Rewriting

Part 3.1 Equational Problems. Deciding \approx_E

Temur Kutsia

RISC, JKU Linz

Validity and Satisfiability

Notation: $s \approx_E t$ iff $s \approx t$ belongs to the equational theory generated by E.

Validity and Satisfiability

Notation: $s \approx_E t$ iff $s \approx t$ belongs to the equational theory generated by E.

Validity problem:

Given: A set of identities E and terms s and t.

Decide: $s \approx_E t$.

Validity and Satisfiability

Notation: $s \approx_E t$ iff $s \approx t$ belongs to the equational theory generated by E.

Validity problem:

Given: A set of identities E and terms s and t.

Decide: $s \approx_E t$.

Satisfiability problem:

Given: A set of identities E and terms s and t. Find: A substitution σ such that $\sigma(s) \approx_E \sigma(t)$.

Equational Problems

The following methods solve special cases:

- ▶ Term rewriting decides \approx_E if \rightarrow_E is convergent.
- Congruence closure decided \approx_E when E is variable-free.
- Syntactic unification computes σ such that $\sigma(s) = \sigma(t)$.

Equations Problems

Relating validity and satisfiability problems.

▶ Validity: $s \approx t$ is valid in E iff

$$\forall \overline{x}. \ s \approx t$$

holds in all models of E.

• Satisfiability: $s \approx t$ is satisfiable in E iff

$$\exists \overline{x}. \ s \approx t$$

holds in all nonempty models of E.

Deciding \approx_E

- ▶ By Birkhoffs theorem, $s \approx_E t$ iff $s \stackrel{*}{\leftrightarrow}_E r$.
- ▶ Hence, deciding \approx_E is equivalent to deciding $\stackrel{*}{\leftrightarrow}_E$.

Deciding \approx_E

- ▶ By Birkhoffs theorem, $s \approx_E t$ iff $s \stackrel{*}{\leftrightarrow}_E r$.
- ▶ Hence, deciding \approx_E is equivalent to deciding $\stackrel{*}{\leftrightarrow}_E$.
- Word problem:

Given: A set of identities E and terms s and t.

Decide: $s \stackrel{*}{\leftrightarrow}_E t$.

Recall from abstract reduction systems:

- If \rightarrow is confluent and terminating, then
 - every element x has a unique normal form $x \downarrow$,
 - $x \stackrel{*}{\leftrightarrow} y$ iff $x \downarrow = y \downarrow$.

Recall from abstract reduction systems:

- If \rightarrow is confluent and terminating, then
 - every element x has a unique normal form $x \downarrow$,
 - $x \stackrel{*}{\leftrightarrow} y \text{ iff } x \downarrow = y \downarrow.$
- ▶ Hence, if \rightarrow_E is convergent, we can decide $x \stackrel{*}{\leftrightarrow} y$.
- Provided that we are able to compute normal forms.

Recall from abstract reduction systems:

- If \rightarrow is confluent and terminating, then
 - every element x has a unique normal form $x \downarrow$,
 - $x \stackrel{*}{\leftrightarrow} y \text{ iff } x \downarrow = y \downarrow.$
- ▶ Hence, if \rightarrow_E is convergent, we can decide $x \stackrel{*}{\leftrightarrow} y$.
- Provided that we are able to compute normal forms.
- This is possible if we can effectively
 - decide whether a term is in normal form wrt \rightarrow_E , and
 - compute some s' such that $s \to_E s'$ if s is not in normal form.

How to decide whether a term is in normal form wrt \rightarrow_E ?

How to decide whether a term is in normal form wrt \rightarrow_E ?

• Check whether it can be rewritten by \rightarrow_E .

How to decide whether a term is in normal form wrt \rightarrow_E ?

- Check whether it can be rewritten by \rightarrow_E .
- ▶ That is, check whether any of its subterms is an instance of the lhs of a rule in \rightarrow_E .

How to decide whether a term is in normal form wrt \rightarrow_E ?

