The SAT Problem

Alexander Baumgartner

Research Institute for Symbolic Computation

Alexander Baumgartner SAT Problem

Boolean Satisfiability Problem

Boolean variables X.
Binary/Unary boolean functions F (e.g.: A\,V,=—>,®,—,Id,...).
Boolean expressions are built from X, F and parenthesis.

Truth assignment: Assignment of boolean values to the variables.
We use 0 for false and 1 for true.

Satisfying truth assignment: Expression evaluates to 1.

Alexander Baumgartner SAT Problem

Boolean Satisfiability Problem

Definition (SAT Problem)

Given a boolean expression, does it have a satisfying truth
assignment?

Alexander Baumgartner SAT Problem

Boolean Satisfiability Problem

Definition (SAT Problem)

Given a boolean expression, does it have a satisfying truth
assignment?

Example

The expression =((x1 V =(x2 A (x3 = x2))) V —x3) is SAT.

There is a satisfying truth assignment x; = 0,x = 1,x3 = 1.
x1 A —xg is UNSAT. There is no satisfying truth assignment.

Alexander Baumgartner SAT Problem

SAT is NP-Complete

SAT was the first known NP-complete problem.
Proved in Cook Levin Theorem.

SAT is in NP.
All problems in NP are polynomially reducible to SAT.

Alexander Baumgartner SAT Problem

CNF-SAT

Literal: Boolean variable or its negation (e.g. x or —x).
Clause: Logical OR of one or more literals (e.g. x1 V x2 V —x3).

A boolean expression is in CNF if it's the logical AND of clauses
(e.g. (A V—x2V—x3)A(mx1V-oxa)A(xa) A(—x2 V—x3Vxa)).

Alexander Baumgartner SAT Problem

CNF-SAT is NP-Complete

CNF-SAT is in NP.
Trivial, it's a special case of SAT.

CNF-SAT is NP-hard.
Can be shown by reducing SAT to CNF-SAT.

Alexander Baumgartner SAT Problem

CNF-SAT is NP-Complete

CNF-SAT is in NP.
Trivial, it's a special case of SAT.
CNF-SAT is NP-hard.
Can be shown by reducing SAT to CNF-SAT.

Rewrite =, <=, ®, ... to combinations of A,V, .
Consider 4 unary and 16 binary boolean functions. O(n).

Alexander Baumgartner SAT Problem

CNF-SAT is NP-Complete

CNF-SAT is in NP.
Trivial, it's a special case of SAT.
CNF-SAT is NP-hard.
Can be shown by reducing SAT to CNF-SAT.

Rewrite =, <=, ®, ... to combinations of A,V, .
Consider 4 unary and 16 binary boolean functions. O(n).
Convert expression so that negation is applied only to variables.

-(fvg) = -~fA—g
~(frg) = —~fV-g

Straightforward recursive implementation. O(n).

Alexander Baumgartner SAT Problem

CNF-SAT is NP-Complete

CNF-SAT is in NP.
Trivial, it's a special case of SAT.
CNF-SAT is NP-hard.
Can be shown by reducing SAT to CNF-SAT.

Rewrite =, <=, ®, ... to combinations of A,V, .
Consider 4 unary and 16 binary boolean functions. O(n).
Convert expression so that negation is applied only to variables.

-(fvg) = -~fA—g
~(frg) = —~fV-g

Straightforward recursive implementation. O(n).
Construct from the result an expression in CNF.
Consider base case where a formula ¢ is a literal.
Consider two recursion cases ¢ = ¢1 A ¢2 and ¢ = ¢1 V ¢o.

Alexander Baumgartner SAT Problem

CNF-SAT is NP-Complete

CNF-SAT is in NP.
Trivial, it's a special case of SAT.
CNF-SAT is NP-hard.
Can be shown by reducing SAT to CNF-SAT.

Rewrite =, <=, ®, ... to combinations of A,V, .
Consider 4 unary and 16 binary boolean functions. O(n).
Convert expression so that negation is applied only to variables.

-(fvg) = -~fA—g
~(frg) = —~fV-g

Straightforward recursive implementation. O(n).
Construct from the result an expression in CNF.
Consider base case where a formula ¢ is a literal.
Consider two recursion cases ¢ = ¢1 A ¢2 and ¢ = ¢1 V ¢o.

Proof yields an algorithm to rewrite SAT to CNF-SAT in
polynomial time.

Alexander Baumgartner SAT Problem

Example SAT to CNF-SAT

ﬁ((Xl V _\(X2 A (X3 — Xg))) \ ﬁX3)
ﬁ((X1 V —|(X2 A\ (—\X3 V X2))) \% —\X3)
((—\Xl A (X2 A (—\X3 V Xg))) A\ X3)
(=x1) A (x2) A (=x3 V x2) A (x3)

Alexander Baumgartner SAT Problem

Variants of CNF-SAT

k-SAT = k literals in each clause.
k-SAT is NP-complete.

