## Rewriting

Part 2. Terms, Substitutions, Identities, Semantics

Temur Kutsia

RISC, JKU Linz

## Purpose of the Lecture

- Introduce syntactic notions:
- Terms
- Substitutions
- Identities
- Define semantics.
- Establish connections between syntax and semantics.


## Syntax

## Semantics



## Syntax

- Alphabet
- Terms


## Alphabet

A first-order alphabet consists of the following sets of symbols:

- A countable set of variables $\mathcal{V}$.
- For each $n \geq 0$, a set of $n$-ary function symbols $\mathcal{F}^{n}$.
- Elements of $\mathcal{F}^{0}$ are called constants.
- Signature: $\mathcal{F}=\cup_{n \geq 0} \mathcal{F}^{n}$.
- $\mathcal{V} \cap \mathcal{F}=\varnothing$.


## Alphabet

A first-order alphabet consists of the following sets of symbols:

- A countable set of variables $\mathcal{V}$.
- For each $n \geq 0$, a set of $n$-ary function symbols $\mathcal{F}^{n}$.
- Elements of $\mathcal{F}^{0}$ are called constants.
- Signature: $\mathcal{F}=\cup_{n \geq 0} \mathcal{F}^{n}$.
- $\mathcal{V} \cap \mathcal{F}=\varnothing$.

Notation:

- $x, y, z$ for variables.
- $f, g$ for function symbols.
- $a, b, c$ for constants.


## Terms

## Definition 2.1

The set of terms $T(\mathcal{F}, \mathcal{V})$ over $\mathcal{F}$ and $\mathcal{V}$ :

- $\mathcal{V} \subseteq T(\mathcal{F}, \mathcal{V})$ (every variable is a term).
- For all $t_{1}, \ldots, t_{n} \in T(\mathcal{F}, \mathcal{V})$ and $f \in \mathcal{F}^{n}$ and $n \geq 0$, we have $f\left(t_{1}, \ldots, t_{n}\right) \in T(\mathcal{F}, \mathcal{V})$
(application of function symbols to terms yields a term).


## Terms

## Definition 2.1

The set of terms $T(\mathcal{F}, \mathcal{V})$ over $\mathcal{F}$ and $\mathcal{V}$ :

- $\mathcal{V} \subseteq T(\mathcal{F}, \mathcal{V})$ (every variable is a term).
- For all $t_{1}, \ldots, t_{n} \in T(\mathcal{F}, \mathcal{V})$ and $f \in \mathcal{F}^{n}$ and $n \geq 0$, we have $f\left(t_{1}, \ldots, t_{n}\right) \in T(\mathcal{F}, \mathcal{V})$
(application of function symbols to terms yields a term).
Notation:
- $s, t, r$ for terms.


## Terms

Definition 2.1
The set of terms $T(\mathcal{F}, \mathcal{V})$ over $\mathcal{F}$ and $\mathcal{V}$ :

- $\mathcal{V} \subseteq T(\mathcal{F}, \mathcal{V})$ (every variable is a term).
- For all $t_{1}, \ldots, t_{n} \in T(\mathcal{F}, \mathcal{V})$ and $f \in \mathcal{F}^{n}$ and $n \geq 0$, we have $f\left(t_{1}, \ldots, t_{n}\right) \in T(\mathcal{F}, \mathcal{V})$
(application of function symbols to terms yields a term).
Notation:
- $s, t, r$ for terms.

Example:

- $e \in \mathcal{F}^{0}, i \in \mathcal{F}^{1}, f \in \mathcal{F}^{2}$.
- $f(e, f(x, i(x))) \in T(\mathcal{F}, \mathcal{V})$.


## Tree Representation of Terms

Term: $f(e, f(x, i(x)))$


## Positions

## Definition 2.2

Let $t \in T(\mathcal{F}, \mathcal{V})$. The set of positions of $t, \mathcal{P} o s(t)$, is a set of strings of positive integers, defined as follows:

- If $t=x$, then $\mathcal{P o s}(t):=\{\epsilon\}$,
- If $t=f\left(t_{1}, \ldots, t_{n}\right)$, then

$$
\mathcal{P} o s(t):=\{\epsilon\} \cup\left\{i p \mid 1 \leq i \leq n, p \in \mathcal{P} o s\left(t_{i}\right)\right\} .
$$

- Prefix ordering on positions: $p \leq q$ iff $p^{\prime} p=q$ for some $p^{\prime}$.


## More Notions about Terms

Term: $t=f(e, f(x, i(x))) \quad$ Tree:

Subterm of $t$ at position $p:\left.t\right|_{p}$

$$
\begin{aligned}
\left.t\right|_{2} & =f(x, i(x)) \\
\left.t\right|_{21} & =x \\
\left.t\right|_{22} & =i(x)
\end{aligned}
$$

## More Notions about Terms



## More Notions about Terms



## More Notions about Terms



## More Notions about Terms

- Ground term: A term without occurrences of variables.
- Ground $t: \mathcal{V} \operatorname{ar}(t)=\varnothing$.
- $T(\mathcal{F})$ : The set of all ground terms over $\mathcal{F}$.


## Substitutions

- A $T(\mathcal{F}, \mathcal{V})$-substitution: A function $\sigma: \mathcal{V} \rightarrow T(\mathcal{F}, \mathcal{V})$, whose domain

$$
\operatorname{Dom}(\sigma):=\{x \mid \sigma(x) \neq x\}
$$

is finite.

## Substitutions

- A $T(\mathcal{F}, \mathcal{V})$-substitution: A function $\sigma: \mathcal{V} \rightarrow T(\mathcal{F}, \mathcal{V})$, whose domain

$$
\operatorname{Dom}(\sigma):=\{x \mid \sigma(x) \neq x\}
$$

is finite.