- Check whether it can be rewritten by \rightarrow_E .
- That is, check whether any of its subterms is an instance of the lhs of a rule in →_E.
- Matching problem:

Given: Two terms s and t.

Find: A substitution σ such that $\sigma(s) = t$.

How to decide whether a term is in normal form wrt \rightarrow_E ?

- Check whether it can be rewritten by \rightarrow_E .
- ▶ That is, check whether any of its subterms is an instance of the lhs of a rule in \rightarrow_E .
- Matching problem:

Given: Two terms s and t.

Find: A substitution σ such that $\sigma(s) = t$.

Matching is decidable. (Details later, with unification.)

Theorem 3.1

If E is finite and \rightarrow_E is convergent, then \approx_E is decidable.

Proof.

- 1. Decide whether a term s is in normal form wrt \rightarrow_E : Check all $l \approx r \in E$ and all positions $p \in \mathcal{P}os(s)$ if there is σ such that $s|_p = \sigma(l)$.
- 2. Compute some s' such that $s \to_E s'$ if s is not in normal form: Reduce s to $s[\sigma(r)]_p$ if the test above is positive.

Iterate the process to compute a normal form.

The iteration stops because \rightarrow_E is terminating.

The obtained normal form is unique because \rightarrow_E is confluent.

To decide $s \approx_E t$, compute $s \downarrow_E$ and $t \downarrow_E$ and compare.

- Convergence of \rightarrow_E is important for decidability of \approx_E .
- ▶ There exist finite sets E for which \approx_E is not decidable.
- Example: Combinatory logic.

Definition 3.1 (Term Rewriting System)

- Rewrite rule: An identity $l \approx r$ such that
 - l is not a variable,
 - $ightharpoonup Var(l) \supseteq Var(r).$
- ▶ Notation: $l \rightarrow r$ instead of $l \approx r$.
- ▶ A term rewriting system (TRS) is a set of rewrite rules.

Definition 3.1 (Term Rewriting System)

- Rewrite rule: An identity $l \approx r$ such that
 - ▶ *l* is not a variable,
 - $ightharpoonup Var(l) \supseteq Var(r).$
- ▶ Notation: $l \rightarrow r$ instead of $l \approx r$.
- A term rewriting system (TRS) is a set of rewrite rules.

By definition, a TRS R is a set of identities.

Hence, \rightarrow_R and \approx_R are well-defined.

We say that R is terminating, confluent, etc. if \rightarrow_R is.

Definition 3.1 (Term Rewriting System)

- Rewrite rule: An identity $l \approx r$ such that
 - l is not a variable,
 - $Var(l) \supseteq Var(r)$.
- ▶ Notation: $l \rightarrow r$ instead of $l \approx r$.
- ▶ A term rewriting system (TRS) is a set of rewrite rules.

By definition, a TRS R is a set of identities.

Hence, \rightarrow_R and \approx_R are well-defined.

We say that R is terminating, confluent, etc. if \rightarrow_R is.

Theorem 3.2

If R is a finite convergent TRS, then \approx_R is decidable.

- An identity $l \approx r$ is a ground identity if $Var(l) = Var(r) = \emptyset$.
- Ground word problem for E: Word problem for ground terms over the signature of E.

- An identity $l \approx r$ is a ground identity if $Var(l) = Var(r) = \emptyset$.
- Ground word problem for E: Word problem for ground terms over the signature of E.
- G: A set of ground identities.
- Congruence on terms: Equivalence relation closed under operations.
- ► Congruence closure of *G*: smallest congruence on terms which contains *G*.

Relating \approx_G and congruence closure of G:

- ▶ By Theorem 2.1, $\stackrel{*}{\leftrightarrow}_G$ is the smallest equivalence relation closed under substitutions and operations.
- G is ground, substitutions are irrelevant.
- Hence, $\overset{*}{\leftrightarrow}_G$ is the congruence closure of G.
- ▶ By Birkhoffs Theorem, \approx_G is the congruence closure of G.

