Rewriting

Part 2. Terms, Substitutions, Identities, Semantics

Temur Kutsia

RISC, JKU Linz

Purpose of the Lecture

- Introduce syntactic notions:
 - Terms
 - Substitutions
 - Identities
- Define semantics.
- Establish connections between syntax and semantics.

Syntax

Semantics

Syntax

- Alphabet
- Terms

Alphabet

A first-order alphabet consists of the following sets of symbols:

- A countable set of variables V.
- ▶ For each $n \ge 0$, a set of n-ary function symbols \mathcal{F}^n .
- Elements of \mathcal{F}^0 are called constants.
- Signature: $\mathcal{F} = \bigcup_{n \geq 0} \mathcal{F}^n$.
- $V \cap \mathcal{F} = \emptyset$.

Alphabet

A first-order alphabet consists of the following sets of symbols:

- A countable set of variables V.
- ▶ For each $n \ge 0$, a set of n-ary function symbols \mathcal{F}^n .
- Elements of \mathcal{F}^0 are called constants.
- Signature: $\mathcal{F} = \cup_{n \geq 0} \mathcal{F}^n$.
- $\mathcal{V} \cap \mathcal{F} = \emptyset$.

Notation:

- $\triangleright x, y, z$ for variables.
- f, g for function symbols.
- a, b, c for constants.

Terms

Definition 2.1

The set of terms $T(\mathcal{F}, \mathcal{V})$ over \mathcal{F} and \mathcal{V} :

- $V \subseteq T(\mathcal{F}, V)$ (every variable is a term).
- For all $t_1, \ldots, t_n \in T(\mathcal{F}, \mathcal{V})$ and $f \in \mathcal{F}^n$ and $n \geq 0$, we have $f(t_1, \ldots, t_n) \in T(\mathcal{F}, \mathcal{V})$ (application of function symbols to terms yields a term).

Terms

Definition 2.1

The set of terms $T(\mathcal{F}, \mathcal{V})$ over \mathcal{F} and \mathcal{V} :

- $V \subseteq T(\mathcal{F}, V)$ (every variable is a term).
- For all $t_1, \ldots, t_n \in T(\mathcal{F}, \mathcal{V})$ and $f \in \mathcal{F}^n$ and $n \geq 0$, we have $f(t_1, \ldots, t_n) \in T(\mathcal{F}, \mathcal{V})$ (application of function symbols to terms yields a term).

Notation:

• s, t, r for terms.

Terms

Definition 2.1

The set of terms $T(\mathcal{F}, \mathcal{V})$ over \mathcal{F} and \mathcal{V} :

- $V \subseteq T(\mathcal{F}, V)$ (every variable is a term).
- For all $t_1, \ldots, t_n \in T(\mathcal{F}, \mathcal{V})$ and $f \in \mathcal{F}^n$ and $n \geq 0$, we have $f(t_1, \ldots, t_n) \in T(\mathcal{F}, \mathcal{V})$ (application of function symbols to terms yields a term).

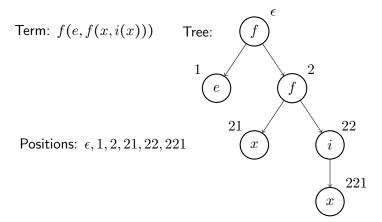
Notation:

• s, t, r for terms.

Example:

- $e \in \mathcal{F}^0$, $i \in \mathcal{F}^1$, $f \in \mathcal{F}^2$.
- $f(e, f(x, i(x))) \in T(\mathcal{F}, \mathcal{V})$.

Tree Representation of Terms



Positions

Definition 2.2

Let $t \in T(\mathcal{F}, \mathcal{V})$. The set of positions of t, $\mathcal{P}os(t)$, is a set of strings of positive integers, defined as follows:

- If t = x, then $\mathcal{P}os(t) \coloneqq \{\epsilon\}$,
- If $t = f(t_1, \ldots, t_n)$, then

$$\mathcal{P}os(t) := \{\epsilon\} \cup \{ip \mid 1 \le i \le n, \ p \in \mathcal{P}os(t_i)\}.$$

▶ Prefix ordering on positions: $p \le q$ iff p'p = q for some p'.

Term:
$$t = f(e, f(x, i(x)))$$
 Tree:
$$f$$

$$1$$

$$e$$

$$1$$

$$2$$

$$f$$

$$2$$

$$1$$

$$e$$

$$t|_{2} = f(x, i(x))$$

$$t|_{21} = x$$

$$t|_{22} = i(x)$$

Term:
$$t = f(e, f(x, i(x)))$$
 Tree:

Replacing a subterm at position p by s : $t[s]_p$

$$t[a]_{\epsilon} = a$$

$$t[g(a, a)]_{21} = f(e, f(g(a, a), i(x)))$$

$$t[i(y)]_{22} = f(e, f(x, i(y)))$$

Term:
$$t = f(e, f(x, i(x)))$$
 Tree:
$$f$$

$$1$$

$$e$$

$$1$$

$$2$$

$$f$$
A set of variables occurring in t : $Var(t)$

$$Var(t) = \{x\}$$

$$Var(t[a]_2) = \varnothing$$

$$Var(t|_{22}) = \{x\}$$

- Ground term: A term without occurrences of variables.
- Ground t: $Var(t) = \emptyset$.
- ▶ $T(\mathcal{F})$: The set of all ground terms over \mathcal{F} .

