Unifier or solution of Γ : A substitution σ such that $\sigma(s_i) = \sigma(t_i)$ for all $1 \le i \le n$.
- $\mathcal{U}(\Gamma)$: The set of all unifiers of Γ . Γ is unifiable iff $\mathcal{U}(\Gamma) \neq \emptyset$.

Definition 3.4 (Unification Problem, Unifier, MGU)

- Unification problem: A finite set of equations $\Gamma = \{s_1 = {}^{?}t_1, \dots, s_n = {}^{?}t_n\}.$
- Unifier or solution of Γ : A substitution σ such that $\sigma(s_i) = \sigma(t_i)$ for all $1 \le i \le n$.
- $\mathcal{U}(\Gamma)$: The set of all unifiers of Γ . Γ is unifiable iff $\mathcal{U}(\Gamma) \neq \emptyset$.
- σ is a most general unifier (mgu) of Γ iff it is a least element of $\mathcal{U}(\Gamma)$:
 - $\sigma \in \mathcal{U}(\Gamma)$, and
 - $\sigma \lesssim \vartheta$ for every $\vartheta \in \mathcal{U}(\Gamma)$.

Unifiers

Example 3.6

 $\sigma \coloneqq \{x \mapsto y\}$ is an mgu of x = y.

For any other unifier ϑ of x = $^{?}$ y, $\sigma \lesssim \vartheta$ because

- $\vartheta(x) = \vartheta(y) = \vartheta\sigma(x)$.
- $\bullet \ \vartheta(y) = \vartheta \sigma(y).$
- $\vartheta(z) = \vartheta\sigma(z)$ for any other variable z.

Unifiers

Example 3.6

 $\sigma\coloneqq\{x\mapsto y\}\text{ is an mgu of }x=^?y.$

For any other unifier ϑ of x = $^{?}$ y, $\sigma \lesssim \vartheta$ because

•
$$\vartheta(x) = \vartheta(y) = \vartheta\sigma(x)$$
.

$$\vartheta(y) = \vartheta \sigma(y).$$

• $\vartheta(z) = \vartheta\sigma(z)$ for any other variable z.

 $\sigma' \coloneqq \{x \mapsto z, y \mapsto z\}$ is a unifier but not an mgu of x = y.

$$\quad \bullet \quad \sigma' = \{y \mapsto z\} \sigma.$$

$$\qquad \qquad \{z\mapsto y\}\sigma' = \{x\mapsto y, z\mapsto y\} \neq \sigma.$$

Unifiers

Example 3.6

 $\sigma \coloneqq \{x \mapsto y\}$ is an mgu of $x = {}^{?}y$.

For any other unifier ϑ of $x = {}^{?}y$, $\sigma \lesssim \vartheta$ because

$$\bullet \ \vartheta(x) = \vartheta(y) = \vartheta\sigma(x).$$

$$\vartheta(y) = \vartheta \sigma(y).$$

• $\vartheta(z) = \vartheta \sigma(z)$ for any other variable z.

 $\sigma' \coloneqq \{x \mapsto z, y \mapsto z\} \text{ is a unifier but not an mgu of } x = ^? y.$

$$\bullet \ \sigma' = \{y \mapsto z\}\sigma.$$

•
$$\{z \mapsto y\}\sigma' = \{x \mapsto y, z \mapsto y\} \neq \sigma.$$

$$\sigma'' = \{x \mapsto y, z_1 \mapsto z_2, z_2 \mapsto z_1\}$$
 is an mgu of $x = y$.

$$\bullet \ \sigma = \{z_1 \mapsto z_2, z_2 \mapsto z_1\} \sigma''.$$

• σ'' is not idempotent.

Question: How to compute an mgu of an unification problem?

Rule-Based Formulation of Unification

- Unification algorithm in a rule-base way.
- Repeated transformation of a set of equations.
- The left-to-right search for disagreements: modeled by term decomposition.

The Inference System \$\mathfrak{U}\$

► A set of equations in solved form:

$$\{x_1 \approx t_1, \dots, x_n \approx t_n\}$$

where each x_i occurs exactly once.