Operational description of congruence closure: A functional version of the rules of equational logic.

$$\begin{split} R(E) &\coloneqq \{(t,t) \mid t \in T(\mathcal{F},\mathcal{V})\}. \\ S(E) &\coloneqq \{(s,t) \mid (t,s) \in E\}. \\ T(E) &\coloneqq \{(s,r) \mid \text{for some } t, \ (s,t) \in E \text{ and } (t,r) \in E\}. \\ C(E) &\coloneqq \{(f(s_1,\ldots,s_n),f(t_1,\ldots,t_n)) \mid \\ &\qquad \qquad f \in \mathcal{F}^n, (s_i,t_i) \in E \text{ for all } 1 \leq i \leq n\}. \end{split}$$

$$Cong(E) := E \cup R(E) \cup S(E) \cup T(E) \cup C(E)$$

Operational description of congruence closure: A functional version of the rules of equational logic.

$$\begin{split} R(E) &\coloneqq \{(t,t) \mid t \in T(\mathcal{F},\mathcal{V})\}. \\ S(E) &\coloneqq \{(s,t) \mid (t,s) \in E\}. \\ T(E) &\coloneqq \{(s,r) \mid \text{for some } t, \ (s,t) \in E \text{ and } (t,r) \in E\}. \\ C(E) &\coloneqq \{(f(s_1,\ldots,s_n),f(t_1,\ldots,t_n)) \mid \\ f &\in \mathcal{F}^n, (s_i,t_i) \in E \text{ for all } 1 \leq i \leq n\}. \end{split}$$

$$Cong(E) := E \cup R(E) \cup S(E) \cup T(E) \cup C(E)$$

• E is congruence iff E is closed under Cong (i.e., $Cong(E) \subseteq E$).

Operational description of congruence closure: A functional version of the rules of equational logic.

$$\begin{split} R(E) &\coloneqq \{(t,t) \mid t \in T(\mathcal{F},\mathcal{V})\}. \\ S(E) &\coloneqq \{(s,t) \mid (t,s) \in E\}. \\ T(E) &\coloneqq \{(s,r) \mid \text{for some } t, \ (s,t) \in E \text{ and } (t,r) \in E\}. \\ C(E) &\coloneqq \{(f(s_1,\ldots,s_n),f(t_1,\ldots,t_n)) \mid \\ &\qquad \qquad f \in \mathcal{F}^n, (s_i,t_i) \in E \text{ for all } 1 \leq i \leq n\}. \end{split}$$

$$Cong(E) := E \cup R(E) \cup S(E) \cup T(E) \cup C(E)$$

- E is congruence iff E is closed under Cong (i.e., $Cong(E) \subseteq E$).
- E is congruence iff Conq(E) = E.

The process of closing G under Cong:

$$G_0 \coloneqq G.$$

 $G_{i+1} \coloneqq Cong(G_i).$

$$CC(G)\coloneqq\bigcup_{i\geq 0}G_i$$

Lemma 3.1 $CC(G) = \approx_G$.

Lemma 3.1 $CC(G) = \approx_G$.

Proof.

(\subseteq) Use monotonicity of Cong: If $E_1 \subseteq E_2$, then $Cong(E_1) \subseteq Cong(E_2)$. Proof by induction on i. $G_0 = G \subseteq \bowtie_G$. Assume $G_i \subseteq \bowtie_G$ and show $G_{i+1} \subseteq \bowtie_G$. $G_{i+1} = Cong(G_i) \subseteq Cong(\bowtie_G) = \bowtie_G$.

Lemma 3.1 $CC(G) = \approx_G$.

Proof.

- (\subseteq) Use monotonicity of Cong: If $E_1 \subseteq E_2$, then $Cong(E_1) \subseteq Cong(E_2)$.

 Proof by induction on i. $G_0 = G \subseteq \approx_G$. Assume $G_i \subseteq \approx_G$ and show $G_{i+1} \subseteq \approx_G$. $G_{i+1} = Cong(G_i) \subseteq Cong(\approx_G) = \approx_G$.
- (⊇) CC(G) is a congruence containing G (because CC(G) is closed under Cong. Check!). \approx_G is the least congruence containing G. Hence, $\approx_G \subseteq CC(G)$.