- Range of a substitution $\sigma$ :

$$
\mathcal{R} a n(\sigma):=\{\sigma(x) \mid x \in \operatorname{Dom}(\sigma)\} .
$$

## Substitutions

- A $T(\mathcal{F}, \mathcal{V})$-substitution: A function $\sigma: \mathcal{V} \rightarrow T(\mathcal{F}, \mathcal{V})$, whose domain

$$
\operatorname{Dom}(\sigma):=\{x \mid \sigma(x) \neq x\}
$$

is finite.

- Range of a substitution $\sigma$ :

$$
\mathcal{R} a n(\sigma):=\{\sigma(x) \mid x \in \operatorname{Dom}(\sigma)\} .
$$

- Variable range of a substitution $\sigma$ :

$$
\mathcal{V} \mathcal{R} a n(\sigma):=\mathcal{V} a r(\mathcal{R} a n(\sigma))
$$

## Substitutions

- A $T(\mathcal{F}, \mathcal{V})$-substitution: A function $\sigma: \mathcal{V} \rightarrow T(\mathcal{F}, \mathcal{V})$, whose domain

$$
\operatorname{Dom}(\sigma):=\{x \mid \sigma(x) \neq x\}
$$

is finite.

- Range of a substitution $\sigma$ :

$$
\mathcal{R} a n(\sigma):=\{\sigma(x) \mid x \in \operatorname{Dom}(\sigma)\} .
$$

- Variable range of a substitution $\sigma$ :

$$
\mathcal{V} \mathcal{R} a n(\sigma):=\mathcal{V} a r(\mathcal{R} a n(\sigma))
$$

- Notation: lower case Greek letters $\sigma, \vartheta, \varphi, \psi, \ldots$ Identity substitution: $\varepsilon$.


## Substitutions

- Notation: If $\operatorname{Dom}(\sigma)=\left\{x_{1}, \ldots, x_{n}\right\}$, then $\sigma$ can be written as the set

$$
\left\{x_{1} \mapsto \sigma\left(x_{1}\right), \ldots, x_{n} \mapsto \sigma\left(x_{n}\right)\right\} .
$$

- Example:

$$
\{x \mapsto i(y), y \mapsto e\} .
$$

## Substitutions

- The substitution $\sigma$ can be extended to a mapping

$$
\sigma: T(\mathcal{F}, \mathcal{V}) \rightarrow T(\mathcal{F}, \mathcal{V})
$$

by induction:

$$
\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right)
$$

## Substitutions

- The substitution $\sigma$ can be extended to a mapping

$$
\sigma: T(\mathcal{F}, \mathcal{V}) \rightarrow T(\mathcal{F}, \mathcal{V})
$$

by induction:

$$
\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right)
$$

- Example:

$$
\begin{aligned}
\sigma & =\{x \mapsto i(y), y \mapsto e\} . \\
t & =f(y, f(x, y)) \\
\sigma(t) & =f(e, f(i(y), e))
\end{aligned}
$$

## Substitutions

- The substitution $\sigma$ can be extended to a mapping

$$
\sigma: T(\mathcal{F}, \mathcal{V}) \rightarrow T(\mathcal{F}, \mathcal{V})
$$

by induction:

$$
\sigma\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=f\left(\sigma\left(t_{1}\right), \ldots, \sigma\left(t_{n}\right)\right)
$$

- Example:

$$
\begin{aligned}
\sigma & =\{x \mapsto i(y), y \mapsto e\} . \\
t & =f(y, f(x, y)) \\
\sigma(t) & =f(e, f(i(y), e))
\end{aligned}
$$

- Sub: The set of substitutions.


## More Notions about Substitutions

- Composition of $\vartheta$ and $\sigma$ :

$$
\sigma \vartheta(x):=\sigma(\vartheta(x)) .
$$

- Composition of two substitutions is again a substitution.
- Composition is associative but not commutative.


## More Notions about Substitutions

Algorithm for obtaining a set representation of a composition of two substitutions in a set form.

- Given:

$$
\begin{aligned}
\theta & =\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\} \\
\sigma & =\left\{y_{1} \mapsto s_{1}, \ldots, y_{m} \mapsto s_{m}\right\}
\end{aligned}
$$

the set representation of their composition $\theta \sigma$ is obtained from the set

$$
\left\{x_{1} \mapsto \sigma\left(t_{1}\right), \ldots, x_{n} \mapsto \sigma\left(t_{n}\right), y_{1} \mapsto s_{1}, \ldots, y_{m} \mapsto s_{m}\right\}
$$

by deleting

- all $y_{i} \mapsto s_{i}$ 's with $y_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}$,
- all $x_{i} \mapsto \sigma\left(t_{i}\right)$ 's with $x_{i}=\sigma\left(t_{i}\right)$.


## More Notions about Substitutions

Example 2.1 (Composition)

$$
\begin{aligned}
\theta & =\{x \mapsto f(y), y \mapsto z\} . \\
\sigma & =\{x \mapsto a, y \mapsto b, z \mapsto y\} . \\
\sigma \theta & =\{x \mapsto f(b), z \mapsto y\} .
\end{aligned}
$$

## More Notions about Substitutions

- $t$ is an instance of $s$ iff there exists a $\sigma$ such that

$$
\sigma(s)=t .
$$

- Notation: $t \gtrsim s$.
- Reads: $t$ is more specific than $s$, or $s$ is more general than $t$.
- $\gtrsim$ is a quasi-order.
- Strict part: >.