- ► For each idempotent substitution there exists exactly one set of equations in solved form.
- Notation:
 - $[\sigma]$ for the solved form set for an idempotent substitution σ .
 - σ_S for the idempotent substitution corresponding to a solved form set S.

The Inference System $\mathfrak U$

- ▶ System: The symbol \bot or a pair P; S where
 - P is a set of unification problems,
 - $\,ullet\,$ S is a set of equations in solved form.
- ▶ ⊥ represents failure.
- ▶ A unifier (or a solution) of a system *P*; *S*: A substitution that unifies each of the equations in *P* and *S*.
- ▶ ⊥ has no unifiers.

The Inference System $\mathfrak U$

- System: $\{g(a) = {}^{?} g(y), g(z) = {}^{?} g(g(x))\}; \{x \approx g(y)\}.$
- Its unifier: $\{x \mapsto g(a), y \mapsto a, z \mapsto g(g(a))\}.$

The Inference System \$\mathfrak{U}\$

Six transformation rules on systems:¹

Trivial:

$$\{s = s\} \uplus P'; S \Leftrightarrow P'; S.$$

Decomposition:

$$\{f(s_1, ..., s_n) = f(t_1, ..., t_n)\} \uplus P'; S \Leftrightarrow$$

 $\{s_1 = f(t_1, ..., s_n = f(t_n)\} \cup P'; S, \text{ where } n \ge 0.$

Symbol Clash:

$$\{f(s_1,\ldots,s_n)=^? g(t_1,\ldots,t_m)\} \uplus P'; S \Leftrightarrow \bot, \text{ if } f \neq g.$$

¹⊎ stands for disjoint union.

The Inference System \$\mathfrak{U}\$

Orient:

$$\{t = x\} \uplus P'; S \Leftrightarrow \{x = t\} \cup P'; S, \text{ if } t \notin \mathcal{V}.$$

Occurs Check:

$$\{x = {}^{?}t\} \uplus P'; S \Leftrightarrow \bot \text{ if } x \in \mathcal{V}ar(t) \text{ but } x \neq t.$$

Variable Elimination:

$$\{x = {}^?t\} \uplus P'; S \Leftrightarrow P'\{x \mapsto t\}; \{x \mapsto t\}(S) \cup \{x \approx t\},$$
 if $x \notin \mathcal{V}ar(t)$.

Unification with \$\mathcal{U}\$

In order to unify s and t:

- 1. Create an initial system $\{s = t\}; \emptyset$.
- 2. Apply successively rules from \mathfrak{U} .

The system $\mathfrak U$ is essentially the Herbrand's Unification Algorithm.

Properties of U: Termination

Lemma 3.3

For any finite set of equations P, every sequence of transformations in $\mathfrak U$

$$P; \varnothing \Leftrightarrow P_1; S_1 \Leftrightarrow P_2; S_2 \Leftrightarrow \cdots$$

terminates either with \bot or with $\varnothing; S$, with S in solved form.

Properties of U: Termination

Proof.

Complexity measure on the set P of equations: $\langle n_1, n_2, n_3 \rangle$, ordered lexicographically on triples of naturals, where

 n_1 = The number of distinct variables in P.

 n_2 = The number of symbols in P.

 n_3 = The number of equations in P of the form t = $^?$ x where t is not a variable.

Properties of U: Termination

Proof [Cont.]

Each rule in $\mathfrak U$ strictly reduces the complexity measure.

Rule	n_1	n_2	n_3
Trivial	>	>	
Decomposition	=	>	
Orient	=	=	>
Variable Elimination	>		

Properties of U: Termination

Proof [Cont.]

- ▶ A rule can always be applied to a system with non-empty P.
- The only systems to which no rule can be applied are \bot and $\varnothing; S$.
- Whenever an equation is added to S, the variable on the left-hand side is eliminated from the rest of the system, i.e. S_1, S_2, \ldots are in solved form.

Corollary 3.1

If $P; \varnothing \Leftrightarrow^+ \varnothing; S$ then σ_S is idempotent.

Notation: Γ for systems.

Lemma 3.4

For any transformation $P; S \Leftrightarrow \Gamma$, a substitution ϑ unifies P; S iff it unifies Γ .

Proof.

