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Model Checking

An automated technique for formal software verification

Introduced in 1981 by Clarke and Emerson (USA) and Sifakis
(France)

Uses temporal logic to reason about the correctness of a
system

Works with finite-state concurrent system.
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Advantages of Model Checking

Advantages over other formal methods:

Requires minimal human intervention (and less experience)
Applies to systems with realistic properties (concurrent
interactive/event-based systems)
Not restricted to input-processing-output paradigm.
Produces a counter-example, in case of failure.

Advantages over testing/simulation techniques:

Testing cannot cover all the possible cases.
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Steps of Model Checking

1 Modeling
Converting the system to a formalism accepted by the model
checker. (Kripke Structure)

2 Specification
Specifying the desired properties in a formal language.
(Temporal Logic)

3 Verification
Running the model checking algorithm.

4 Analysis

If the result is yes, no analysis is required.
If the result is no, counter-example needs to be analyzed to
discover the source of the bug.
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Kripke Structure

A formalism for specifying the possible states of a system and their
transition relations.

Definition

A Kripke Structure M over a set of atomic propositions AP is a
4-tuple:

M = 〈S ,S0,R, L〉

where:

1 S is a finite set of states.

2 S0 ⊆ S is the set of starting states.

3 R ⊆ S × S is a transition relation.

4 L : S → P(AP) is function that labels each state with the set
of propositions that are true in that state.

Alternative definition for L : S → (AP → {>,⊥})



Kripke Structure Example

Define Kripke Structure M1 over the atomic propositions
AP = {P,Q,R} as follows:

M1 = 〈{s1, s2, s3}, {s1},R1, L1〉

where:

R1 = {(s1, s2), (s2, s1), (s1, s3), (s2, s3), (s3, s3)}
L1 = {(s1 → {P,Q}), (s2 → {Q,R}), (s3 → {R})}

s1

s2 s3

P,Q

R

Q,R



Paths

Definition (Path)

A path π in a Kripke Structure M = 〈S , S0,R, L〉 is an infinite
sequence of states s0, s1, . . . such that for each i ≥ 0,
(si , si+1) ∈ R.

The notation πi refers to the subsequence of π starting at si
(i.e. si , si+1, . . .)

Kripke Structure unwinding

s1

s2 s3

P,Q

R

Q,R



Temporal Logics

Temporal logics: logics of time

Two major classes of temporal logics:

1 First-order: times are treated as first-order objects
E.g.: Situation Calculus, Interval Calculus

2 Modal: uses states or possible worlds

In model-checking, temporal modal logics are used to specify
the desirable properties of the system.

Commonly used TLs are CTL*, CTL, and LTL.

LTL is a linear-time logic

CTL and CTL* are branching-time logics



Temporal Logics

Temporal logics: logics of time

Two major classes of temporal logics:

1 First-order: times are treated as first-order objects
E.g.: Situation Calculus, Interval Calculus

2 Modal: uses states or possible worlds

In model-checking, temporal modal logics are used to specify
the desirable properties of the system.

Commonly used TLs are CTL*, CTL, and LTL.

LTL is a linear-time logic

CTL and CTL* are branching-time logics



Temporal Logics

Temporal logics: logics of time

Two major classes of temporal logics:
1 First-order: times are treated as first-order objects

E.g.: Situation Calculus, Interval Calculus

2 Modal: uses states or possible worlds

In model-checking, temporal modal logics are used to specify
the desirable properties of the system.

Commonly used TLs are CTL*, CTL, and LTL.

LTL is a linear-time logic

CTL and CTL* are branching-time logics



Temporal Logics

Temporal logics: logics of time

Two major classes of temporal logics:
1 First-order: times are treated as first-order objects

E.g.: Situation Calculus, Interval Calculus
2 Modal: uses states or possible worlds

In model-checking, temporal modal logics are used to specify
the desirable properties of the system.

Commonly used TLs are CTL*, CTL, and LTL.

LTL is a linear-time logic

CTL and CTL* are branching-time logics



Temporal Logics

Temporal logics: logics of time

Two major classes of temporal logics:
1 First-order: times are treated as first-order objects

E.g.: Situation Calculus, Interval Calculus
2 Modal: uses states or possible worlds

In model-checking, temporal modal logics are used to specify
the desirable properties of the system.

Commonly used TLs are CTL*, CTL, and LTL.