## More Notions about Substitutions

- $t$ is an instance of $s$ iff there exists a $\sigma$ such that

$$
\sigma(s)=t
$$

- Notation: $t \gtrsim s$.
- Reads: $t$ is more specific than $s$, or $s$ is more general than $t$.
- $\gtrsim$ is a quasi-order.
- Strict part: >.
- Example: $f(y, f(x, y)) \gtrsim f(e, f(i(y), e))$, because

$$
\sigma(f(y, f(x, y)))=f(e, f(i(y), e)
$$

for $\sigma=\{x \mapsto i(y), y \mapsto e\}$

## Identities

- An identity over $T(\mathcal{F}, \mathcal{V})$ : a pair $(s, t) \in T(\mathcal{F}, \mathcal{V}) \times T(\mathcal{F}, \mathcal{V})$.
- Written: $s \approx t$.
- $s$ - left hand side, $t$ - right hand side.


## Identities

- The reduction relation $\rightarrow_{E} \subseteq T(\mathcal{F}, \mathcal{V}) \times T(\mathcal{F}, \mathcal{V})$ :

$$
\begin{aligned}
& s \rightarrow_{E} t \text { iff } \\
& \quad \text { there exist }(l, r) \in E, p \in \mathcal{P} o s(s), \sigma \in \mathcal{S} u b \\
& \quad \text { such that }\left.s\right|_{p}=\sigma(l) \text { and } t=s[\sigma(r)]_{p}
\end{aligned}
$$

- Sometimes written $s \rightarrow{ }_{E}^{p} t$.


## Identities

- The reduction relation $\rightarrow_{E} \subseteq T(\mathcal{F}, \mathcal{V}) \times T(\mathcal{F}, \mathcal{V})$ :

$$
\begin{aligned}
& s \rightarrow_{E} t \text { iff } \\
& \quad \text { there exist }(l, r) \in E, p \in \mathcal{P} o s(s), \sigma \in \mathcal{S} u b \\
& \quad \text { such that }\left.s\right|_{p}=\sigma(l) \text { and } t=s[\sigma(r)]_{p}
\end{aligned}
$$

- Sometimes written $s \rightarrow{ }_{E}^{p} t$.



## Identities

## Example 2.2

- Let $G$ be the set of identities consisting of
(1) $f(x, f(y, z)) \approx f(f(x, y), z)$
(2) $f(e, x) \approx x$
(3) $f(i(x), x) \approx e$


## Identities

## Example 2.2

- Let $G$ be the set of identities consisting of
(1) $f(x, f(y, z)) \approx f(f(x, y), z)$
(2) $f(e, x) \approx x$
(3) $f(i(x), x) \approx e$
- Then

$$
f(i(e), f(e, e))
$$

## Identities

## Example 2.2

- Let $G$ be the set of identities consisting of
(1) $f(x, f(y, z)) \approx f(f(x, y), z)$
(2) $f(e, x) \approx x$
(3) $f(i(x), x) \approx e$
- Then

$$
\begin{array}{ll} 
& f(i(e), f(e, e)) \\
\rightarrow_{G}^{\epsilon} & f(f(i(e), e), e) \quad\left[(1), \sigma_{1}=\{x \mapsto i(e), y \mapsto e, z \mapsto e\}\right]
\end{array}
$$

## Identities

## Example 2.2

- Let $G$ be the set of identities consisting of
(1) $f(x, f(y, z)) \approx f(f(x, y), z)$
(2) $f(e, x) \approx x$
(3) $f(i(x), x) \approx e$
- Then

$$
\begin{array}{lll} 
& f(i(e), f(e, e)) & \\
\rightarrow_{G}^{\epsilon} & f(f(i(e), e), e) & {\left[(1), \sigma_{1}=\{x \mapsto i(e), y \mapsto e, z \mapsto e\}\right]} \\
\rightarrow{ }_{G}^{1} & f(e, e) & {\left[(3), \sigma_{2}=\{x \mapsto e\}\right]}
\end{array}
$$

## Identities

## Example 2.2

- Let $G$ be the set of identities consisting of
(1) $f(x, f(y, z)) \approx f(f(x, y), z)$
(2) $f(e, x) \approx x$
(3) $f(i(x), x) \approx e$
- Then

$$
\begin{array}{lll} 
& f(i(e), f(e, e)) & \\
\rightarrow_{G}^{\epsilon} & f(f(i(e), e), e) & {\left[(1), \sigma_{1}=\{x \mapsto i(e), y \mapsto e, z \mapsto e\}\right]} \\
\rightarrow_{G}^{1} & f(e, e) & {\left[(3), \sigma_{2}=\{x \mapsto e\}\right]} \\
\rightarrow{ }_{G}^{\epsilon} & e & {\left[(2), \sigma_{3}=\{x \mapsto e\}\right]}
\end{array}
$$

## Identities

- $\stackrel{*}{\rightarrow}_{E}$ : Reflexive transitive closure of $\rightarrow_{E}$.
- $\stackrel{*}{\leftrightarrow}_{E}$ : Reflexive transitive symmetric closure of $\rightarrow_{E}$.
- An important problem of equational reasoning: Design decision procedures for $\stackrel{*}{\leftrightarrow}_{E}$.


## Characterizations of $\stackrel{*}{\leftrightarrow} E$

- Syntactic characterization
- Semantic characterization.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

三: A binary relation on $T(\mathcal{F}, \mathcal{V})$.

- $\equiv$ is closed under substitutions iff
$s \equiv t$ implies $\sigma(s) \equiv \sigma(t)$ for all $s, t, \sigma$.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

三: A binary relation on $T(\mathcal{F}, \mathcal{V})$.