Occurs Check: If $x \in \mathcal{V}ar(t)$ and $x \neq t$, then

- ightharpoonup x contains fewer symbols than t,
- $\vartheta(x)$ contains fewer symbols than $\vartheta(t)$ (for any ϑ).

Therefore, $\vartheta(x)$ and $\vartheta(t)$ can not be unified.

Variable Elimination: From $\vartheta(x) = \vartheta(t)$, by structural induction on u:

$$\vartheta(u) = \vartheta\{x \mapsto t\}(u)$$

for any term, equation, or set of equations u. Then

$$\vartheta(P') = \vartheta\{x \mapsto t\}(P'), \qquad \vartheta(S') = \vartheta\{x \mapsto t\}(S').$$

Theorem 3.5 (Soundness)

If $P: \emptyset \Leftrightarrow^+ \emptyset: S$, then σ_S unifies any equation in P.

Theorem 3.5 (Soundness)

If $P; \varnothing \Leftrightarrow^+ \varnothing; S$, then σ_S unifies any equation in P.

Proof.

By induction on the length of derivation, using the previous lemma and the fact that σ_S unifies S.

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P, then any maximal sequence of transformations $P; \varnothing \Leftrightarrow \cdots$ ends in a system $\varnothing; S$ such that $\sigma_S \lesssim \vartheta$.

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P, then any maximal sequence of transformations $P; \varnothing \Leftrightarrow \cdots$ ends in a system $\varnothing; S$ such that $\sigma_S \lesssim \vartheta$.

Proof.

Such a sequence must end in $\varnothing; S$ where ϑ unifies S (why?). For every binding $x \mapsto t$ in σ_S , $\vartheta \sigma_S(x) = \vartheta(t) = \vartheta(x)$ and for every $x \notin \mathcal{D}om(\sigma_S)$, $\vartheta \sigma_S(x) = \vartheta(x)$. Hence, $\vartheta = \vartheta \sigma_S$.

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P, then any maximal sequence of transformations $P; \varnothing \Leftrightarrow \cdots$ ends in a system $\varnothing; S$ such that $\sigma_S \lesssim \vartheta$.

Proof.

Such a sequence must end in \emptyset ; S where ϑ unifies S (why?). For every binding $x\mapsto t$ in σ_S , $\vartheta\sigma_S(x)=\vartheta(t)=\vartheta(x)$ and for every $x\notin \mathcal{D}om(\sigma_S)$, $\vartheta\sigma_S(x)=\vartheta(x)$. Hence, $\vartheta=\vartheta\sigma_S$.

Corollary 3.2

If P has no unifiers, then any maximal sequence of transformations from $P; \varnothing$ must have the form $P; \varnothing \Leftrightarrow \cdots \Leftrightarrow \bot$.

Observations

- \$\mathfrak{U}\$ computes an idempotent mgu.
- ► The choice of rules in computations via 𝔾 is "don't care" nondeterminism (the word "any" in Completeness Theorem).
- Any control strategy will result to an mgu for unifiable terms, and failure for non-unifiable terms.
- Any practical algorithm that proceeds by performing transformations of \$\mathcal{U}\$ in any order is
 - sound and complete,
 - generates mgus for unifiable terms.
- Not all transformation sequences have the same length.
- Not all transformation sequences end in exactly the same mgu.

Matching

Definition 3.5

Matcher, Matching Problem

- A substitution σ is a matcher of s to t if $s\sigma = t$.
- A matching equation between s and t is represented as $s \lesssim^{?} t$.
- A matching problem is a finite set of matching equations.

