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Model Checking

@ An automated technique for formal software verification

@ Introduced in 1981 by Clarke and Emerson (USA) and Sifakis
(France)

@ Uses temporal logic to reason about the correctness of a
system

@ Works with finite-state concurrent system.
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Advantages of Model Checking

o Advantages over other formal methods:
e Requires minimal human intervention (and less experience)
o Applies to systems with realistic properties (concurrent
interactive/event-based systems)
o Not restricted to input-processing-output paradigm.
e Produces a counter-example, in case of failure.
@ Advantages over testing/simulation techniques:
e Testing cannot cover all the possible cases.
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Steps of Model Checking

Q@ Modeling
Converting the system to a formalism accepted by the model
checker. (Kripke Structure)
@ Specification
Specifying the desired properties in a formal language.
(Temporal Logic)
© Verification
Running the model checking algorithm.
Q Analysis
o If the result is yes, no analysis is required.

o If the result is no, counter-example needs to be analyzed to
discover the source of the bug.



Kripke Structure

A formalism for specifying the possible states of a system and their
transition relations.

Definition

A Kripke Structure M over a set of atomic propositions AP is a
4-tuple:
M =(S,50,R,L)
where:
© S is a finite set of states.
@ So C S is the set of starting states.
© R C S xS is a transition relation.

Q L:S — P(AP) is function that labels each state with the set
of propositions that are true in that state.

Alternative definition for L: S — (AP — {T,L1})



Kripke Structure Example

Define Kripke Structure My over the atomic propositions
AP = {P,Q, R} as follows:

Ml = <{517 S, 53}7 {51}7 R17 Ll)

where:
o R1 = {(s1,%),(s2,51), (s1,53), (52, 53), (53, 3) }

o L1 ={(s1 = {P,Q}), (2= {Q,R}),(s3 = {R})}




Definition (Path)

A path 7 in a Kripke Structure M = (S, Sp, R, L) is an infinite
sequence of states s, sl,... such that for each i > 0,
(S,',S,'+1) € R.

@ The notation 7' refers to the subsequence of 7 starting at s;
(i.e. si,Sit1,---)
o Kripke Structure unwinding
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Temporal Logics

Temporal logics: logics of time
Two major classes of temporal logics:

@ First-order: times are treated as first-order objects
E.g.: Situation Calculus, Interval Calculus
@ Modal: uses states or possible worlds

In model-checking, temporal modal logics are used to specify
the desirable properties of the system.

Commonly used TLs are CTL*, CTL, and LTL.
LTL is a linear-time logic

CTL and CTL* are branching-time logics



@ stands for " Computational Tree Logic*”

@ is a superset of LTL and CTL.
@ CTL* has 2 types of formulas:

@ Path formulas: specify properties of a given path.
@ State formulas: specify properties of a given state.



CTL* Path Operators

@ X f ("Next"): The property f holds in the next state of the
given path.

o Ff ("future”): The property f holds finally (eventually).

o Gf ("globally”): The property f holds globally (in all future
states of the path).

o fUg ("until"): Property f must hold until g holds. g is
required to become true eventually.

e fRg ("release”): Property g must hold up-to and including
the first state in which f holds. g is released by f.

o Examples: PU Q, PRQ.



CTL* Syntax

@ Given a set of atomic propositions AP,
@ the syntax of state formulas is defined as follows:

@ every proposition p € AP is a state formula. (Holds if p is true
in the given state)

@ If f and g are state formulas, then —f, f A g, f V g are state
formulas.

@ If fis a path formula, the Af and Ef are state formulas.

@ A and E are path quantifiers.
@ The syntax of path formulas is defined as follows:

@ If f is a state formula then f is also a path formula. (Holds if
f is true in the first state of the path)

@ If f and g are path formulas then —f, f AN g, fV g.

@ If f and g are path formulas then Xf, Ff, Gf, fUg, and
fRg.



CTL* Formal Semantics

o CTL* semantics are defined in terms of a Kripke structure.

e Given a Kripke structure M = (S, Sp, R, L), a state s in M
and a state formula f, the notation:

M,s = f

means that f in true in M at state s.
@ Given a path 7 through M, and a path formula g, the
notation:
M7 =g
means that g is true in M over path 7.

@ Also referred to as M, s models f, or M, s satisfies f.



CTL* Formal Semantics

Given a Kripke structure M = (5,50, R, L). Let p € AP be an
atomic proposition, f; and £ be state formulas, g1 and g» be path
formulas:

Q@ M,skEpiff pe L(s)

M,s = —fi iff M,s [~ f
M;sl=fAVhiff M;s=f or M,s E f.
M,;s = A Ahiff M;s = f and M,s = f,.