- $\equiv$ is closed under substitutions iff
$s \equiv t$ implies $\sigma(s) \equiv \sigma(t)$ for all $s, t, \sigma$.
- $\equiv$ is closed under $\mathcal{F}$-operations iff
$s_{1} \equiv t_{1}, \ldots, s_{n} \equiv t_{n}$ imply $f\left(s_{1}, \ldots, s_{n}\right) \equiv f\left(t_{1}, \ldots, t_{n}\right)$ for all $s_{1}, \ldots, s_{n}, t_{1}, \ldots, s_{n}, n \geq 0, f \in \mathcal{F}^{n}$.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

$\equiv$ : A binary relation on $T(\mathcal{F}, \mathcal{V})$.

- $\equiv$ is closed under substitutions iff
$s \equiv t$ implies $\sigma(s) \equiv \sigma(t)$ for all $s, t, \sigma$.
- $\equiv$ is closed under $\mathcal{F}$-operations iff

$$
\begin{aligned}
& s_{1} \equiv t_{1}, \ldots, s_{n} \equiv t_{n} \text { imply } f\left(s_{1}, \ldots, s_{n}\right) \equiv f\left(t_{1}, \ldots, t_{n}\right) \\
& \text { for all } s_{1}, \ldots, s_{n}, t_{1}, \ldots, s_{n}, n \geq 0, f \in \mathcal{F}^{n}
\end{aligned}
$$

- $\equiv$ is compatible with $\mathcal{F}$-operations iff $s \equiv t$ implies $f\left(s_{1}, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_{n}\right) \equiv f\left(s_{1}, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_{n}\right)$ for all $s_{1}, \ldots, s_{i-1}, s, t, s_{i+1}, \ldots, s_{n} \in T(\mathcal{F}, \mathcal{V}), n \geq 0, f \in \mathcal{F}^{n}$.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

$\equiv$ : A binary relation on $T(\mathcal{F}, \mathcal{V})$.

- $\equiv$ is closed under substitutions iff

$$
s \equiv t \text { implies } \sigma(s) \equiv \sigma(t) \text { for all } s, t, \sigma .
$$

- $\equiv$ is closed under $\mathcal{F}$-operations iff

$$
\begin{aligned}
& s_{1} \equiv t_{1}, \ldots, s_{n} \equiv t_{n} \text { imply } f\left(s_{1}, \ldots, s_{n}\right) \equiv f\left(t_{1}, \ldots, t_{n}\right) \\
& \text { for all } s_{1}, \ldots, s_{n}, t_{1}, \ldots, s_{n}, n \geq 0, f \in \mathcal{F}^{n}
\end{aligned}
$$

- $\equiv$ is compatible with $\mathcal{F}$-operations iff $s \equiv t$ implies $f\left(s_{1}, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_{n}\right) \equiv f\left(s_{1}, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_{n}\right)$ for all $s_{1}, \ldots, s_{i-1}, s, t, s_{i+1}, \ldots, s_{n} \in T(\mathcal{F}, \mathcal{V}), n \geq 0, f \in \mathcal{F}^{n}$.
- $\equiv$ is compatible with $\mathcal{F}$-contexts iff $s \equiv t$ implies $r[s]_{p} \equiv r[t]_{p}$ for all $\mathcal{F}$-terms $r$ and positions $p \in \mathcal{P} \operatorname{os}(t)$.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Lemma 2.1
Let $E$ be a set of $\mathcal{F}$-identities. Then $\rightarrow_{E}$ is closed under substitutions and compatible with $\mathcal{F}$-operations.

Proof.
Follows from the definition of $\rightarrow_{E}$.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Lemma 2.1
Let $E$ be a set of $\mathcal{F}$-identities. Then $\rightarrow_{E}$ is closed under substitutions and compatible with $\mathcal{F}$-operations.

Proof.
Follows from the definition of $\rightarrow_{E}$.
Lemma 2.2
Let $\equiv$ be a binary relation on $T(\mathcal{F}, \mathcal{V})$. Then $\equiv$ is compatible with $\mathcal{F}$-operations iff it is compatible with $\mathcal{F}$-contexts.

Proof.
The $(\Rightarrow)$ direction can be proved by induction on the length of the position $p$ in the context. The $(\Leftarrow)$ direction is obvious.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Lemma 2.3
Let $\equiv$ be a binary relation on $T(\mathcal{F}, \mathcal{V})$. If $\equiv$ is reflexive and transitive, then it is compatible with $\mathcal{F}$-operations iff it is closed under $\mathcal{F}$-operations.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

## Lemma 2.3

Let $\equiv$ be a binary relation on $T(\mathcal{F}, \mathcal{V})$. If $\equiv$ is reflexive and transitive, then it is compatible with $\mathcal{F}$-operations iff it is closed under $\mathcal{F}$-operations.

Proof.
$(\Rightarrow)$ Assume $s_{i} \equiv t_{i}$ for all $1 \leq i \leq n$. By compatibility we have

$$
\begin{aligned}
& f\left(s_{1}, s_{2}, \ldots, s_{n}\right) \approx f\left(t_{1}, s_{2}, \ldots, s_{n}\right) \\
& f\left(t_{1}, s_{2}, \ldots, s_{n}\right) \approx f\left(t_{1}, t_{2}, \ldots, s_{n}\right) \\
& \ldots \\
& f\left(t_{1}, t_{2}, \ldots, s_{n}\right) \approx f\left(t_{1}, t_{2}, \ldots, t_{n}\right)
\end{aligned}
$$