• CC(G) may be infinite. If the signature consists of a, b, and a unary function symbol f:

$$CC(\{a \approx b\}) \supseteq \{(f^i(a), f^i(b)) \mid i \ge 0\}$$

- Check whether $f^2(a) \approx_G f^2(b)$ is easy: $(f^2(a), f^2(b)) \in \approx_G$.
- ▶ But how to conclude that $f^3(a) \not\models_G f^2(b)$?
- Shall we examine all G_i 's?

• CC(G) may be infinite. If the signature consists of a, b, and a unary function symbol f:

$$CC(\{a \approx b\}) \supseteq \{(f^i(a), f^i(b)) \mid i \ge 0\}$$

- Check whether $f^2(a) \approx_G f^2(b)$ is easy: $(f^2(a), f^2(b)) \in \approx_G$.
- ▶ But how to conclude that $f^3(a) \not\models_G f^2(b)$?
- Shall we examine all G_i's?
- lacktriangle It turns out that since G is ground, the search space is finite.
- $lackbox{\ }$ We need to test only terms occurring in G or in the input terms.


```
Subterms(t) \coloneqq \{t|_p \mid p \in \mathcal{P}os(t)\}
Subterms(E) \coloneqq \bigcup_{(l,r) \in E} \left(Subterms(l) \cup Subterms(r)\right)
```

$$Subterms(t) \coloneqq \{t|_p \mid p \in \mathcal{P}os(t)\}$$

$$Subterms(E) \coloneqq \bigcup_{(l,r) \in E} \left(Subterms(l) \cup Subterms(r)\right)$$

Fix a finite set of ground identities G and two terms s and t.

$$S \coloneqq Subterms(G) \cup Subterms(s) \cup Subterms(t)$$

$$Subterms(t) := \{t|_p \mid p \in \mathcal{P}os(t)\}$$

$$Subterms(E) := \bigcup_{(l,r) \in E} \left(Subterms(l) \cup Subterms(r)\right)$$

Fix a finite set of ground identities ${\cal G}$ and two terms s and t.

$$S \coloneqq Subterms(G) \cup Subterms(s) \cup Subterms(t)$$

S is finite. It will be used to decide $s \approx_G t$.

Define the sequence:

$$H_0 := G$$

$$H_{i+1} := Cong(H_i) \cap (S \times S)$$

Define the sequence:

$$H_0 := G$$

 $H_{i+1} := Cong(H_i) \cap (S \times S)$

Lemma 3.2

There is some m such that $H_{m+1} = H_m$.

Proof.

By definition, $H_i \subseteq S \times S$. Moreover, $H_i \subseteq Cong(H_i)$. Hence, $H_i \subseteq H_{i+1}$. Therefore, $H_0 \subseteq H_1 \subseteq H_2 \subseteq \cdots \subseteq S \times S$ and S is finite.

Define the sequence:

$$H_0 := G$$

 $H_{i+1} := Cong(H_i) \cap (S \times S)$

Lemma 3.2

There is some m such that $H_{m+1} = H_m$.

Proof.

By definition, $H_i \subseteq S \times S$. Moreover, $H_i \subseteq Cong(H_i)$. Hence, $H_i \subseteq H_{i+1}$. Therefore, $H_0 \subseteq H_1 \subseteq H_2 \subseteq \cdots \subseteq S \times S$ and S is finite.

The limit H_m is denoted by $CC_S(G)$.

Theorem 3.3 $CC_S(G) = \approx_G \cap (S \times S)$.

Proof.

Theorem 3.3

$$CC_S(G) = \approx_G \cap (S \times S).$$

Proof.

(⊆) By definition, $H_i \subseteq G_i \cap (S \times S)$. Therefore, $CC_S(G) \subseteq CC(G) \cap (S \times S)$.

Theorem 3.3

$$CC_S(G) = \approx_G \cap (S \times S).$$

Proof.