Alexander Baumgartner SAT Problem

Variants of CNF-SAT

k-SAT = k literals in each clause.
k-SAT is NP-complete.

3-SAT = 3 literals in each clause.

eg. (1 V-xV-x3)A(—x1VxsVxg)A(—x VxoV-xg)
3-SAT is NP-complete.

2-SAT = 2 literals in each clause.
2-SAT is NL-complete.

Alexander Baumgartner SAT Problem

Variants of CNF-SAT

k-SAT = k literals in each clause.
k-SAT is NP-complete.
3-SAT = 3 literals in each clause.
eg. (1 V-xV-x3)A(—x1VxsVxg)A(—x VxoV-xg)
3-SAT is NP-complete.
2-SAT = 2 literals in each clause.
2-SAT is NL-complete.
Horn-SAT = Each clause has at most one positive literal (head).

e.g. (x1V-xV-x3)A(—x1) A (X V-x)
Horn-SAT is P-complete.

Alexander Baumgartner SAT Problem

Variants of CNF-SAT

k-SAT = k literals in each clause.
k-SAT is NP-complete.

3-SAT = 3 literals in each clause.

eg. (1 V-xV-x3)A(—x1VxsVxg)A(—x VxoV-xg)
3-SAT is NP-complete.

2-SAT = 2 literals in each clause.
2-SAT is NL-complete.
Horn-SAT = Each clause has at most one positive literal (head).

e.g. (x1V-xV-x3)A(—x1) A (X V-x)
Horn-SAT is P-complete.

MUS-SAT = Minimal unsatisfiable subsets (MUSes).

MUS = Unsatisfiable subset of clauses such that any of its proper
subsets is satisfiable.

Alexander Baumgartner SAT Problem

SAT Solver

Input: Boolean expression in CNF.

Output: SAT and satisfying truth assignment or
HIPUE 1 UNSAT and (maybe) certificate.

Alexander Baumgartner SAT Problem

SAT Solver

Input: Boolean expression in CNF.

Output: SAT and satisfying truth assignment or
HIPUE 1 UNSAT and (maybe) certificate.

Trial and error (recursive, backtracking).

Davis-Putnam-Logemann-Loveland (DPLL).
Systematic backtracking algorithm.

Paturi-Pudlak-Saks-Zani (PPSZ).

Heuristic randomized algorithm.

Alexander Baumgartner SAT Problem

DPLL Rules

Partial truth assignments M, N; Set E of clauses C; Literals /.

M | —C, if Cis false under M.
E = C, if Cistruein all models of E.

Alexander Baumgartner SAT Problem

DPLL Rules

Partial truth assignments M, N; Set E of clauses C; Literals /.

M | —C, if Cis false under M.
E = C, if Cistruein all models of E.

UnitPropagate
M| EU{CVI} = M- I| EU{CVI},
if M |=—=C and / is undefined in M.

Alexander Baumgartner SAT Problem

DPLL Rules

Partial truth assignments M, N; Set E of clauses C; Literals /.

M = —C, if Cis false under M.
E = C, if Cistruein all models of E.
UnitPropagate
M||EU{CVI}= M-I EU{CVI},
if M |=—=C and / is undefined in M.
Decide
M| E= M-I| E,
if / or =/ occurs in a clause of E and / is undefined in M.

Alexander Baumgartner SAT Problem

DPLL Rules

Partial truth assignments M, N; Set E of clauses C; Literals /.

M = —C, if Cis false under M.
E = C, if Cistruein all models of E.
UnitPropagate
M||EU{CVI}= M-I EU{CVI},
if M |=—=C and / is undefined in M.
Decide
M| E= M-I]| E,
if / or =/ occurs in a clause of E and [is undefined in M.
Fail
M| EU{C} = fall,
if M = —C and M contains no decision literals.

Alexander Baumgartner SAT Problem

DPLL Rules

Partial truth assignments M, N; Set E of clauses C; Literals /.

M = —C, if Cis false under M.
E = C, if Cistruein all models of E.
UnitPropagate
M||EU{CVI}= M-I EU{CVI},
if M |=—=C and / is undefined in M.
Decide
M| E= M-I| E,
if / or =/ occurs in a clause of E and / is undefined in M.
Fail
M| EU{C} = fall,
if M = —C and M contains no decision literals.
Backjump
M-19-N|E= M-I'|E,
if there is some clause C V /" such that E|= CV I and M = —=C
and /" is undefined in M and / or =/ occurs in a clause of E.