▶ A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma : \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

$$\mathcal{D}om(\sigma) \coloneqq \{x \mid \sigma(x) \neq x\}$$

is finite.

▶ A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma : \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

$$\mathcal{D}om(\sigma) \coloneqq \{x \mid \sigma(x) \neq x\}$$

is finite.

• Range of a substitution σ :

$$\mathcal{R}an(\sigma) \coloneqq \{\sigma(x) \mid x \in \mathcal{D}om(\sigma)\}.$$

▶ A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma : \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

$$\mathcal{D}om(\sigma) \coloneqq \{x \mid \sigma(x) \neq x\}$$

is finite.

• Range of a substitution σ :

$$\mathcal{R}an(\sigma) \coloneqq \{\sigma(x) \mid x \in \mathcal{D}om(\sigma)\}.$$

• Variable range of a substitution σ :

$$VRan(\sigma) := Var(Ran(\sigma)).$$

▶ A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma : \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

$$\mathcal{D}om(\sigma) \coloneqq \{x \mid \sigma(x) \neq x\}$$

is finite.

• Range of a substitution σ :

$$\mathcal{R}an(\sigma) \coloneqq \{ \sigma(x) \mid x \in \mathcal{D}om(\sigma) \}.$$

• Variable range of a substitution σ :

$$VRan(\sigma) := Var(Ran(\sigma)).$$

• Notation: lower case Greek letters $\sigma, \vartheta, \varphi, \psi, \ldots$ Identity substitution: ε .

Notation: If $\mathcal{D}om(\sigma) = \{x_1, \dots, x_n\}$, then σ can be written as the set

$$\{x_1 \mapsto \sigma(x_1), \ldots, x_n \mapsto \sigma(x_n)\}.$$

Example:

$$\{x \mapsto i(y), y \mapsto e\}.$$

ullet The substitution σ can be extended to a mapping

$$\sigma: T(\mathcal{F}, \mathcal{V}) \to T(\mathcal{F}, \mathcal{V})$$

by induction:

$$\sigma(f(t_1,\ldots,t_n)) = f(\sigma(t_1),\ldots,\sigma(t_n)).$$

ullet The substitution σ can be extended to a mapping

$$\sigma: T(\mathcal{F}, \mathcal{V}) \to T(\mathcal{F}, \mathcal{V})$$

by induction:

$$\sigma(f(t_1,\ldots,t_n)) = f(\sigma(t_1),\ldots,\sigma(t_n)).$$

Example:

$$\sigma = \{x \mapsto i(y), y \mapsto e\}.$$

$$t = f(y, f(x, y))$$

$$\sigma(t) = f(e, f(i(y), e))$$

lacktriangle The substitution σ can be extended to a mapping

$$\sigma: T(\mathcal{F}, \mathcal{V}) \to T(\mathcal{F}, \mathcal{V})$$

by induction:

$$\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n)).$$

Example:

$$\sigma = \{x \mapsto i(y), y \mapsto e\}.$$

$$t = f(y, f(x, y))$$

$$\sigma(t) = f(e, f(i(y), e))$$

• Sub: The set of substitutions.

• Composition of ϑ and σ :

$$\sigma \vartheta(x) \coloneqq \sigma(\vartheta(x)).$$

- Composition of two substitutions is again a substitution.
- Composition is associative but not commutative.

Algorithm for obtaining a set representation of a composition of two substitutions in a set form.

Given:

$$\theta = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$$

$$\sigma = \{y_1 \mapsto s_1, \dots, y_m \mapsto s_m\},$$

the set representation of their composition $\theta\sigma$ is obtained from the set

$$\{x_1 \mapsto \sigma(t_1), \dots, x_n \mapsto \sigma(t_n), y_1 \mapsto s_1, \dots, y_m \mapsto s_m\}$$

by deleting

- all $y_i \mapsto s_i$'s with $y_i \in \{x_1, \dots, x_n\}$,
- all $x_i \mapsto \sigma(t_i)$'s with $x_i = \sigma(t_i)$.

Example 2.1 (Composition)

$$\theta = \{x \mapsto f(y), y \mapsto z\}.$$

$$\sigma = \{x \mapsto a, y \mapsto b, z \mapsto y\}.$$

$$\sigma\theta = \{x \mapsto f(b), z \mapsto y\}.$$

• t is an instance of s iff there exists a σ such that

$$\sigma(s) = t$$
.