M, s |= Egy iff there is a path 7 starting at s such that
M,ﬂ' |: 81-

2]
o
o
o

©

M,s |= Ag iff for every path 7 starting at s, M, 7 = g1.



CTL* Formal Semantics

Given a Kripke structure M = (S, S0, R, L). Let p € AP be an
atomic proposition, f; and f, be state formulas, g1 and g» be path
formulas:

M, x |= f iff s is the first state in 7 and M,s = fi.

M, = —gp iff M, 7 = g1

MrEg Ve iff Mim = g1 or M, = go.

M,m =g Ag iff M7 = g1 and M, 7 = go.

M,ﬂ' ): Xg1 iff M,ﬂ‘l ):gl.

M, 7 |= F gy iff there exists a k > 0 such that M, 7% |= g;.
M,7 |= G gy iff for all k >0, M, 7% = g;.

M, 7 |= g1U g iff there exists a k > 0 such that M, ™ = &
and for all 0 < i < k, M, 7' |= g1.

M, |= g1R g iff for all j > 0, if for every i < j M, 7 = g1
then M, = g».

©00000O0CO0

©



CTL* Examples

Examples:
e M;s =EFp
e M,;s =AFp
e M,s =EEGp
e M;s =AGp



stands for " Linear-Time Logic”
is a subset of CTL*

all formulas are (implicitly) universally quantified

no explicit path quantifiers are used in state formulas (i.e. all
state formulas are atomic)

Provides operators for describing events along a single path.

Example: FGp
At some point in the future, all the following states will have
the property p.



stands for " Computational-Tree Logic”

subset CTL* where only state formulas are allowed.
every temporal operator (F,G,X,U,R) must be quantified.

Example: EFAGp
CTL operators:
@ AX and EX
@ AF and EF
© AG and EG
Q@ AU and EU
@ AR and ER



The Model Checking Problem

@ Using the previous definitions, the Model-Checking problem

can be defined as follows:

ME o

o Given:
@ a finite model M represented as a Kripke structure, and
@ a specification formula ¢ specified in TL,

check whether the model satisfies the given formula.



Frequently-Used Properties

o Safety: "Something bad will never happen”

M= G-p

@ Liveness: "Something good will eventually happen”

MEFp



Finite State Machines

Definition (Finite State Machine)
A Finite State Machine (FSM) A is defined as a 5-tuple:

A=(Q,X,A, Q,F)

where:
@ Q is a finite set of states,
@ 2 is a finite alphabet,

A C Q x X x Q is a transition relation,

o
@ Qy C Q@ is a set of initial states,
@ F C Q is a set of final states.




FSM Acceptance

@ A FSM accepts a word w € X* if there is a sequence of states
S0, S1, - - -, Sp such that:
Q s € Qo,
Qs,ef,
© foreach 1 <i<n, (si—1,w,s;) €A, where w; is the i-th
character of w.
@ The language of a FSM A, denoted £(.A), is the set of all
words accepted by A.



FSM Example

Example:

Al = <{507 51}7 {a’b}v A, {50}7 {51}>

where: A = {(507b> 50)> (50> a, 51)7 (517 a, 51)7 (517 b, 50)}

This FSM accepts all words that end with an a.



Buchi Automata

@ A Biichi Automaton is a FSM that recognizes infinite words.

@ This concept is called w-acceptance.

Definition (Biichi Automaton)
A Biichi Automaton B is defined as a 5-tuple:

B:<Q,Z,A,Q0,F>

where:
@ @ is a finite set of states,
@ X is a finite alphabet,
o A C @ x XX Q is a transition relation,
@ Qo € @ is a set of initial states,
@ F C Q is a set of final states.




Blichi Automaton Acceptance (w-acceptance)

A Biichi Automaton has a finite number of states.

@ However, it recognizes infinite words.

@ Therefore, some of the states have to be visited infinitely

many times.
A Biichi Automaton accepts a word w if there is an infinite
path p = sg, s1, ... such that:

Q € Q,

9 For all i > 1, (S,',l7 W,',S,'),

© If inf(p) denotes the set of states visited infinitely-many times

in p, then inf(p) N F # 0.

A Biichi Automaton accepts a word if at least one of the final
states is visited infinitely-many times.
The language of a Biichi Automaton B, denoted £(B) is the
set of all (infinite) words it accepts.
Note that £(B) C ¥, where X¥ is the set of infinite words
over L.



Biichi Automaton Example

The following Biichi Automaton accepts all words that have
infinitely-many a's:

e For example, it accepts the word (ab)“ = ababab....

@ In general, it accepts words described by the follows w-regular
expression (b*a)“.