- (\subseteq) By definition, $H_i \subseteq G_i \cap (S \times S)$. Therefore, $CC_S(G) \subseteq CC(G) \cap (S \times S)$.
- (2) Let $u, v \in S$ and $u \leftrightarrow_G^n v$. Prove $(u, v) \in H_m$ (the limit of H_i) by well-founded induction on the lexicographically ordered pair (n, |u|):
 - ▶ n = 0. Then u = v. Hence, $(u, v) \in H_1 \subseteq H_m$.
 - $u \leftrightarrow_G^{n+1} v$. Two cases:
 - 1. There is a rewrite step at the root.
 - 2. There is no rewrite step at the root.

Theorem 3.3 $CC_S(G) = \approx_G \cap (S \times S)$.

Proof (Cont.)

1. There is a rewrite step at the root.

$$u \leftrightarrow_G^{n_1} l \leftrightarrow_G r \leftrightarrow_G^{n_2} v$$

for some $l \approx r \in G \cup G^{-1}$. (G is ground: No substitutions). $n_1, n_2 < n$. By induction hypothesis,

$$(u,l) \in H_m$$
 and $(r,v) \in H_m$.

If $(l,r) \in G$, then $(l,r) \in H_0 \subseteq H_m$. If $(l,r) \in G^{-1}$, then $(l,r) \in H_1 \subseteq H_m$. By transitivity of H_m , $(u,v) \in H_m$.

Theorem 3.3

$$CC_S(G) = \approx_G \cap (S \times S).$$

Proof (Cont.)

2. There is no rewrite step at the root.

$$u = f(u_1, \ldots, u_k), \ v = f(v_1, \ldots, v_k)$$

and $u_i \leftrightarrow_C^{n_i} v_i$ for all $1 \le i \le k$.

Since $n_i \le n+1$, $|u_i| < |u|$, and $u_i, v_i \in S$, by the induction hypothesis, $(u_i, v_i) \in H_m$ for all $1 \le i \le k$.

By congruence, $(u, v) \in H_{m+1} = H_m$.

Example 3.1

Let
$$\mathcal{F}$$
 = $\{a,f\}$, $G\coloneqq \{f^2(a)\approx a,\, f^3(a)\approx a\}$, and $s\coloneqq f(a),\, t\coloneqq a.$

Then $S := \{a, f(a), f^2(a), f^3(a)\}.$

Example 3.1

Let
$$\mathcal{F} = \{a, f\}$$
, $G \coloneqq \{f^2(a) \approx a, f^3(a) \approx a\}$, and $s \coloneqq f(a)$, $t \coloneqq a$.

Then
$$S := \{a, f(a), f^2(a), f^3(a)\}.$$

Constructing $CC_S(G)$:

$$S \times S$$
:

$$a \approx a$$
 $a \approx f(a)$ $a \approx f^2(a)$ $a \approx f^3(a)$
 $f(a) \approx a$ $f(a) \approx f(a)$ $f(a) \approx f^2(a)$ $f(a) \approx f^3(a)$
 $f^2(a) \approx a$ $f^2(a) \approx f(a)$ $f^2(a) \approx f^2(a)$ $f^2(a) \approx f^3(a)$
 $f^3(a) \approx a$ $f^3(a) \approx f(a)$ $f^3(a) \approx f^2(a)$ $f^3(a) \approx f^3(a)$

Example 3.1

Let
$$\mathcal{F} = \{a, f\}$$
, $G \coloneqq \{f^2(a) \approx a, f^3(a) \approx a\}$, and $s \coloneqq f(a)$, $t \coloneqq a$.