Transitivity of $\equiv$ implies $f\left(s_{1}, \ldots, s_{n}\right) \approx f\left(t_{1}, \ldots, t_{n}\right)$.
$(\Rightarrow)$ Using reflexivity of $\equiv$.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof.
$\stackrel{*}{\leftrightarrow} E$ is an equivalence relation by definition.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof.
$\stackrel{*}{\leftrightarrow} E$ is an equivalence relation by definition.
(a) Obvious.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{\star}{\leftrightarrow} E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof (Cont.)
(b) Assume $s \stackrel{*}{\leftrightarrow}_{E} t$. Prove $\sigma(s) \stackrel{*}{\leftrightarrow} E \sigma(t)$ for a $\sigma$ by induction on the length of $\stackrel{*}{\leftrightarrow} E$ chain.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow} E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof (Cont.)
(b) Assume $s \stackrel{*}{\leftrightarrow}_{\leftrightarrow} t$. Prove $\sigma(s) \stackrel{*}{\leftrightarrow} E \sigma(t)$ for a $\sigma$ by induction on the length of $\stackrel{*}{\leftrightarrow} E$ chain. IB $s=t$ : Obvious.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow} E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof (Cont.)
(b) Assume $s \stackrel{*}{\leftrightarrow}_{E} t$. Prove $\sigma(s) \stackrel{*}{\leftrightarrow}{ }_{E} \sigma(t)$ for a $\sigma$ by induction on the length of $\stackrel{*}{\leftrightarrow}_{E}$ chain. IB $s=t$ : Obvious. IH for $s \stackrel{*}{\leftrightarrow}_{E} t$.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow} E$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof (Cont.)
(b) Assume $s \stackrel{*}{\leftrightarrow}_{\leftrightarrow} t$. Prove $\sigma(s) \stackrel{*}{\leftrightarrow} E \sigma(t)$ for a $\sigma$ by induction on the length of $\stackrel{*}{\leftrightarrow}_{E}$ chain. IB $s=t$ : Obvious. IH for $s \stackrel{*}{\leftrightarrow}$ E .
IS: Let $s \stackrel{*}{\leftrightarrow} E t \leftrightarrow_{E} t^{\prime}$. By case distinction on $\leftrightarrow_{E}$.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{\leftrightarrow}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

## Proof (Cont.)

(b) Assume $s \stackrel{*}{\leftrightarrow}_{\leftrightarrow} t$. Prove $\sigma(s) \stackrel{*}{\leftrightarrow} E \sigma(t)$ for a $\sigma$ by induction on the length of $\stackrel{*}{\leftrightarrow}_{E}$ chain. IB $s=t$ : Obvious. IH for $s \stackrel{*}{\leftrightarrow}_{E} t$.
IS: Let $s \stackrel{*}{\leftrightarrow_{E}} t \leftrightarrow_{E} t^{\prime}$. By case distinction on $\leftrightarrow_{E}$.

- $t \rightarrow_{E} t^{\prime}:$ By IH: $\sigma(s) \stackrel{*}{\leftrightarrow} E \sigma(t)$.
$t \rightarrow_{E} t^{\prime} \Rightarrow \sigma(t) \rightarrow_{E} \sigma\left(t^{\prime}\right) \Rightarrow \sigma(t) \stackrel{*}{\leftrightarrow}_{E} \sigma\left(t^{\prime}\right)$.
By transitivity of $\stackrel{*}{\leftrightarrow}_{E}: \sigma(s) \stackrel{*}{\leftrightarrow}_{E} \sigma\left(t^{\prime}\right)$.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{\leftrightarrow}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

## Proof (Cont.)

(b) Assume $s \stackrel{*}{\leftrightarrow}_{\leftrightarrow} t$. Prove $\sigma(s) \stackrel{*}{\leftrightarrow} E \sigma(t)$ for a $\sigma$ by induction on the length of $\stackrel{*}{\leftrightarrow}_{E}$ chain. IB $s=t$ : Obvious. IH for $s \stackrel{*}{\leftrightarrow}_{E} t$.
IS: Let $s \stackrel{*}{\leftrightarrow_{E}} t \leftrightarrow_{E} t^{\prime}$. By case distinction on $\leftrightarrow_{E}$.

- $t \rightarrow{ }_{E} t^{\prime}:$ By IH: $\sigma(s) \stackrel{*}{\leftrightarrow} E \sigma(t)$.
$t \rightarrow_{E} t^{\prime} \Rightarrow \sigma(t) \rightarrow_{E} \sigma\left(t^{\prime}\right) \Rightarrow \sigma(t) \stackrel{*}{\leftrightarrow}_{E} \sigma\left(t^{\prime}\right)$.
By transitivity of $\stackrel{*}{\leftrightarrow}_{E}: \sigma(s) \stackrel{*}{\leftrightarrow}_{E} \sigma\left(t^{\prime}\right)$.
- $t^{\prime} \rightarrow_{E} t$. Similar to the previous item.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof (Cont.)
(c) $\stackrel{*}{\leftrightarrow} E$ is reflexive and transitive and compatible with $\mathcal{F}$-operations (because $\rightarrow_{E}$ is).

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof (Cont.)
(c) $\stackrel{*}{\leftrightarrow} E$ is reflexive and transitive and compatible with $\mathcal{F}$-operations (because $\rightarrow_{E}$ is).

- By Lemma 2.3, $\stackrel{*}{\leftrightarrow}_{E}$ is closed under $\mathcal{F}$-operations.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

## Proof (Cont.)

Prove that $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest such relation. Take another equivalence relation $\equiv$ on $T(\mathcal{F}, \mathcal{V})$ which satisfies (a), (b), (c).
Prove that $\stackrel{*}{\leftrightarrow}_{\leftrightarrow} \subseteq \subseteq$.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

## Proof (Cont.)

Prove that $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest such relation. Take another equivalence relation $\equiv$ on $T(\mathcal{F}, \mathcal{V})$ which satisfies (a), (b), (c).
Prove that $\stackrel{*}{\leftrightarrow}_{\leftrightarrow} \subseteq \subseteq$.