LTL is a linear-time logic

CTL and CTL* are branching-time logics



Temporal Logics

Temporal logics: logics of time

Two major classes of temporal logics:
1 First-order: times are treated as first-order objects

E.g.: Situation Calculus, Interval Calculus
2 Modal: uses states or possible worlds

In model-checking, temporal modal logics are used to specify
the desirable properties of the system.

Commonly used TLs are CTL*, CTL, and LTL.

LTL is a linear-time logic

CTL and CTL* are branching-time logics



Temporal Logics

Temporal logics: logics of time

Two major classes of temporal logics:
1 First-order: times are treated as first-order objects

E.g.: Situation Calculus, Interval Calculus
2 Modal: uses states or possible worlds

In model-checking, temporal modal logics are used to specify
the desirable properties of the system.

Commonly used TLs are CTL*, CTL, and LTL.

LTL is a linear-time logic

CTL and CTL* are branching-time logics



Temporal Logics

Temporal logics: logics of time

Two major classes of temporal logics:
1 First-order: times are treated as first-order objects

E.g.: Situation Calculus, Interval Calculus
2 Modal: uses states or possible worlds

In model-checking, temporal modal logics are used to specify
the desirable properties of the system.

Commonly used TLs are CTL*, CTL, and LTL.

LTL is a linear-time logic

CTL and CTL* are branching-time logics



CTL*

stands for ”Computational Tree Logic*”

is a superset of LTL and CTL.

CTL* has 2 types of formulas:
1 Path formulas: specify properties of a given path.
2 State formulas: specify properties of a given state.



CTL* Path Operators

X f (”Next”): The property f holds in the next state of the
given path.

F f (”future”): The property f holds finally (eventually).

G f (”globally”): The property f holds globally (in all future
states of the path).

f U g (”until”): Property f must hold until g holds. g is
required to become true eventually.

f R g (”release”): Property g must hold up-to and including
the first state in which f holds. g is released by f .

Examples: PUQ, PRQ.



CTL* Syntax

Given a set of atomic propositions AP,

the syntax of state formulas is defined as follows:
1 every proposition p ∈ AP is a state formula. (Holds if p is true

in the given state)
2 If f and g are state formulas, then ¬f , f ∧ g , f ∨ g are state

formulas.
3 If f is a path formula, the Af and Ef are state formulas.

A and E are path quantifiers.

The syntax of path formulas is defined as follows:
1 If f is a state formula then f is also a path formula. (Holds if

f is true in the first state of the path)
2 If f and g are path formulas then ¬f , f ∧ g , f ∨ g .
3 If f and g are path formulas then X f , F f , G f , f U g , and

f R g .



CTL* Formal Semantics

CTL* semantics are defined in terms of a Kripke structure.

Given a Kripke structure M = 〈S ,S0,R, L〉, a state s in M
and a state formula f , the notation:

M, s |= f

means that f in true in M at state s.

Given a path π through M, and a path formula g , the
notation:

M, π |= g

means that g is true in M over path π.

Also referred to as M, s models f , or M, s satisfies f .



CTL* Formal Semantics

Given a Kripke structure M = 〈S ,S0,R, L〉. Let p ∈ AP be an
atomic proposition, f1 and f2 be state formulas, g1 and g2 be path
formulas:

1 M, s |= p iff p ∈ L(s)

2 M, s |= ¬f1 iff M, s 6|= f1
3 M, s |= f1 ∨ f2 iff M, s |= f1 or M, s |= f2.

4 M, s |= f1 ∧ f2 iff M, s |= f1 and M, s |= f2.

5 M, s |= Eg1 iff there is a path π starting at s such that
M, π |= g1.

6 M, s |= Ag1 iff for every path π starting at s, M, π |= g1.



CTL* Formal Semantics

Given a Kripke structure M = 〈S ,S0,R, L〉. Let p ∈ AP be an
atomic proposition, f1 and f2 be state formulas, g1 and g2 be path
formulas:

1 M, π |= f1 iff s is the first state in π and M, s |= f1.

2 M, π |= ¬g1 iff M, π 6|= g1
3 M, π |= g1 ∨ g2 iff M, π |= g1 or M, π |= g2.

4 M, π |= g1 ∧ g2 iff M, π |= g1 and M, π |= g2.

5 M, π |= X g1 iff M, π1 |= g1.

6 M, π |= F g1 iff there exists a k ≥ 0 such that M, πk |= g1.

7 M, π |= G g1 iff for all k ≥ 0, M, πk |= g1.

8 M, π |= g1U g2 iff there exists a k ≥ 0 such that M, πk |= g2
and for all 0 ≤ i < k , M, πi |= g1.

9 M, π |= g1R g2 iff for all j ≥ 0, if for every i < j M, πi 6|= g1
then M, πj |= g2.



CTL* Examples

Examples:

M, s |= EF p

M, s |= AF p

M, s |= EG p

M, s |= AG p



LTL

stands for ”Linear-Time Logic”

is a subset of CTL*

all formulas are (implicitly) universally quantified

no explicit path quantifiers are used in state formulas (i.e. all
state formulas are atomic)

Provides operators for describing events along a single path.