- Notation: $t \gtrsim s$.
- ightharpoonup Reads: t is more specific than s, or s is more general than t.
- ▶ ≥ is a quasi-order.
- Strict part: >.

• t is an instance of s iff there exists a σ such that

$$\sigma(s) = t$$
.

- Notation: $t \gtrsim s$.
- Reads: t is more specific than s, or s is more general than t.
- ▶ ≥ is a quasi-order.
- Strict part: >.
- ► Example: $f(y, f(x, y)) \gtrsim f(e, f(i(y), e))$, because

$$\sigma(f(y, f(x, y))) = f(e, f(i(y), e))$$

for
$$\sigma = \{x \mapsto i(y), y \mapsto e\}$$

- An identity over $T(\mathcal{F}, \mathcal{V})$: a pair $(s,t) \in T(\mathcal{F}, \mathcal{V}) \times T(\mathcal{F}, \mathcal{V})$.
- Written: $s \approx t$.
- s left hand side, t right hand side.

▶ The reduction relation $\rightarrow_E \subseteq T(\mathcal{F}, \mathcal{V}) \times T(\mathcal{F}, \mathcal{V})$:

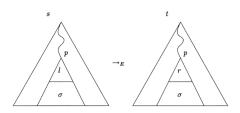
$$s \to_E t$$
 iff
$$\text{there exist } (l,r) \in E, \ p \in \mathcal{P}os(s), \ \sigma \in \mathcal{S}ub$$
 such that $s|_p = \sigma(l)$ and $t = s[\sigma(r)]_p$

▶ Sometimes written $s \to_E^p t$.

▶ The reduction relation $\rightarrow_E \subseteq T(\mathcal{F}, \mathcal{V}) \times T(\mathcal{F}, \mathcal{V})$:

$$s \to_E t$$
 iff
$$\text{there exist } (l,r) \in E, \, p \in \mathcal{P}os(s), \, \sigma \in \mathcal{S}ub$$
 such that $s|_p = \sigma(l)$ and $t = s[\sigma(r)]_p$

▶ Sometimes written $s \to_E^p t$.



- ullet Let G be the set of identities consisting of
 - (1) $f(x, f(y, z)) \approx f(f(x, y), z)$
 - (2) $f(e,x) \approx x$
 - (3) $f(i(x),x) \approx e$

- Let G be the set of identities consisting of
 - (1) $f(x, f(y, z)) \approx f(f(x, y), z)$
 - (2) $f(e,x) \approx x$
 - (3) $f(i(x),x) \approx e$
- Then

- Let G be the set of identities consisting of
 - (1) $f(x, f(y, z)) \approx f(f(x, y), z)$
 - (2) $f(e,x) \approx x$
 - (3) $f(i(x),x) \approx e$
- Then

$$f(i(e), f(e, e))$$

$$\rightarrow_G^{\epsilon} f(f(i(e), e), e) \quad [(1), \ \sigma_1 = \{x \mapsto i(e), y \mapsto e, z \mapsto e\}]$$

- Let G be the set of identities consisting of
 - (1) $f(x, f(y, z)) \approx f(f(x, y), z)$
 - (2) $f(e,x) \approx x$
 - (3) $f(i(x),x) \approx e$
- Then

$$f(i(e), f(e, e))$$

$$\rightarrow_{G}^{\epsilon} f(f(i(e), e), e) \quad [(1), \ \sigma_{1} = \{x \mapsto i(e), y \mapsto e, z \mapsto e\}]$$

$$\rightarrow_{G}^{1} f(e, e) \quad [(3), \ \sigma_{2} = \{x \mapsto e\}]$$

Identities

Example 2.2

- Let G be the set of identities consisting of
 - (1) $f(x, f(y, z)) \approx f(f(x, y), z)$
 - (2) $f(e,x) \approx x$
 - (3) $f(i(x),x) \approx e$
- Then

$$f(i(e), f(e, e))$$

$$\rightarrow_{G}^{\epsilon} f(f(i(e), e), e) \quad [(1), \sigma_{1} = \{x \mapsto i(e), y \mapsto e, z \mapsto e\}]$$

$$\rightarrow_{G}^{1} f(e, e) \quad [(3), \sigma_{2} = \{x \mapsto e\}]$$

$$\rightarrow_{G}^{\epsilon} e \quad [(2), \sigma_{3} = \{x \mapsto e\}]$$

Identities

- $\overset{*}{\rightarrow}_E$: Reflexive transitive closure of \rightarrow_E .
- $\stackrel{*}{\leftrightarrow}_E$: Reflexive transitive symmetric closure of \rightarrow_E .
- ▶ An important problem of equational reasoning: Design decision procedures for $\stackrel{*}{\leftrightarrow}_E$.

Characterizations of $\stackrel{*}{\leftrightarrow}_E$

- Syntactic characterization
- Semantic characterization.

 \equiv : A binary relation on $T(\mathcal{F}, \mathcal{V})$.