- First, prove $\rightarrow_{E} \subseteq \equiv$.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

## Proof (Cont.)

Prove that $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest such relation. Take another equivalence relation $\equiv$ on $T(\mathcal{F}, \mathcal{V})$ which satisfies (a), (b), (c).
Prove that $\stackrel{*}{\leftrightarrow}_{\leftrightarrow} \subseteq \subseteq$.

- First, prove $\rightarrow_{E} \subseteq \equiv$.
- Let $s \rightarrow_{E} t$. It implies that there exist $(l, r) \in E, p \in \mathcal{P} o s(E)$, and $\sigma$ such that $\left.s\right|_{p}=\sigma(l), t=s[\sigma(r)]_{p}$.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof (Cont.)

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{\leftrightarrow}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof (Cont.)

- $E \subseteq \equiv \Rightarrow l \equiv r \Rightarrow \sigma(l) \equiv \sigma(r)$.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof (Cont.)

- $E \subseteq \equiv \Rightarrow l \equiv r \Rightarrow \sigma(l) \equiv \sigma(r)$.
- $\equiv$ is reflexive and closed under $\mathcal{F}$-operations. By Lemma 2.3, $\equiv$ is compatible with $\mathcal{F}$-operations.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof (Cont.)

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof (Cont.)

- By Lemma 2.2, $\equiv$ is compatible with contexts: $\sigma(l) \equiv \sigma(r)$ implies $u\left[\sigma(l)_{p} \equiv u[\sigma(r)]_{p}\right.$ for all $u, p \in \mathcal{P}$ os $(u), \sigma$.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof (Cont.)

- By Lemma 2.2, $\equiv$ is compatible with contexts: $\sigma(l) \equiv \sigma(r)$ implies $u\left[\sigma(l)_{p} \equiv u[\sigma(r)]_{p}\right.$ for all $u, p \in \mathcal{P}$ os $(u), \sigma$.
- In particular, $s=s[\sigma(l)]_{p} \equiv t[\sigma(r)]_{p}=t$.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof (Cont.)

- By Lemma 2.2, $\equiv$ is compatible with contexts: $\sigma(l) \equiv \sigma(r)$ implies $u\left[\sigma(l)_{p} \equiv u[\sigma(r)]_{p}\right.$ for all $u, p \in \mathcal{P} o s(u), \sigma$.
- In particular, $s=s[\sigma(l)]_{p} \equiv t[\sigma(r)]_{p}=t$.
- Hence, $s \equiv t$ and $\rightarrow_{E} \subseteq \equiv$.


## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

## Syntactic characterization of $\stackrel{*}{\leftrightarrow} E$

Theorem 2.1
Let $E$ be a set of identities. $\stackrel{*}{\leftrightarrow}_{E}$ is the smallest equivalence relation on $T(\mathcal{F}, \mathcal{V})$ that
(a) contains $E$,
(b) is closed under substitutions, and
(c) is closed under $\mathcal{F}$-operations.

Proof (Finished).

- $\rightarrow_{E} \subseteq \equiv$ implies $\stackrel{*}{\leftrightarrow} \subseteq \equiv$, because, by definition, $\stackrel{*}{\leftrightarrow}$ is the smallest equivalence relation containing $\rightarrow_{E}$.


## Equational Logic

Inference rules:

$$
\frac{s \approx t \in E}{F \vdash s \approx t}
$$

$$
\overline{E \vdash s \approx t} \quad \frac{E \vdash s \approx t}{E \vdash t \approx s} \quad \frac{E \vdash s \approx t \quad E \vdash t \approx r}{E \vdash s \approx r}
$$

$$
\frac{E \vdash s \approx t}{E \vdash \sigma(s)} \approx \frac{E \vdash(t)}{E \vdash s_{1} \approx t_{1} \quad . \quad . \quad E \vdash s_{n} \approx t_{n}} \underset{E \vdash f\left(s_{1}, \ldots, s_{n}\right) \approx f\left(t_{1}, \ldots, t_{n}\right)}{ }
$$

$E \vdash s \approx t: s \approx t$ is a syntactic consequence of $E$, or $s \approx t$ is provable from $E$.

## Equational Logic

## Example 2.3

- Let $E=\{a \approx b, f(x) \approx g(x)\}$.
- Prove $E \vdash g(b) \approx f(a)$.

Proof:

$$
\frac{\frac{E \vdash a \approx b}{E \vdash f(a) \approx f(b)} \text { (Func. closure) } \frac{E \vdash f(x) \approx g(x)}{E \vdash f(b) \approx g(b)}}{\frac{E \vdash f(a) \approx g(b)}{E \vdash g(b) \approx f(a)} \text { (Sybst. inst.) }} \text { (Transitivity) }
$$

## Equational Logic

## Example 2.3

- Let $E=\{a \approx b, f(x) \approx g(x)\}$.
- Prove $E \vdash g(b) \approx f(a)$.

Proof:

$$
\frac{\frac{E \vdash a \approx b}{E \vdash f(a) \approx f(b)} \text { (Func. closure) } \frac{E \vdash f(x) \approx g(x)}{E \vdash f(b) \approx g(b)}}{\text { (Subst. inst.) }} \text { (Transitivity) }
$$

Compare with the derivation of $g(b) \stackrel{*}{\leftrightarrow}_{E} f(a)$ :

$$
g(b) \leftrightarrow_{E} g(a) \leftrightarrow_{E} f(a)
$$

## Convertibility and Syntactic Consequence

Theorem 2.2 (Logicality)
For all $E, s, t$,

$$
s \stackrel{*}{\leftrightarrow}_{E} t \text { iff } E \vdash s \approx t .
$$

Proof.
Follows from Theorem 2.1.

