Rewriting in Computer Science and Logic
 (326.065, SS 2013)
 Exercises, Part 2

Temur Kutsia

Total points: 60.

Part 4. Termination

1. (4 points) Is the TRS consisting of the rewrite rules

$$
\begin{aligned}
d(0) & \rightarrow 0 \\
d(s(x)) & \rightarrow s(s(d(x)))
\end{aligned}
$$

terminating?
2. (4 points) Prove or disprove termination of the following TRSs over the signature $\mathcal{F}=\{f, a, b\}$ using the decision procedure for right-ground TRSs:
(a)

$$
\begin{aligned}
f(f(x, y), z) & \rightarrow f(a, f(a, b)) \\
f(a, f(x, x)) & \rightarrow f(a, f(b, a)) \\
f(a, x) & \rightarrow a \\
f(x, b) & \rightarrow f(a, a) \\
f(b, a) & \rightarrow b
\end{aligned}
$$

(b)

$$
\begin{aligned}
f(a, f(a, x)) & \rightarrow f(a, a) \\
f(x, f(a, f(x, a))) & \rightarrow f(a, f(a, f(a, f(a, b))))
\end{aligned}
$$

3. (4 points) Use the polynomial interpretation \mathcal{A} with $A:=\mathbb{N} \backslash\{0,1,2\}$ and $P_{f}:=X^{2}+X Y$ to show that the TRS

$$
\{f(f(x, y), z) \rightarrow f(x, f(y, z)), \quad f(y, f(x, z)) \rightarrow f(x, x)\}
$$

is terminating.
4. (4 points) Use LPO to show termination of the following TRS:

$$
\{f(g(g(x)), y) \rightarrow f(g(x), f(x, y)), \quad f(g(x), g(y)) \rightarrow f(f(x, x), f(y, y))\}
$$

5. (6 points) Given the TRS
$R:=\{f(x) \odot f(y) \rightarrow f(x \odot y), f(x) \odot(f(y) \odot z) \rightarrow f(x \odot y) \odot z, \quad(x \odot y) \odot z \rightarrow x \odot(y \odot z)\}$.
(a) Show termination of R using a polynomial interpretation.
(b) Prove that termination of R can not be shown by LPO.

Part 5. Confluence

1. (5 points) Prove that the following TRSs are not convergent:

$$
\begin{aligned}
R_{1}:= & \{f(f(x, y), z) \rightarrow f(x, f(y, z)), \quad f(x, y) \rightarrow f(y, x)\} \\
R_{2}:= & \{g(0) \rightarrow 0, \quad g(s(x)) \rightarrow x, \quad g(s(s(x))) \rightarrow s(g(x))\} \\
R_{3}:= & \{\operatorname{plus}(\operatorname{plus}(x, y), z) \rightarrow \operatorname{plus}(x, \operatorname{plus}(y, z)), \quad \operatorname{plus}(x, 0) \rightarrow x, \\
& p l u s(x, s(y)) \rightarrow s(\operatorname{plus}(x, y))\}
\end{aligned}
$$

2. (5 points) Prove that the following TRS is convergent:

$$
\{\operatorname{minus}(x, 0) \rightarrow x, \quad \operatorname{minus}(0, y) \rightarrow 0, \quad \operatorname{minus}(s(x), s(y)) \rightarrow \operatorname{minus}(x, y)\}
$$

3. (6 points) Is the TRS system

$$
\{f(x, y) \rightarrow f(y, x), \quad f(f(x, y), z) \rightarrow f(x, f(y, z))\}
$$

confluent?
4. (6 points) Consider the following TRS:

$$
\begin{aligned}
& x+0 \rightarrow x \quad x-s(y) \rightarrow p(x-y) \\
& x-0 \rightarrow x \quad p(s(x)) \rightarrow x \\
& x+s(y) \rightarrow s(x+y) \quad s(p(x)) \rightarrow x
\end{aligned}
$$

and LPO with the precedence $+>s$ and $->p$. Compute all critical pairs and indicate which of them converge.

Part 6. Completion

1. (4 points) Use the basic completion procedure to complete the TRS

$$
\begin{aligned}
& \text { element }(\operatorname{cons}(x, x s)) \rightarrow x \\
& \text { element }(\operatorname{cons}(x, x s)) \rightarrow \operatorname{element}(x s) .
\end{aligned}
$$

For reduction order use LPO with the precedence member $>$ cons.
2. (6 points) Use the basic completion algorithm to complete the TRS

$$
\begin{aligned}
f(f(x)) & \rightarrow h(x) \\
f(g(x)) & \rightarrow f(x) \\
f(x) & \rightarrow g(x)
\end{aligned}
$$

For reduction order use LPO with the precedence $f>g>h$.
3. (6 points) Use the improved completion procedure to complete the set of identities

$$
\begin{aligned}
f(f(x)) & \approx h(x) \\
f(g(x)) & \approx f(x) \\
f(x) & \approx g(x)
\end{aligned}
$$

For reduction order use LPO with the precedence $f>g>h$. Show every step of the derivation, indicating the applied transformation rule.