► \equiv is closed under substitutions iff $s \equiv t$ implies $\sigma(s) \equiv \sigma(t)$ for all s, t, σ .

 \equiv : A binary relation on $T(\mathcal{F}, \mathcal{V})$.

- ► ≡ is closed under substitutions iff $s \equiv t$ implies $\sigma(s) \equiv \sigma(t)$ for all s, t, σ .
- ▶ \equiv is closed under \mathcal{F} -operations iff $s_1 \equiv t_1, \ldots, s_n \equiv t_n$ imply $f(s_1, \ldots, s_n) \equiv f(t_1, \ldots, t_n)$ for all $s_1, \ldots, s_n, t_1, \ldots, s_n$, $n \geq 0$, $f \in \mathcal{F}^n$.

\equiv : A binary relation on $T(\mathcal{F}, \mathcal{V})$.

- ► ≡ is closed under substitutions iff $s \equiv t$ implies $\sigma(s) \equiv \sigma(t)$ for all s, t, σ .
- ▶ ≡ is closed under \mathcal{F} -operations iff $s_1 \equiv t_1, \ldots, s_n \equiv t_n \text{ imply } f(s_1, \ldots, s_n) \equiv f(t_1, \ldots, t_n)$ for all $s_1, \ldots, s_n, t_1, \ldots, s_n, n \geq 0, f \in \mathcal{F}^n$.
- ▶ ≡ is compatible with \mathcal{F} -operations iff $s \equiv t$ implies $f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n) \equiv f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)$ for all $s_1, \ldots, s_{i-1}, s, t, s_{i+1}, \ldots, s_n \in T(\mathcal{F}, \mathcal{V}), n \geq 0, f \in \mathcal{F}^n$.

- \equiv : A binary relation on $T(\mathcal{F}, \mathcal{V})$.
 - ► ≡ is closed under substitutions iff $s \equiv t$ implies $\sigma(s) \equiv \sigma(t)$ for all s, t, σ .
 - ▶ ≡ is closed under \mathcal{F} -operations iff $s_1 \equiv t_1, \dots, s_n \equiv t_n$ imply $f(s_1, \dots, s_n) \equiv f(t_1, \dots, t_n)$ for all $s_1, \dots, s_n, t_1, \dots, s_n, n \geq 0, f \in \mathcal{F}^n$.
 - ▶ ≡ is compatible with \mathcal{F} -operations iff $s \equiv t$ implies $f(s_1, \ldots, s_{i-1}, s, s_{i+1}, \ldots, s_n) \equiv f(s_1, \ldots, s_{i-1}, t, s_{i+1}, \ldots, s_n)$ for all $s_1, \ldots, s_{i-1}, s, t, s_{i+1}, \ldots, s_n \in T(\mathcal{F}, \mathcal{V}), n \geq 0, f \in \mathcal{F}^n$.
 - ▶ \equiv is compatible with \mathcal{F} -contexts iff $s \equiv t$ implies $r[s]_p \equiv r[t]_p$ for all \mathcal{F} -terms r and positions $p \in \mathcal{P}os(t)$.

Lemma 2.1

Let E be a set of \mathcal{F} -identities. Then \rightarrow_E is closed under substitutions and compatible with \mathcal{F} -operations.

Proof.

Follows from the definition of \rightarrow_E .

Lemma 2.1

Let E be a set of \mathcal{F} -identities. Then \rightarrow_E is closed under substitutions and compatible with \mathcal{F} -operations.

Proof.

Follows from the definition of \rightarrow_E .

Lemma 2.2

Let \equiv be a binary relation on $T(\mathcal{F}, \mathcal{V})$. Then \equiv is compatible with \mathcal{F} -operations iff it is compatible with \mathcal{F} -contexts.

Proof.

The (\Rightarrow) direction can be proved by induction on the length of the position p in the context. The (\Leftarrow) direction is obvious.

Lemma 2.3

Let \equiv be a binary relation on $T(\mathcal{F},\mathcal{V})$. If \equiv is reflexive and transitive, then it is compatible with \mathcal{F} -operations iff it is closed under \mathcal{F} -operations.

Lemma 2.3

Let \equiv be a binary relation on $T(\mathcal{F}, \mathcal{V})$. If \equiv is reflexive and transitive, then it is compatible with \mathcal{F} -operations iff it is closed under \mathcal{F} -operations.

Proof.

(⇒) Assume $s_i \equiv t_i$ for all $1 \le i \le n$. By compatibility we have

$$f(s_1, s_2, \dots, s_n) \approx f(t_1, s_2, \dots, s_n)$$

$$f(t_1, s_2, \dots, s_n) \approx f(t_1, t_2, \dots, s_n)$$

$$\dots$$

$$f(t_1, t_2, \dots, s_n) \approx f(t_1, t_2, \dots, t_n)$$

Transitivity of \equiv implies $f(s_1, \ldots, s_n) \approx f(t_1, \ldots, t_n)$.