Matching vs Unification

Example 3.8

$f(x,y) \lesssim^? f(g(z),c)$	f(x,y) = f(g(z),c)
$\{x \mapsto g(z), y \mapsto c\}$	$\{x \mapsto g(z), y \mapsto c\}$
$f(x,y) \lesssim^{?} f(g(z),x)$	f(x,y) = f(g(z),x)
$\{x \mapsto g(z), y \mapsto x\}$	$\{x\mapsto g(z),y\mapsto g(z)\}$
$f(x,a) \lesssim^? f(b,y)$	f(x,a) = $f(b,y)$
No matcher	$\{x\mapsto b,y\mapsto a\}$
$f(x,x) \lesssim^? f(x,a)$	f(x,x) = f(x,a)
No matcher	$\{x \mapsto a\}$
$x \lesssim^{?} f(x)$	x = f(x)
$\{x \mapsto f(x)\}$	No unifier

How to Solve Matching Problems

- s = t and $s \lesssim t$ coincide, if t is ground.
- When t is not ground in $s \lesssim^{?} t$, simply regard all variables in t as constants and use the unification algorithm.
- ► Alternatively, modify the rules in \$\mathcal{U}\$ to work directly with the matching problem.

Matched Form

- A set of equations $\{x_1 \approx t_1, \dots, x_n \approx t_n\}$ is in matched from, if all x's are pairwise distinct.
- The notation σ_S extends to matched forms.
- ▶ If S is in matched form, then

$$\sigma_S(x) = \begin{cases} t, & \text{if } x \approx t \in S \\ x, & \text{otherwise} \end{cases}$$

The Inference System ${\mathfrak M}$

- ▶ Matching system: The symbol \bot or a pair P; S, where
 - ▶ *P* is set of matching problems.
 - S is set of equations in matched form.
- ▶ A matcher (or a solution) of a system *P*; *S*: A substitution that solves each of the matching equations in *P* and *S*.
- ▶ ⊥ has no matchers.

The Inference System ${\mathfrak M}$

Five transformation rules on matching systems:²

Decomposition:

$$\{f(s_1,\ldots,s_n) \lesssim^? f(t_1,\ldots,t_n)\} \uplus P'; S \Leftrightarrow$$
$$\{s_1 \lesssim^? t_1,\ldots,s_n \lesssim^? t_n\} \cup P'; S, \text{ where } n \geq 0.$$

Symbol Clash:

$$\{f(s_1,\ldots,s_n)\lesssim^? g(t_1,\ldots,t_m)\}\uplus P';S\Leftrightarrow \bot, \text{ if } f\neq g.$$

² stands for disjoint union.

The Inference System ${\mathfrak M}$

Symbol-Variable Clash:

$$\{f(s_1,\ldots,s_n)\lesssim^? x\}\uplus P';S\Leftrightarrow\bot.$$

Merging Clash:

$$\{x \lesssim^? t_1\} \uplus P'; \{x \approx t_2\} \uplus S' \Leftrightarrow \bot, \text{ if } t_1 \neq t_2.$$

Elimination:

$$\{x \lesssim^? t\} \uplus P'; S \Leftrightarrow P'; \{x \approx t\} \cup S,$$

if S does not contain $x \approx t'$ with $t \neq t'$.

Matching with ${\mathfrak M}$

In order to match s to t

- 1. Create an initial system $\{s \lesssim^? t\}; \varnothing$.
- 2. Apply successively the rules from \mathfrak{M} .

Matching with \mathfrak{M}

```
Example 3.9
```

Match
$$f(x, f(a, x))$$
 to $f(g(a), f(a, g(a)))$:
$$\{f(x, f(a, x)) \lesssim^{?} f(g(a), f(a, g(a)))\}; \varnothing \Leftrightarrow_{\text{Decomposition}} \{x \lesssim^{?} g(a), f(a, x) \lesssim^{?} f(a, g(a))\}; \varnothing \Leftrightarrow_{\text{Elimination}} \{f(a, x) \lesssim^{?} f(a, g(a))\}; \{x \approx g(a)\} \Leftrightarrow_{\text{Decomposition}} \}$$

$$\{a \lesssim^? a, x \lesssim^? g(a)\}; \{x \approx g(a)\} \Leftrightarrow_{\text{Decomposition}} \{x \lesssim^? g(a)\}; \{x \approx g(a)\} \Leftrightarrow_{\text{Merge}}$$

$$\emptyset$$
; $\{x \approx g(a)\}$

Matcher: $\{x \mapsto g(a)\}.$

Matching with \mathfrak{M}

```
Example 3.10 Match f(x,x) to f(x,a): \{f(x,x) \lesssim^? f(x,a)\}; \varnothing \Leftrightarrow_{\text{Decomposition}} \{x \lesssim^? x, x \lesssim^? a\}; \varnothing \Leftrightarrow_{\text{Elimination}} \{x \lesssim^? a\}; \{x \approx x\} \Leftrightarrow_{\text{Merging Clash}}
```

No matcher.