Then $S := \{a, f(a), f^2(a), f^3(a)\}.$

Constructing $CC_S(G)$:

 H_0 :

$$a \approx a$$
 $a \approx f(a)$ $a \approx f^2(a)$ $a \approx f^3(a)$
 $f(a) \approx a$ $f(a) \approx f(a)$ $f(a) \approx f^2(a)$ $f(a) \approx f^3(a)$
 $f^2(a) \approx a$ $f^2(a) \approx f(a)$ $f^2(a) \approx f^2(a)$ $f^2(a) \approx f^3(a)$
 $f^3(a) \approx a$ $f^3(a) \approx f(a)$ $f^3(a) \approx f^2(a)$ $f^3(a) \approx f^3(a)$

Example 3.1

Let
$$\mathcal{F} = \{a, f\}$$
, $G \coloneqq \{f^2(a) \approx a, f^3(a) \approx a\}$, and $s \coloneqq f(a)$, $t \coloneqq a$.

Then
$$S := \{a, f(a), f^2(a), f^3(a)\}.$$

Constructing $CC_S(G)$:

$$H_1$$
:

$$a \approx a$$
 $a \approx f(a)$ $a \approx f^2(a)$ $a \approx f^3(a)$

$$f(a) \approx a$$
 $f(a) \approx f(a)$ $f(a) \approx f^2(a)$ $f(a) \approx f^3(a)$

$$f^2(a) \approx a$$
 $f^2(a) \approx f(a)$ $f^2(a) \approx f^2(a)$ $f^2(a) \approx f^3(a)$

$$f^3(a) \approx a$$
 $f^3(a) \approx f(a)$ $f^3(a) \approx f^2(a)$ $f^3(a) \approx f^3(a)$

Example 3.1

Let
$$\mathcal{F} = \{a, f\}$$
, $G \coloneqq \{f^2(a) \approx a, f^3(a) \approx a\}$, and $s \coloneqq f(a)$, $t \coloneqq a$.

Then
$$S := \{a, f(a), f^2(a), f^3(a)\}.$$

Constructing $CC_S(G)$:

 H_2 :

$$a \approx a$$
 $a \approx f(a)$ $a \approx f^2(a)$ $a \approx f^3(a)$
 $f(a) \approx a$ $f(a) \approx f(a)$ $f(a) \approx f^2(a)$ $f(a) \approx f^3(a)$
 $f^2(a) \approx a$ $f^2(a) \approx f(a)$ $f^2(a) \approx f^2(a)$ $f^2(a) \approx f^3(a)$
 $f^3(a) \approx a$ $f^3(a) \approx f(a)$ $f^3(a) \approx f^2(a)$ $f^3(a) \approx f^3(a)$

Example 3.1

Let
$$\mathcal{F} = \{a, f\}$$
, $G \coloneqq \{f^2(a) \approx a, f^3(a) \approx a\}$, and $s \coloneqq f(a)$, $t \coloneqq a$.

Then $S := \{a, f(a), f^2(a), f^3(a)\}.$

Constructing $CC_S(G)$:

 H_3 :

$$a \approx a$$
 $a \approx f(a)$ $a \approx f^2(a)$ $a \approx f^3(a)$

$$f(a) \approx a$$
 $f(a) \approx f(a)$ $f(a) \approx f^2(a)$ $f(a) \approx f^3(a)$

$$f^2(a) \approx a$$
 $f^2(a) \approx f(a)$ $f^2(a) \approx f^2(a)$ $f^2(a) \approx f^3(a)$

$$f^3(a) \approx a$$
 $f^3(a) \approx f(a)$ $f^3(a) \approx f^2(a)$ $f^3(a) \approx f^3(a)$

Example 3.1

Let
$$\mathcal{F} = \{a, f\}$$
, $G \coloneqq \{f^2(a) \approx a, f^3(a) \approx a\}$, and $s \coloneqq f(a)$, $t \coloneqq a$.

Then $S := \{a, f(a), f^2(a), f^3(a)\}.$

Constructing $CC_S(G)$:

 H_3 :

$$a \approx a$$
 $a \approx f(a)$ $a \approx f^2(a)$ $a \approx f^3(a)$

$$f(a) \approx a$$
 $f(a) \approx f(a)$ $f(a) \approx f^2(a)$ $f(a) \approx f^3(a)$

$$f^2(a) \approx a$$
 $f^2(a) \approx f(a)$ $f^2(a) \approx f^2(a)$ $f^2(a) \approx f^3(a)$

$$f^3(a) \approx a$$
 $f^3(a) \approx f(a)$ $f^3(a) \approx f^2(a)$ $f^3(a) \approx f^3(a)$

Hence, $(f(a), a) \in CC_S(G)$, showing $f(a) \approx_G a$.