(⇒) Using reflexivity of ≡.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof.

 $\stackrel{*}{\leftrightarrow}_E$ is an equivalence relation by definition.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof.

 $\stackrel{*}{\leftrightarrow}_E$ is an equivalence relation by definition.

(a) Obvious.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(b) Assume $s \overset{*}{\leftrightarrow}_E t$. Prove $\sigma(s) \overset{*}{\leftrightarrow}_E \sigma(t)$ for a σ by induction on the length of $\overset{*}{\leftrightarrow}_E$ chain.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(b) Assume $s \overset{*}{\leftrightarrow}_E t$. Prove $\sigma(s) \overset{*}{\leftrightarrow}_E \sigma(t)$ for a σ by induction on the length of $\overset{*}{\leftrightarrow}_E$ chain. IB s = t: Obvious.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(b) Assume $s \overset{*}{\leftrightarrow}_E t$. Prove $\sigma(s) \overset{*}{\leftrightarrow}_E \sigma(t)$ for a σ by induction on the length of $\overset{*}{\leftrightarrow}_E$ chain. IB s = t: Obvious. IH for $s \overset{*}{\leftrightarrow}_E t$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(b) Assume $s \overset{*}{\leftrightarrow}_E t$. Prove $\sigma(s) \overset{*}{\leftrightarrow}_E \sigma(t)$ for a σ by induction on the length of $\overset{*}{\leftrightarrow}_E$ chain. IB s = t: Obvious. IH for $s \overset{*}{\leftrightarrow}_E t$. IS: Let $s \overset{*}{\leftrightarrow}_E t \leftrightarrow_E t'$. By case distinction on \leftrightarrow_E .

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

- (b) Assume $s \overset{*}{\leftrightarrow}_E t$. Prove $\sigma(s) \overset{*}{\leftrightarrow}_E \sigma(t)$ for a σ by induction on the length of $\overset{*}{\leftrightarrow}_E$ chain. IB s = t: Obvious. IH for $s \overset{*}{\leftrightarrow}_E t$. IS: Let $s \overset{*}{\leftrightarrow}_E t \leftrightarrow_E t'$. By case distinction on \leftrightarrow_E .
 - ► $t \to_E t'$: By IH: $\sigma(s) \overset{*}{\leftrightarrow}_E \sigma(t)$. $t \to_E t' \Rightarrow \sigma(t) \to_E \sigma(t') \Rightarrow \sigma(t) \overset{*}{\leftrightarrow}_E \sigma(t')$. By transitivity of $\overset{*}{\leftrightarrow}_E$: $\sigma(s) \overset{*}{\leftrightarrow}_E \sigma(t')$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(b) Assume $s \overset{*}{\leftrightarrow}_E t$. Prove $\sigma(s) \overset{*}{\leftrightarrow}_E \sigma(t)$ for a σ by induction on the length of $\overset{*}{\leftrightarrow}_E$ chain. IB s = t: Obvious. IH for $s \overset{*}{\leftrightarrow}_E t$. IS: Let $s \overset{*}{\leftrightarrow}_E t \leftrightarrow_E t'$. By case distinction on \leftrightarrow_E .

 $t \to_E t' : \text{By IH: } \sigma(s) \overset{\star}{\leftrightarrow}_E \sigma(t).$

$$t \to_E t' \Rightarrow \sigma(t) \to_E \sigma(t') \Rightarrow \sigma(t) \stackrel{*}{\leftrightarrow}_E \sigma(t').$$

By transitivity of $\stackrel{*}{\leftrightarrow}_E$: $\sigma(s) \stackrel{*}{\leftrightarrow}_E \sigma(t')$.

• $t' \rightarrow_E t$. Similar to the previous item.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

(c) $\stackrel{*}{\leftrightarrow}_E$ is reflexive and transitive and compatible with \mathcal{F} -operations (because \rightarrow_E is).

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

- (c) $\stackrel{*}{\leftrightarrow}_E$ is reflexive and transitive and compatible with \mathcal{F} -operations (because \rightarrow_E is).
 - ▶ By Lemma 2.3, $\stackrel{*}{\leftrightarrow}_E$ is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

Prove that $\stackrel{*}{\leftrightarrow}_E$ is the smallest such relation. Take another equivalence relation \equiv on $T(\mathcal{F},\mathcal{V})$ which satisfies (a), (b), (c). Prove that $\stackrel{*}{\leftrightarrow}_E \subseteq \equiv$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

Prove that $\stackrel{*}{\leftrightarrow}_E$ is the smallest such relation. Take another equivalence relation \equiv on $T(\mathcal{F},\mathcal{V})$ which satisfies (a), (b), (c). Prove that $\stackrel{*}{\leftrightarrow}_E \subseteq \equiv$.