Properties of \mathfrak{M} : Termination

Theorem 3.7

For any finite set of matching problems P, every sequence of transformations in $\mathfrak M$ of the form $P; \varnothing \Leftrightarrow P_1; S_1 \Leftrightarrow P_2; S_2 \Leftrightarrow \cdots$ terminates either with \bot or with $\varnothing; S$, with S in matched form.

Properties of \mathfrak{M} : Termination

Theorem 3.7

For any finite set of matching problems P, every sequence of transformations in $\mathfrak M$ of the form $P; \varnothing \Leftrightarrow P_1; S_1 \Leftrightarrow P_2; S_2 \Leftrightarrow \cdots$ terminates either with \bot or with $\varnothing; S$, with S in matched form.

Proof.

- Termination is obvious, since every rule strictly decreases the size of the first component of the matching system.
- A rule can always be applied to a system with non-empty P.
- The only systems to which no rule can be applied are \bot and $\varnothing; S$.
- ▶ Whenever $x \approx t$ is added to S, there is no other equation $x \approx t'$ in S. Hence, S_1, S_2, \ldots are in matched form.

The following lemma is straightforward:

Lemma 3.5

For any transformation of matching systems $P; S \Leftrightarrow \Gamma$, a substitution ϑ is a matcher for P; S iff it is a matcher for Γ .

Theorem 3.8 (Soundness)

If $P; \emptyset \Leftrightarrow^+ \emptyset; S$, then σ_S solves all matching equations in P.

Theorem 3.8 (Soundness)

If $P; \emptyset \Leftrightarrow^+ \emptyset; S$, then σ_S solves all matching equations in P.

Proof.

By induction on the length of derivations, using the previous lemma and the fact that σ_S solves the matching problems in S.

Let $v(\{s_1 \approx t_1, \dots, s_n \approx t_n\})$ be $Var(\{s_1, \dots, s_n\})$.

Theorem 3.9 (Completeness)

If ϑ is a matcher of P, then any maximal sequence of transformations $P; \varnothing \Leftrightarrow \cdots$ ends in a system $\varnothing; S$ such that $\sigma_S = \vartheta|_{v(P)}$.

Let $v(\{s_1 \approx t_1, \dots, s_n \approx t_n\})$ be $Var(\{s_1, \dots, s_n\})$.

Theorem 3.9 (Completeness)

If ϑ is a matcher of P, then any maximal sequence of transformations $P; \varnothing \Leftrightarrow \cdots$ ends in a system $\varnothing; S$ such that $\sigma_S = \vartheta|_{v(P)}$.

Proof.

Such a sequence must end in $\varnothing; S$ where ϑ is a matcher of S. v(S) = v(P). For every equation $x \approx t \in S$, either t = x or $x \mapsto t \in \sigma_S$. Therefore, for any such x, $\sigma_S(x) = t = \vartheta(t)$. Hence, $\sigma_S = \vartheta|_{v(P)}$.

Let $v(\{s_1 \approx t_1, \dots, s_n \approx t_n\})$ be $Var(\{s_1, \dots, s_n\})$.

Theorem 3.9 (Completeness)

If ϑ is a matcher of P, then any maximal sequence of transformations $P; \varnothing \Leftrightarrow \cdots$ ends in a system $\varnothing; S$ such that $\sigma_S = \vartheta|_{v(P)}$.

Proof.

Such a sequence must end in $\varnothing; S$ where ϑ is a matcher of S. v(S) = v(P). For every equation $x \approx t \in S$, either t = x or $x \mapsto t \in \sigma_S$. Therefore, for any such x, $\sigma_S(x) = t = \vartheta(t)$. Hence, $\sigma_S = \vartheta|_{v(P)}$.

Corollary 3.3

If P has no matchers, then any maximal sequence of transformations from $P; \varnothing$ must have the form $P; \varnothing \Leftrightarrow \cdots \Leftrightarrow \bot$.