Example: FG p
At some point in the future, all the following states will have
the property p.



CTL

stands for ”Computational-Tree Logic”

subset CTL* where only state formulas are allowed.

every temporal operator (F ,G ,X ,U ,R ) must be quantified.

Example: EFAG p

CTL operators:
1 AX and EX
2 AF and EF
3 AG and EG
4 AU and EU
5 AR and ER



The Model Checking Problem

Using the previous definitions, the Model-Checking problem

can be defined as follows:

M |= φ

Given:
1 a finite model M represented as a Kripke structure, and
2 a specification formula φ specified in TL,

check whether the model satisfies the given formula.



Frequently-Used Properties

Safety: ”Something bad will never happen”

M |= G¬p

Liveness: ”Something good will eventually happen”

M |= F p



Finite State Machines

Definition (Finite State Machine)

A Finite State Machine (FSM) A is defined as a 5-tuple:

A = 〈Q,Σ,∆,Q0,F 〉

where:

Q is a finite set of states,

Σ is a finite alphabet,

∆ ⊆ Q × Σ× Q is a transition relation,

Q0 ⊆ Q is a set of initial states,

F ⊆ Q is a set of final states.



FSM Acceptance

A FSM accepts a word w ∈ Σ∗ if there is a sequence of states
s0, s1, . . . , sn such that:

1 s0 ∈ Q0,
2 sn ∈ F ,
3 for each 1 ≤ i ≤ n, (si−1,wi , si ) ∈ ∆, where wi is the i-th

character of w .

The language of a FSM A, denoted L(A), is the set of all
words accepted by A.



FSM Example

Example:
A1 = 〈{s0, s1}, {a, b},∆, {s0}, {s1}〉

where: ∆ = {(s0, b, s0), (s0, a, s1), (s1, a, s1), (s1, b, s0)}

s0 s1

a

b

a

b

This FSM accepts all words that end with an a.



Büchi Automata

A Büchi Automaton is a FSM that recognizes infinite words.

This concept is called ω-acceptance.

Definition (Büchi Automaton)

A Büchi Automaton B is defined as a 5-tuple:

B = 〈Q,Σ,∆,Q0,F 〉

where:

Q is a finite set of states,

Σ is a finite alphabet,

∆ ⊆ Q × Σ× Q is a transition relation,

Q0 ⊆ Q is a set of initial states,

F ⊆ Q is a set of final states.



Büchi Automaton Acceptance (ω-acceptance)

A Büchi Automaton has a finite number of states.

However, it recognizes infinite words.

Therefore, some of the states have to be visited infinitely
many times.
A Büchi Automaton accepts a word w if there is an infinite
path ρ = s0, s1, ... such that:

1 s0 ∈ Q0,
2 For all i ≥ 1, (si−1,wi , si ),
3 If inf (ρ) denotes the set of states visited infinitely-many times

in ρ, then inf (ρ) ∩ F 6= ∅.
A Büchi Automaton accepts a word if at least one of the final
states is visited infinitely-many times.

The language of a Büchi Automaton B, denoted L(B) is the
set of all (infinite) words it accepts.

Note that L(B) ⊆ Σω, where Σω is the set of infinite words
over Σ.



Büchi Automaton Example

The following Büchi Automaton accepts all words that have
infinitely-many a’s:

s0 s1

a

b

a

b

For example, it accepts the word (ab)ω = ababab....

In general, it accepts words described by the follows ω-regular
expression (b∗a)ω.



From Kripke to Büchi

Convert a Kripke structure M = 〈S ,S0,R, L〉 over atomic
propositions AP to a Büchi automaton B = 〈Q,Σ,∆,Q0,F 〉 such
that:

1 Q = S ∪ {i},
2 Σ = P(AP), (i.e. each transition is labeled with a subset of

AP)
3 Same transitions as the Kripke structure in addition to:

1 Transitions going from i to each of the start states in S0.
2 Each transition is labeled with the set of predicates of the

target state.