▶ First, prove $\rightarrow_E \subseteq \equiv$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

Prove that $\stackrel{*}{\leftrightarrow}_E$ is the smallest such relation. Take another equivalence relation \equiv on $T(\mathcal{F},\mathcal{V})$ which satisfies (a), (b), (c). Prove that $\stackrel{*}{\leftrightarrow}_E \subseteq \equiv$.

- ▶ First, prove $\rightarrow_E \subseteq \equiv$.
- ▶ Let $s \to_E t$. It implies that there exist $(l, r) \in E$, $p \in \mathcal{P}os(E)$, and σ such that $s|_p = \sigma(l)$, $t = s[\sigma(r)]_p$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

•
$$E \subseteq \exists \Rightarrow l \equiv r \Rightarrow \sigma(l) \equiv \sigma(r)$$
.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

- $E \subseteq \exists \Rightarrow l \equiv r \Rightarrow \sigma(l) \equiv \sigma(r)$.
- ▶ \equiv is reflexive and closed under \mathcal{F} -operations. By Lemma 2.3, \equiv is compatible with \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Cont.)

▶ By Lemma 2.2, \equiv is compatible with contexts: $\sigma(l) \equiv \sigma(r)$ implies $u[\sigma(l)_p \equiv u[\sigma(r)]_p$ for all $u, p \in \mathcal{P}os(u), \sigma$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

- ▶ By Lemma 2.2, \equiv is compatible with contexts: $\sigma(l) \equiv \sigma(r)$ implies $u[\sigma(l)_p \equiv u[\sigma(r)]_p$ for all $u, p \in \mathcal{P}os(u), \sigma$.
- ▶ In particular, $s = s[\sigma(l)]_p \equiv t[\sigma(r)]_p = t$.

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

- ▶ By Lemma 2.2, \equiv is compatible with contexts: $\sigma(l) \equiv \sigma(r)$ implies $u[\sigma(l)_p \equiv u[\sigma(r)]_p$ for all $u, p \in \mathcal{P}os(u), \sigma$.
- ▶ In particular, $s = s[\sigma(l)]_p \equiv t[\sigma(r)]_p = t$.
- ▶ Hence, $s \equiv t$ and $\rightarrow_E \subseteq \equiv$.

Syntactic characterization of $\stackrel{*}{\leftrightarrow}_E$

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Syntactic characterization of $\stackrel{*}{\leftrightarrow}_E$

Theorem 2.1

Let E be a set of identities. $\stackrel{*}{\leftrightarrow}_E$ is the smallest equivalence relation on $T(\mathcal{F},\mathcal{V})$ that

- (a) contains E,
- (b) is closed under substitutions, and
- (c) is closed under \mathcal{F} -operations.

Proof (Finished).

▶ $\rightarrow_E \subseteq \exists$ implies $\stackrel{*}{\leftrightarrow} \subseteq \exists$, because, by definition, $\stackrel{*}{\leftrightarrow}$ is the smallest equivalence relation containing \rightarrow_E .

Equational Logic

Inference rules:

$$\frac{s \approx t \in E}{F \vdash s \approx t}$$

$$\frac{E \vdash s \approx t}{E \vdash t \approx s} \qquad \frac{E \vdash s \approx t}{E \vdash t \approx r}$$

$$\frac{E \vdash s \approx t}{E \vdash s \approx t} \qquad \frac{E \vdash s \approx t}{E \vdash s \approx r}$$

$$\frac{E \vdash s \approx t}{E \vdash \sigma(s) \approx \sigma(t)} \qquad \frac{E \vdash s_1 \approx t_1 \quad \dots \quad E \vdash s_n \approx t_n}{E \vdash f(s_1, \dots, s_n) \approx f(t_1, \dots, t_n)}$$

 $E \vdash s \approx t$: $s \approx t$ is a syntactic consequence of E, or $s \approx t$ is provable from E.

Equational Logic

Example 2.3

- Let $E = \{a \approx b, f(x) \approx g(x)\}.$
- ▶ Prove $E \vdash g(b) \approx f(a)$.

Proof:

$$\frac{E \vdash a \approx b}{E \vdash f(a) \approx f(b)} \text{ (Func. closure)} \qquad \frac{E \vdash f(x) \approx g(x)}{E \vdash f(b) \approx g(b)} \text{ (Subst. inst.)} \\ \frac{E \vdash f(a) \approx g(b)}{E \vdash g(b) \approx f(a)} \text{ (Symmetry)}$$

Equational Logic

Example 2.3

- Let $E = \{a \approx b, f(x) \approx g(x)\}.$
- ▶ Prove $E \vdash g(b) \approx f(a)$.

Proof:

$$\frac{E \vdash a \approx b}{E \vdash f(a) \approx f(b)} \text{ (Func. closure)} \qquad \frac{E \vdash f(x) \approx g(x)}{E \vdash f(b) \approx g(b)} \text{ (Subst. inst.)}$$

$$\frac{E \vdash f(a) \approx g(b)}{E \vdash g(b) \approx f(a)} \text{ (Symmetry)}$$

Compare with the derivation of $g(b) \stackrel{*}{\leftrightarrow}_E f(a)$:

$$g(b) \leftrightarrow_E g(a) \leftrightarrow_E f(a)$$

Convertibility and Syntactic Consequence

Theorem 2.2 (Logicality)

For all E, s, t,

 $s \stackrel{*}{\leftrightarrow}_E t$ iff $E \vdash s \approx t$.