## Convertibility and Syntactic Consequence

Differences in behavior:

1. The rewriting approach $\stackrel{*}{\leftrightarrow} E$ allows the replacement of a subterm at an arbitrary position in a single step; The inference rule approach $E \vdash$ needs to simulate this with a sequence of small steps.
2. The inference rule approach allows the simultaneous replacement in each argument of an operation; The rewriting approach needs to simulate this by a number of replacement steps in sequence.

## Syntax

Semantics

## Semantic Algebras

- $\mathcal{F}$-algebra $\mathcal{A}=\left(A,\left\{f_{\mathcal{A}}\right\}_{f \in \mathcal{F}}\right)$.
- $A$ is a nonempty set, the carrier.
- $f_{\mathcal{A}}: A^{n} \rightarrow A$ is an interpretation for $f \in \mathcal{F}^{n}$.


## Semantic Algebras

- $\mathcal{F}$-algebra $\mathcal{A}=\left(A,\left\{f_{\mathcal{A}}\right\}_{f \in \mathcal{F}}\right)$.
- $A$ is a nonempty set, the carrier.
- $f_{\mathcal{A}}: A^{n} \rightarrow A$ is an interpretation for $f \in \mathcal{F}^{n}$.

Example 2.4
Two $\{0, s,+\}$-algebras:
$\mathcal{A}=\left(\mathbb{N},\left\{0_{\mathcal{A}}, s_{\mathcal{A}},{ }_{\mathcal{A}}\right\}\right)$ with $0_{\mathcal{A}}=0, s_{\mathcal{A}}(x)=x+1,{ }_{\mathcal{A}}(x, y)=x+y$.
$\mathcal{B}=\left(\mathbb{N},\left\{0_{\mathcal{B}}, s_{\mathcal{B}},+_{\mathcal{B}}\right\}\right)$ with $0_{\mathcal{B}}=1, s_{\mathcal{B}}(x)=x+1,+_{\mathcal{B}}(x, y)=2 x+y$.

## Variable Assignment, Interpretation Function

- Variable assignment: $\alpha: \mathcal{V} \rightarrow A$
- Interpretation function: $[\alpha]_{\mathcal{A}}(\cdot): T(\mathcal{F}, \mathcal{V}) \rightarrow A$

$$
[\alpha]_{\mathcal{A}}(t)= \begin{cases}\alpha(t) & \text { if } t \in \mathcal{V} \\ f_{\mathcal{A}}\left([\alpha]_{\mathcal{A}}\left(t_{1}\right), \ldots,[\alpha]_{\mathcal{A}}\left(t_{n}\right)\right) & \text { if } t=f\left(t_{1}, \ldots, f_{n}\right)\end{cases}
$$

## Variable Assignment, Interpretation Function

- Variable assignment: $\alpha: \mathcal{V} \rightarrow A$
- Interpretation function: $[\alpha]_{\mathcal{A}}(\cdot): T(\mathcal{F}, \mathcal{V}) \rightarrow A$

$$
[\alpha]_{\mathcal{A}}(t)= \begin{cases}\alpha(t) & \text { if } t \in \mathcal{V} \\ f_{\mathcal{A}}\left([\alpha]_{\mathcal{A}}\left(t_{1}\right), \ldots,[\alpha]_{\mathcal{A}}\left(t_{n}\right)\right) & \text { if } t=f\left(t_{1}, \ldots, f_{n}\right)\end{cases}
$$

Example 2.5

$$
\begin{aligned}
& \mathcal{A}=\left(\mathbb{N},\left\{0_{\mathcal{A}}, s_{\mathcal{A}},+\mathcal{A}\right\}\right) \text { with } 0_{\mathcal{A}}=0, s_{\mathcal{A}}(x)=x+1,+_{\mathcal{A}}(x, y)=x+y . \\
& \mathcal{B}=\left(\mathbb{N},\left\{0_{\mathcal{B}}, s_{\mathcal{B}},+_{\mathcal{B}}\right\}\right) \text { with } 0_{\mathcal{B}}=1, s_{\mathcal{B}}(x)=x+1,+{ }_{\mathcal{B}}(x, y)=2 x+y . \\
& t=s(s(x))+s(x+y), \alpha(x)=2, \alpha(y)=3, \beta(x)=1, \beta(y)=4 . \\
& {[\alpha]_{\mathcal{A}}(t)=10 \quad[\beta]_{\mathcal{A}}(t)=9 } \\
& {[\alpha]_{\mathcal{B}}(t)=15 \quad[\beta]_{\mathcal{B}}(t)=12 }
\end{aligned}
$$

## Validity, Models

- An equation $s \approx t$ is valid in algebra $\mathcal{A}$, written $\mathcal{A} \vDash s \approx t$, iff

$$
[\alpha]_{\mathcal{A}}(s)=[\alpha]_{\mathcal{A}}(t)
$$

for all assignments $\alpha$.

- An $\mathcal{F}$-algebra $\mathcal{A}$ is a model of the set of identities $E$ over $T(\mathcal{F}, \mathcal{V})$ iff $\mathcal{A} \vDash s \approx t$ for all $s \approx t \in E$.


## Validity, Models

- An equation $s \approx t$ is valid in algebra $\mathcal{A}$, written $\mathcal{A} \vDash s \approx t$, iff

$$
[\alpha]_{\mathcal{A}}(s)=[\alpha]_{\mathcal{A}}(t)
$$

for all assignments $\alpha$.