From Kripke to Biichi

Convert a Kripke structure M = (S, So, R, L) over atomic
propositions AP to a Biichi automaton B = (Q, X, A, Qo, F) such

that:
Q@ Q=Su{i},
@ X = P(AP), (i.e. each transition is labeled with a subset of
AP)

© Same transitions as the Kripke structure in addition to:

@ Transitions going from / to each of the start states in Sp.
@ Each transition is labeled with the set of predicates of the
target state.

Q Q= {i}
@ F = Q, (All states are accept states)

The resulting Buchi Automaton accepts words equivalent to
possible state sequences in the Kripke structure.



From Kripke to Biichi (Example)

Example:
Convert the following Kripke structure, defined over
AP = {P,Q, R}, to a Biichi automaton:

P.Q

NS
Q,R e,



Modeling LTL Properties with Buichi Automata

@ Every LTL formula over AP can be modeled as a Biichi
automaton with alphabet ¥ = P(AP).
@ The language of the Biichi automaton is the set of paths that
satisfy the LTL formula.
@ Examples:
o Gp

P

o

] ﬁGp
te
o Fp

true



LTL Model Checking with Biichi Automata

Given a model M represented as a Kripke structure, and an LTL
formula ¢, the following algorithm decides whether M = ¢:

@ Convert M to a Biichi Automaton 5.

@ Construct a Biichi Automaton B, equivalent to the negation
of ¢ (9).

© Construct a Biichi Automaton B3 that recognizes the
language L(B;) = L(By) N L(B,), by calculating the
cross-product for By x Bs.

@ Check the language of B3 for emptiness:

o If the language is empty, then ¢ holds in M.
o If not, then ¢ does not hold in M. Any word w € L(B;) is a
counter-example.



Emptiness Check for Biichi Automata

Given a Biichi Automaton Bs, the following algorithm determines
whether its language is empty.

@ Determine the strongly-connected components (SCC) in Bs.

@ If there is a reachable, non-trivial strongly-connected
component that contains a final state, then the language is
not empty. Otherwise, the language is empty.

Notes:

@ A trivial SCC, is one that contains only 1 state without a
self-transition.

@ A reachable SCC, is one that can be reached from a start
state.



Time Complexity of Model Checking

@ There exist several model checking algorithms.

@ The best ones currently have the following upper-bound
time-complexities for a formula ¢ and model M:
o LTL: O(|M] - 21¢])
o CTL: O(|M] - |#])
o CTL*: O(|M]- 2!l
M| = n+ m, where n in the no. of states, and m is the no.
of transitions.

@ The following lower-bounds have also been proven for
model-checking:
o LTL: PSPACE-Complete
o CTL: P-Complete
o CTL*: PSPACE-Complete
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State-Explosion Problem and Solutions

@ One of the major-challenges facing model checking.

@ Refers to the exponential increase in the number of possible
states with processes and data.

@ A system with n asynchronous processes, each having m
states has up-to m" states.

@ State transition system for n-bits of data has 2" states.

@ A lot of research has been (and is being) done on the
state-explosion problem.
@ The following are the major results:
o Ordered binary decision diagrams (OBDDs):
Works on synchronous systems and has been used for systems
with up-to 10%0 states.
o Partial order reduction: Works on asynchronous systems and
exploits certain mutual-independence properties of parallel
processes.



SPIN and Promela

@ LTL model checker.

@ SPIN stands for " Simple Promela Interpreter”
@ Model is specified in Promela

@ Promela stands for " Process Meta Language”

@ Supports parallel synchronous or asynchronous processes that
communicate using global variables or message passing.



Structure of a Promela Model Specification

@ A Promela specification consists of:
type declarations

channel declarations

variable declarations

process declarations

Optionally: init process

@ since the model needs to be finite, data, channels and
processes must be bounded.



Process Declaration in Promela

@ A process is declared using the proctype keyword.
@ Process declaration consists of:
@ process name

@ list of parameters
© local variable declaration

Q body



Promela Statements

@ Promela statements can be either executable or blocked

@ A blocked statement blocks the execution until the statement
becomes unblocked

@ statements:

skip: always executable
assert(<expr>): asserts that <expr> should always be true.
always executable.

e expression: executable if not zero.
e assignment: always executable.
e if :: fi: Provides non-deterministic choice. Executable if

at least one choice is executable.

do :: od: Like if but repeats. Executable if at least one
choice is executable.

break: Exits a do statement. Always executable.



Mutual Exclusion Problem

@ Organizing access to a shared resource such that:
© At most 1 process uses the resource at any given time.
@ Every interested process can eventually get access to the
resource.
@ The program part that accesses a shared resource is called the
critical region.



Phony Mutual Exclusion Algorithm

int flag = 0;

void enter_critical() {
while(flag != 0);

flag = 1;
critical_region();
flag = 0;

@ Flaw: If process 2 reads the flag before process 1 sets it to 1,
both processes will enter critical region at the same time.



Using SPIN to Discover the Bug
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