Proof.

Follows from Theorem 2.1.

Convertibility and Syntactic Consequence

Differences in behavior:

- 1. The rewriting approach $\stackrel{*}{\leftrightarrow}_E$ allows the replacement of a subterm at an arbitrary position in a single step; The inference rule approach $E \vdash$ needs to simulate this with a sequence of small steps.
- 2. The inference rule approach allows the simultaneous replacement in each argument of an operation; The rewriting approach needs to simulate this by a number of replacement steps in sequence.

Syntax

Semantics

Semantic Algebras

- \mathcal{F} -algebra $\mathcal{A} = (A, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}}).$
- ightharpoonup A is a nonempty set, the carrier.
- $f_A: A^n \to A$ is an interpretation for $f \in \mathcal{F}^n$.

Semantic Algebras

- \mathcal{F} -algebra $\mathcal{A} = (A, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}}).$
- A is a nonempty set, the carrier.
- $f_A: A^n \to A$ is an interpretation for $f \in \mathcal{F}^n$.

Example 2.4

Two $\{0, s, +\}$ -algebras:

$$\mathcal{A} = (\mathbb{N}, \{0_{\mathcal{A}}, s_{\mathcal{A}}, +_{\mathcal{A}}\}) \text{ with } 0_{\mathcal{A}} = 0, \ s_{\mathcal{A}}(x) = x + 1, \ +_{\mathcal{A}}(x, y) = x + y.$$

$$\mathcal{B} = (\mathbb{N}, \{0_{\mathcal{B}}, s_{\mathcal{B}}, +_{\mathcal{B}}\})$$
 with $0_{\mathcal{B}} = 1$, $s_{\mathcal{B}}(x) = x + 1$, $+_{\mathcal{B}}(x, y) = 2x + y$.

Variable Assignment, Interpretation Function

- ▶ Variable assignment: $\alpha: \mathcal{V} \to A$
- ▶ Interpretation function: $[\alpha]_{\mathcal{A}}(\cdot): T(\mathcal{F}, \mathcal{V}) \to A$

$$[\alpha]_{\mathcal{A}}(t) = \begin{cases} \alpha(t) & \text{if } t \in \mathcal{V} \\ f_{\mathcal{A}}([\alpha]_{\mathcal{A}}(t_1), \dots, [\alpha]_{\mathcal{A}}(t_n)) & \text{if } t = f(t_1, \dots, f_n) \end{cases}$$

Variable Assignment, Interpretation Function

- ▶ Variable assignment: $\alpha: \mathcal{V} \to A$
- ▶ Interpretation function: $[\alpha]_{\mathcal{A}}(\cdot): T(\mathcal{F}, \mathcal{V}) \to A$

$$[\alpha]_{\mathcal{A}}(t) = \begin{cases} \alpha(t) & \text{if } t \in \mathcal{V} \\ f_{\mathcal{A}}([\alpha]_{\mathcal{A}}(t_1), \dots, [\alpha]_{\mathcal{A}}(t_n)) & \text{if } t = f(t_1, \dots, f_n) \end{cases}$$

$$\mathcal{A} = (\mathbb{N}, \{0_{\mathcal{A}}, s_{\mathcal{A}}, +_{\mathcal{A}}\}) \text{ with } 0_{\mathcal{A}} = 0, s_{\mathcal{A}}(x) = x+1, +_{\mathcal{A}}(x, y) = x+y.$$

$$\mathcal{B} = (\mathbb{N}, \{0_{\mathcal{B}}, s_{\mathcal{B}}, +_{\mathcal{B}}\}) \text{ with } 0_{\mathcal{B}} = 1, s_{\mathcal{B}}(x) = x + 1, +_{\mathcal{B}}(x, y) = 2x + y.$$

$$t = s(s(x)) + s(x + y), \ \alpha(x) = 2, \ \alpha(y) = 3, \ \beta(x) = 1, \ \beta(y) = 4.$$

$$[\alpha]_{\mathcal{A}}(t) = 10 \qquad [\beta]_{\mathcal{A}}(t) = 9$$
$$[\alpha]_{\mathcal{B}}(t) = 15 \qquad [\beta]_{\mathcal{B}}(t) = 12$$

Validity, Models

▶ An equation $s \approx t$ is valid in algebra A, written $A \vDash s \approx t$, iff

$$[\alpha]_{\mathcal{A}}(s) = [\alpha]_{\mathcal{A}}(t)$$

for all assignments α .