- An $\mathcal{F}$-algebra $\mathcal{A}$ is a model of the set of identities $E$ over $T(\mathcal{F}, \mathcal{V})$ iff $\mathcal{A} \vDash s \approx t$ for all $s \approx t \in E$.

Example 2.6
$\mathcal{A}=\left(\mathbb{N},\left\{0_{\mathcal{A}}, s_{\mathcal{A}},{ }_{\mathcal{A}}\right\}\right)$ with $0_{\mathcal{A}}=0, s_{\mathcal{A}}(x)=x+1,{ }_{\mathcal{A}}(x, y)=x+y$.
$\mathcal{B}=\left(\mathbb{N},\left\{0_{\mathcal{B}}, s_{\mathcal{B}},+_{\mathcal{B}}\right\}\right)$ with $0_{\mathcal{B}}=1, s_{\mathcal{B}}(x)=x+1,+_{\mathcal{B}}(x, y)=2 x+y$.
$E=\{0+y \approx y, s(x)+y \approx s(x+y)\}$.
$\mathcal{A}$ is a model of $E$, while $\mathcal{B}$ is not.

## Validity, Models, Equational Theory

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of $E$.
- $E \vDash s \approx t: s \approx t$ is a semantic consequence of $E$.
- Equational theory of $E$ :

$$
\approx_{E}:=\{(s, t) \mid s, t \in T(\mathcal{F}, \mathcal{V}), E \vDash s \approx t\}
$$

- Notation: $s \approx_{E} t$ iff $(s, t) \in \approx_{E}$.


## Validity, Models, Equational Theory

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of $E$.
- $E \vDash s \approx t: s \approx t$ is a semantic consequence of $E$.
- Equational theory of $E$ :

$$
\approx_{E}:=\{(s, t) \mid s, t \in T(\mathcal{F}, \mathcal{V}), E \vDash s \approx t\}
$$

- Notation: $s \approx_{E} t$ iff $(s, t) \in \approx_{E}$.

Example 2.7

- $E=\{0+y \approx y, s(x)+y \approx s(x+y)\}$.


## Validity, Models, Equational Theory

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of $E$.
- $E \vDash s \approx t: s \approx t$ is a semantic consequence of $E$.
- Equational theory of $E$ :

$$
\approx_{E}:=\{(s, t) \mid s, t \in T(\mathcal{F}, \mathcal{V}), E \vDash s \approx t\}
$$

- Notation: $s \approx_{E} t$ iff $(s, t) \in \approx_{E}$.

Example 2.7

- $E=\{0+y \approx y, s(x)+y \approx s(x+y)\}$.
- $E \vDash s(s(0)+s(0)) \approx s(s(s(0)))$.


## Validity, Models, Equational Theory

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of $E$.
- $E \vDash s \approx t: s \approx t$ is a semantic consequence of $E$.
- Equational theory of $E$ :

$$
\approx_{E}:=\{(s, t) \mid s, t \in T(\mathcal{F}, \mathcal{V}), E \vDash s \approx t\}
$$

- Notation: $s \approx_{E} t$ iff $(s, t) \in \approx_{E}$.

Example 2.7

- $E=\{0+y \approx y, s(x)+y \approx s(x+y)\}$.
- $E \vDash s(s(0)+s(0)) \approx s(s(s(0)))$.
- $E \neq x+y \approx y+x$.


## Validity, Models, Equational Theory

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of $E$.
- $E \vDash s \approx t: s \approx t$ is a semantic consequence of $E$.
- Equational theory of $E$ :

$$
\approx_{E}:=\{(s, t) \mid s, t \in T(\mathcal{F}, \mathcal{V}), E \vDash s \approx t\}
$$

- Notation: $s \approx_{E} t$ iff $(s, t) \in \approx_{E}$.

Example 2.7

- $E=\{0+y \approx y, s(x)+y \approx s(x+y)\}$.
- $E \vDash s(s(0)+s(0)) \approx s(s(s(0)))$.
- $E \neq x+y \approx y+x$.
- Model $\mathcal{C}=\left(\mathbb{N},\left\{0_{\mathcal{C}}, s_{\mathcal{C}},+_{\mathcal{C}}\right\}\right)$ with $0_{\mathcal{C}}=0, s_{\mathcal{C}}(x)=x$, ${ }_{+C}(x, y)=y$.


## Relating Syntax and Semantics

Theorem 2.3 (Birkhoff)
Equational logic is sound and complete:
For all $E, s, t, \quad E \vdash s \approx t \quad i f f \quad E \vDash s \approx t$.

## Relating Syntax and Semantics

Theorem 2.3 (Birkhoff)
Equational logic is sound and complete:
For all $E, s, t, \quad E \vdash s \approx t \quad i f f \quad E \vDash s \approx t$.

Corollary 2.1
For all $E, s, t$,

$$
s \stackrel{*}{\leftrightarrow}_{E} t \quad \text { iff } \quad E \vdash s \approx t \quad \text { iff } \quad E \vDash s \approx t .
$$

## Validity and Satisfiability

## Validity and Satisfiability

Validity problem:
Given: A set of identities $E$ and terms $s$ and $t$.
Decide: $s \approx_{E} t$.

## Validity and Satisfiability

Validity problem:
Given: A set of identities $E$ and terms $s$ and $t$.
Decide: $s \approx_{E} t$.
Satisfiability problem:
Given: A set of identities $E$ and terms $s$ and $t$.
Find: A substitution $\sigma$ such that $\sigma(s) \approx_{E} \sigma(t)$.