4 Q0 = {i}
5 F = Q, (All states are accept states)

The resulting Büchi Automaton accepts words equivalent to
possible state sequences in the Kripke structure.



From Kripke to Büchi (Example)

Example:
Convert the following Kripke structure, defined over
AP = {P,Q,R}, to a Büchi automaton:

s1

s2 s3

P,Q

R

Q,R



Modeling LTL Properties with Büchi Automata

Every LTL formula over AP can be modeled as a Büchi
automaton with alphabet Σ = P(AP).

The language of the Büchi automaton is the set of paths that
satisfy the LTL formula.

Examples:

G p

s0

p

¬G p

s0 s1

true

¬ p

p

F p

s0 s1

true

p

¬ p



LTL Model Checking with Büchi Automata

Given a model M represented as a Kripke structure, and an LTL
formula φ, the following algorithm decides whether M |= φ:

1 Convert M to a Büchi Automaton B1.

2 Construct a Büchi Automaton B2 equivalent to the negation
of φ (¬φ).

3 Construct a Büchi Automaton B3 that recognizes the
language L(B3) = L(B1) ∩ L(B2), by calculating the
cross-product for B1 × B2.

4 Check the language of B3 for emptiness:

If the language is empty, then φ holds in M.
If not, then φ does not hold in M. Any word w ∈ L(B3) is a
counter-example.



Emptiness Check for Büchi Automata

Given a Büchi Automaton B3, the following algorithm determines
whether its language is empty.

1 Determine the strongly-connected components (SCC) in B3.

2 If there is a reachable, non-trivial strongly-connected
component that contains a final state, then the language is
not empty. Otherwise, the language is empty.

Notes:

A trivial SCC, is one that contains only 1 state without a
self-transition.

A reachable SCC, is one that can be reached from a start
state.



Time Complexity of Model Checking

There exist several model checking algorithms.

The best ones currently have the following upper-bound
time-complexities for a formula φ and model M:

LTL: O(|M| · 2|φ|)
CTL: O(|M| · |φ|)
CTL*: O(|M| · 2|φ|)

|M| = n + m, where n in the no. of states, and m is the no.
of transitions.

The following lower-bounds have also been proven for
model-checking:

LTL: PSPACE-Complete
CTL: P-Complete
CTL*: PSPACE-Complete



State-Explosion Problem and Solutions

One of the major-challenges facing model checking.

Refers to the exponential increase in the number of possible
states with processes and data.

A system with n asynchronous processes, each having m
states has up-to mn states.

State transition system for n-bits of data has 2n states.

A lot of research has been (and is being) done on the
state-explosion problem.

The following are the major results:

Ordered binary decision diagrams (OBDDs):
Works on synchronous systems and has been used for systems
with up-to 10120 states.
Partial order reduction: Works on asynchronous systems and
exploits certain mutual-independence properties of parallel
processes.
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SPIN and Promela

LTL model checker.

SPIN stands for ”Simple Promela Interpreter”

Model is specified in Promela

Promela stands for ”Process Meta Language”

Supports parallel synchronous or asynchronous processes that
communicate using global variables or message passing.



Structure of a Promela Model Specification

A Promela specification consists of:

type declarations
channel declarations
variable declarations
process declarations
Optionally: init process

since the model needs to be finite, data, channels and
processes must be bounded.



Process Declaration in Promela

A process is declared using the proctype keyword.

Process declaration consists of:
1 process name
2 list of parameters
3 local variable declaration
4 body



Promela Statements

Promela statements can be either executable or blocked

A blocked statement blocks the execution until the statement
becomes unblocked

statements:

skip: always executable
assert(<expr>): asserts that <expr> should always be true.
always executable.
expression: executable if not zero.
assignment: always executable.
if :: fi: Provides non-deterministic choice. Executable if
at least one choice is executable.
do :: od: Like if but repeats. Executable if at least one
choice is executable.
break: Exits a do statement. Always executable.



Mutual Exclusion Problem

Organizing access to a shared resource such that:
1 At most 1 process uses the resource at any given time.
2 Every interested process can eventually get access to the

resource.

The program part that accesses a shared resource is called the
critical region.



Phony Mutual Exclusion Algorithm

int flag = 0;

void enter_critical() {

while(flag != 0);

flag = 1;

critical_region();

flag = 0;

}

Flaw: If process 2 reads the flag before process 1 sets it to 1,
both processes will enter critical region at the same time.



Using SPIN to Discover the Bug
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