▶ An \mathcal{F} -algebra \mathcal{A} is a model of the set of identities E over $T(\mathcal{F}, \mathcal{V})$ iff $\mathcal{A} \vDash s \approx t$ for all $s \approx t \in E$.

Validity, Models

▶ An equation $s \approx t$ is valid in algebra A, written $A \vDash s \approx t$, iff

$$[\alpha]_{\mathcal{A}}(s) = [\alpha]_{\mathcal{A}}(t)$$

for all assignments α .

• An \mathcal{F} -algebra \mathcal{A} is a model of the set of identities E over $T(\mathcal{F}, \mathcal{V})$ iff $\mathcal{A} \vDash s \approx t$ for all $s \approx t \in E$.

Example 2.6

$$\mathcal{A} = (\mathbb{N}, \{0_{\mathcal{A}}, s_{\mathcal{A}}, +_{\mathcal{A}}\}) \text{ with } 0_{\mathcal{A}} = 0, \ s_{\mathcal{A}}(x) = x + 1, \ +_{\mathcal{A}}(x, y) = x + y.$$

$$\mathcal{B} = (\mathbb{N}, \{0_{\mathcal{B}}, s_{\mathcal{B}}, +_{\mathcal{B}}\}) \text{ with } 0_{\mathcal{B}} = 1, \ s_{\mathcal{B}}(x) = x+1, \ +_{\mathcal{B}}(x,y) = 2x+y.$$

$$E = \{0 + y \approx y, s(x) + y \approx s(x+y)\}.$$

 \mathcal{A} is a model of E, while \mathcal{B} is not.

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of E.
- $E \vDash s \approx t$: $s \approx t$ is a semantic consequence of E.
- ▶ Equational theory of *E*:

$$\approx_E := \{(s,t) \mid s,t \in T(\mathcal{F},\mathcal{V}), \ E \vDash s \approx t\}$$

▶ Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of E.
- $E \vDash s \approx t$: $s \approx t$ is a semantic consequence of E.
- ▶ Equational theory of *E*:

$$\approx_E := \{(s,t) \mid s,t \in T(\mathcal{F},\mathcal{V}), \ E \vDash s \approx t\}$$

▶ Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

Example 2.7

• $E = \{0 + y \approx y, s(x) + y \approx s(x + y)\}.$

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of E.
- $E \models s \approx t$: $s \approx t$ is a semantic consequence of E.
- Equational theory of *E*:

$$\approx_E := \{(s,t) \mid s,t \in T(\mathcal{F},\mathcal{V}), \ E \vDash s \approx t\}$$

▶ Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

- $E = \{0 + y \approx y, s(x) + y \approx s(x + y)\}.$
- $E \models s(s(0) + s(0)) \approx s(s(s(0))).$

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of E.
- $E \vDash s \approx t$: $s \approx t$ is a semantic consequence of E.
- Equational theory of *E*:

$$\approx_E := \{(s,t) \mid s,t \in T(\mathcal{F},\mathcal{V}), \ E \vDash s \approx t\}$$

▶ Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

- $E = \{0 + y \approx y, s(x) + y \approx s(x + y)\}.$
- $E \models s(s(0) + s(0)) \approx s(s(s(0))).$
- $E \not\models x + y \approx y + x.$

- $E \vDash s \approx t$ iff $s \approx t$ is valid in all models of E.
- $E \vDash s \approx t$: $s \approx t$ is a semantic consequence of E.
- ▶ Equational theory of *E*:

$$\approx_E := \{(s,t) \mid s,t \in T(\mathcal{F},\mathcal{V}), \ E \vDash s \approx t\}$$

▶ Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

- $E = \{0 + y \approx y, s(x) + y \approx s(x + y)\}.$
- $E \models s(s(0) + s(0)) \approx s(s(s(0))).$
- $E \not\models x + y \approx y + x.$
- Model $C = (\mathbb{N}, \{0_C, s_C, +_C\})$ with $0_C = 0$, $s_C(x) = x$, $+_C(x, y) = y$.

Relating Syntax and Semantics

Theorem 2.3 (Birkhoff)

Equational logic is sound and complete:

For all $E, s, t, E \vdash s \approx t$ iff $E \vDash s \approx t$.

Relating Syntax and Semantics

Theorem 2.3 (Birkhoff)

Equational logic is sound and complete:

For all
$$E, s, t, E \vdash s \approx t$$
 iff $E \vDash s \approx t$.

Corollary 2.1

For all E, s, t,

$$s \overset{*}{\leftrightarrow}_E t$$
 iff $E \vdash s \approx t$ iff $E \vDash s \approx t$.

Validity and Satisfiability

Validity and Satisfiability

Validity problem:

Given: A set of identities E and terms s and t.

Decide: $s \approx_E t$.

Validity and Satisfiability

Validity problem:

Given: A set of identities E and terms s and t.

Decide: $s \approx_E t$.

Satisfiability problem:

Given: A set of identities E and terms s and t. Find: A substitution σ such that $\sigma(s) \approx_E \sigma(t)$.