Alexander Baumgartner SAT Problem

DPLL Efficiently

O(n) space complexity.
O(2") time complexity.
Efficiency issues:

Efficient data structure for unit propagation.

Select literal in Decide rule.

Select literal in Backjump rule.

Reuse gained information after back jump - Reduce search space.

Alexander Baumgartner SAT Problem

Some Implementation Strategies

Variable (and value) selection heuristic.
Clause learning.

Conflict-directed backjumping.
Assignment stack shrinking.

Conflict clause minimization.

The watched literals scheme.

Fast backjumping.

Randomized restarts.

Alexander Baumgartner SAT Problem

Solver Types

Single-engine solver.
Portfolio approach.
Interacting multi-engine approach.

Parallel approach.

Alexander Baumgartner SAT Problem

Events

Biannual SAT-Race/Challenge (2012, June 17-20, Trento, ltaly).
Biannual SAT-Competition (2013, July 8-12, Helsinki, Finland).

Clear input/output specification.
Different problem types:
Application,
Hand crafted,
Random.

http://www.satcompetition.org/

Alexander Baumgartner SAT Problem

http://www.satcompetition.org/

SAT-Challenge 2012 / Application SAT+UNSAT

Rank

2 ¥ @ N &N s

RiG

2
3
4
5
6

Solver

Virtual Best Solver (VBS)
SATzilla2z012 APP
SATzillaz012 ALL
Industrial SAT Solver

lingeling (SAT Competition 2011
Bronze)

interactSAT
glucose

SINN

ZENMN
Lingeling
linge_dyphase

simpsat

#

%

solved | solved

568
531
515
499
488

480
475
472
468
467
458
453

94.7
B8.5
B5.8
83.2
81.3

80.0
79.2
786.7
76.0
77.8
76.3

75.5

cum.
run-
time

56528
85194
86638
93705
B4715

87676
71501
86302
74019
91973
90192
95737

median
run-
time

30.3
114.0
122.2
160.2
135.3

152.5
114.4
146.4
124.7
185.5
204.4

222.0

http://baldur.iti.kit.edu/SAT-Challenge-2012/

Alexander Baumgartner

SAT Problem

http://baldur.iti.kit.edu/SAT-Challenge-2012/

Input Format

¢ This is UnifRandomKSAT Generator

c uniform random 6-SAT generated instance with:
c clause length: 6

¢ number variables: 200

¢ number clauses: 8674

c clause to variable ratio: 43.37

c random number generator name: SHAIPRNG

¢ random number generator provider: SUN

¢ random number generator seed: 591561685814725618
p cnf 200 8674

-40 146 89 -186 107 -36 0

6599 -6 73-119300

35 -41 -59 -180 -144 198 0
-01-105497961-180

-152 87 185 -130 -66 -119 0

Alexander Baumgartner SAT Problem

Output Format

c predict which solver should be used
c solver ranking248310567

c run and check best solver 26 ...

c child timeout set to 1200

c child exited successfully

c TIME USED: 0.000000

c clasp version 2.0.0-RC2

¢ Reading from test.cnf

c Solving...

¢ Answer: 1
v-1-2-3-4-5-6-7-8-9-10-11-12-13 -14 -15-16 -17 -18 -19 -20

v -199 200 0
s SATISFIABLE

¢ Models : 14
¢ Time : 0.004s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
¢ CPU Time : 0.000s

Alexander Baumgartner SAT Problem

Solving Problems with SAT

State of the art SAT solvers are highly sophisticated.
Encode problem as boolean expression.

Use a SAT solver to find satisfying truth assignment.

Alexander Baumgartner SAT Problem

Encode 3-Coloring Problem

Given a graph (V/, E) find an assignment of one of 3 colors to
each vertex such that no two adjacent vertices share a color.

Alexander Baumgartner SAT Problem

Encode 3-Coloring Problem

Given a graph (V/, E) find an assignment of one of 3 colors to
each vertex such that no two adjacent vertices share a color.
For each vertex v € V:

(V(1)VV(2)Vv(3)) A(=v(1)V-v(2) A(=v(1)V v (3) A(~v(2) Vv (3))

Alexander Baumgartner SAT Problem

Encode 3-Coloring Problem

Given a graph (V/, E) find an assignment of one of 3 colors to
each vertex such that no two adjacent vertices share a color.
For each vertex v € V:

(V(1)VV(2)Vv(3)) A(=v(1)V-v(2) A(=v(1)V v (3) A(~v(2) Vv (3))

For each edge (v, u) € E:
(=v(1) vV —u(1)) A (=v(2) V =u(2)) A (=v(3) V —u(3))

Vertex v colored with color i iff v(i) true in the model.

Alexander Baumgartner SAT Problem

