Rewriting in Computer Science and Logic
 (326.065, SS 2013)
 Exercises, Part 1

Temur Kutsia

Total points: 100 .

Part 1. Abstract Reduction

1. (5 points) Find a proof or bring a counterexample:
(a) The reflexive closure of the transitive closure is the same as the transitive closure of the reflexive closure.
(b) $(\stackrel{+}{\leftrightarrow})=(\xrightarrow{+}) \cup(\xrightarrow{+})^{-1}$.
2. (5 points) Give an example of $\operatorname{ARS}(A, \rightarrow)$ such that there exists an element $a \in A$ with the following properties:

- a has a normal form.
- a has at most one normal form.
- There exist reductions starting from a which do not converge.

3. (5 points) Give a counterexample to the proposition obtained from Newman's Lemma by dropping the requirement on \rightarrow to be terminating.

Part 2. Syntax and Semantics

1. (4 points) Let \mathcal{F} be the signature consisting of the nullary symbol 0 , the unary symbol s, and the binary symbols $a d d$ and mult. Consider the term t :

$$
\begin{gathered}
t=\operatorname{add}(\operatorname{mult}(\operatorname{add}(s(0), s(\operatorname{mult}(s(s(0)), s(s(s(0)))))), \\
s(s(a d d(s(0), s(s(0)))))) \\
\operatorname{add}(0, s(0)))
\end{gathered}
$$

(a) Picture the term as a tree.
(b) What is $\mathcal{P o s}(t)$?
(c) What is $|t|$ (the size of t)?
(d) Give all subterms of t.
(e) What are the positions of function symbols?
(f) Which terms are denoted by the following expressions?
i. $\left.t\right|_{112}$
ii. $\left.t\right|_{221}$
iii. $t[s(0)]_{111}$
iv. $t[s(0)]_{\epsilon}$
v. $t[\operatorname{add}(s(0), 0)]_{11}$
2. (4 points, Ex. 3.1 from the book, [BN3.1]) Let \mathcal{F} be the signature consisting of the binary function symbol f. Let t be a term from $T(\mathcal{F}, \mathcal{V})$. What are the possible shapes of positions of t ?
3. (6 points) Give an example of a binary relation on $T(\mathcal{F}, \mathcal{V})$, which is compatible with \mathcal{F}-operations but is not closed under substitutions.
4. (6 points) Give an example of a binary relation on $T(\mathcal{F}, \mathcal{V})$, which is closed under \mathcal{F}-operations but is not compatible with \mathcal{F}-operations.
5. (4 points) Let $\mathcal{F}=\{0, s, a d d$, mult $\}$, where 0 is a constant, s is unary, and add and mult are binary. Let σ be a $T(\mathcal{F}, \mathcal{V})$-substitution $\{x \mapsto s(y), y \mapsto$ $\operatorname{add}(s(0), s(s(0))), z \mapsto 0\}$. Compute $\sigma(t)$ for the following terms t :
(a) x.
(b) $\operatorname{add}(x, \operatorname{add}(y, \operatorname{add}(z, s(0))))$.
(c) $\operatorname{mult}(z, s(x))$.
(d) $\operatorname{add}(s(x), \operatorname{mult}(x, s(y))$.
(e) $\operatorname{mult}(s(u), a d d(u, x))$.
6. (8 points) Consider the set of identities

$$
E=\{f(x) \approx x, f(f(a)) \approx g(x, x), g(x, f(x)) \approx b\} .
$$

Which of the following statements is correct? Justify your answer.
(a) $E \vdash a \approx b$.
(b) $E \vdash g(x, y) \approx g(y, x)$.
(c) $E \vdash g(f(a), a) \approx f(b)$.
7. (8 points) Consider the set of identities which give an equational specification of groups:

$$
E=\{x *(y * z) \approx(x * y) * z, x * e \approx x, x * i(x) \approx e\}
$$

Show that
(a) $x \stackrel{*}{\leftrightarrow}_{E} e \neq x$.
(b) $f(i(a), i(b)) \stackrel{*}{\leftrightarrow} E i(f(b, a))$.
(c) $E \vdash e \approx i(x) * x$.
(d) $E \vdash i(i(i(x)) *(x * i(x * e))) \approx i(i(i(i(i(x)))))$
8. (8 points, Ex. 3.7 from the book, [BN3.7]) Consider the set of identities:

$$
E=\{f(x, f(y, z)) \approx f(f(x, y), z), f(f(x, y), x) \approx x\}
$$

Show that $f(f(x, y), z) \stackrel{*}{\leftrightarrow} E f(x, z)$. Show also the corresponding derivation $E \vdash f(f(x, y), x) \approx x$.
9. (9 points) Consider the set of $\{0, s, a d d\}$-identities which give an equational specification of addition over natural numbers:

$$
E=\{\operatorname{add}(0, x) \approx x, \operatorname{add}(s(x), y) \approx s(\operatorname{add}(x, y))\} .
$$

Show that $E \not \neq \operatorname{add}(x, y) \approx \operatorname{add}(y, x)$ (i.e., construct a model of E in which $a d d$ is not commutative).

Part 3. Equational Problems

1. (4 points) Consider the following convergent TRS:

$$
R=\{f(f(x)) \rightarrow x, g(x) \rightarrow x\}
$$

Show that $f(f(f(g(f(f(f(g(f(g(x)))))))))) \approx_{R} f(g(f(g(f(x)))))$.
2. (7 points) Let $\mathcal{F}=\{i, j, k, l, m, f, g\}$, where i, j, k, l, m are constants and f and g are unary function symbols. Let G be the set of ground \mathcal{F}-identities:

$$
G=\{i \approx j, k \approx l, f(i) \approx g(k), j \approx f(j), m \approx g(l)\}
$$

Using the congruence closure algorithm discussed in the lecture, prove that $f(m) \approx_{G} g(k)$.
3. (7 points) Let $\mathcal{F}=\{a, b, c, d, f\}$, where a, b, c, d are constants and f is a unary function symbol. Let G be the set of ground \mathcal{F}-identities:

$$
G=\{a \approx c, d \approx f(f(c)), f(c) \approx f(f(f(b))), f(b) \approx a\}
$$

(a) Show via $\stackrel{*}{\leftrightarrow} G$ that $d \approx_{G} f(c)$ holds.
(b) Show via congruence closure that $d \approx_{G} f(c)$ holds.
4. (5 points) Let $\mathcal{F}=\{a, f\}$, where a is a constant and f is a binary function symbol. Show the steps of the unification algorithm for the following $T(\mathcal{F}, \mathcal{V})$-terms s and $t:$
(a) $s=f(y, z), t=f(a, x)$
(b) $s=f(x, a), t=f(a, x)$
(c) $s=f(y, y), t=f(a, x)$
(d) $s=f(x, y), t=f(f(x, y), a)$
5. (5 points) Show the steps of the matching algorithm for the terms s and t above, to match s to t.