Example 3.1

Let
$$\mathcal{F} = \{a, f\}$$
, $G \coloneqq \{f^2(a) \approx a, f^3(a) \approx a\}$, and $s \coloneqq f(a)$, $t \coloneqq a$.

Then $S := \{a, f(a), f^2(a), f^3(a)\}.$

Constructing $CC_S(G)$:

$$H_3$$
:

$$a \approx a$$
 $a \approx f(a)$ $a \approx f^2(a)$ $a \approx f^3(a)$

$$f(a) \approx a$$
 $f(a) \approx f(a)$ $f(a) \approx f^2(a)$ $f(a) \approx f^3(a)$

$$f^2(a) \approx a$$
 $f^2(a) \approx f(a)$ $f^2(a) \approx f^2(a)$ $f^2(a) \approx f^3(a)$

$$f^3(a) \approx a$$
 $f^3(a) \approx f(a)$ $f^3(a) \approx f^2(a)$ $f^3(a) \approx f^3(a)$

Hence, $(f(a), a) \in CC_S(G)$, showing $f(a) \approx_G a$. Note that $H_3 = S \times S$. In general the iteration may stop before $S \times S$ is reached.


```
Example 3.1
s := f(a), t := a.
S := \{a, f(a), f^2(a), f^3(a)\}.
      CC_S(G):
                   a \approx a a \approx f(a) a \approx f^2(a) a \approx f^3(a)
               f(a) \approx a f(a) \approx f(a) f(a) \approx f^2(a) f(a) \approx f^3(a)
              f^2(a) \approx a f^2(a) \approx f(a) f^2(a) \approx f^2(a) f^2(a) \approx f^3(a)
              f^3(a) \approx a f^3(a) \approx f(a) f^3(a) \approx f^2(a) f^3(a) \approx f^3(a)
```


Example 3.1
$$s \coloneqq f(a), \ t \coloneqq a.$$

$$S \coloneqq \{a, f(a), f^2(a), f^3(a)\}.$$

$$CC_S(G) \coloneqq a \approx a \quad a \approx f(a) \quad a \approx f^2(a) \quad a \approx f^3(a)$$

$$f(a) \approx a \quad f(a) \approx f(a) \quad f(a) \approx f^2(a) \quad f(a) \approx f^3(a)$$

$$f^2(a) \approx a \quad f^2(a) \approx f(a) \quad f^2(a) \approx f^2(a) \quad f^2(a) \approx f^3(a)$$

 $f^3(a) \approx a$ $f^3(a) \approx f(a)$ $f^3(a) \approx f^2(a)$ $f^3(a) \approx f^3(a)$

Hence, $(f(a), a) \in CC_S(G)$, showing $f(a) \approx_G a$.

Example 3.1
$$s := f(a), t := a.$$
 $S := \{a, f(a), f^2(a), f^3(a)\}.$ $CC_S(G):$

$$a \approx a \qquad a \approx f(a) \qquad a \approx f^2(a) \qquad a \approx f^3(a)$$

$$f(a) \approx a \qquad f(a) \approx f(a) \qquad f(a) \approx f^2(a) \qquad f(a) \approx f^3(a)$$

$$f^2(a) \approx a \qquad f^2(a) \approx f(a) \qquad f^2(a) \approx f^2(a) \qquad f^2(a) \approx f^3(a)$$

$$f^3(a) \approx a \qquad f^3(a) \approx f(a) \qquad f^3(a) \approx f^2(a) \qquad f^3(a) \approx f^3(a)$$

Hence, $(f(a), a) \in CC_S(G)$, showing $f(a) \approx_G a$. Note that $CC_S(G) = S \times S$. In general the iteration may stop before $S \times S$ is reached.

