
The SAT Problem

Alexander Baumgartner

Research Institute for Symbolic Computation

Alexander Baumgartner SAT Problem

Boolean Satisfiability Problem

I Boolean variables X .

I Binary/Unary boolean functions F (e.g.: ∧,∨,=⇒,⊕,¬, Id , . . .).

I Boolean expressions are built from X ,F and parenthesis.
I Truth assignment: Assignment of boolean values to the variables.

I We use 0 for false and 1 for true.

I Satisfying truth assignment: Expression evaluates to 1.

Alexander Baumgartner SAT Problem

Boolean Satisfiability Problem

Definition (SAT Problem)

Given a boolean expression, does it have a satisfying truth
assignment?

Example

The expression ¬((x1 ∨ ¬(x2 ∧ (x3 =⇒ x2))) ∨ ¬x3) is SAT.
There is a satisfying truth assignment x1 = 0, x2 = 1, x3 = 1.
x1 ∧ ¬x1 is UNSAT. There is no satisfying truth assignment.

Alexander Baumgartner SAT Problem

Boolean Satisfiability Problem

Definition (SAT Problem)

Given a boolean expression, does it have a satisfying truth
assignment?

Example

The expression ¬((x1 ∨ ¬(x2 ∧ (x3 =⇒ x2))) ∨ ¬x3) is SAT.
There is a satisfying truth assignment x1 = 0, x2 = 1, x3 = 1.
x1 ∧ ¬x1 is UNSAT. There is no satisfying truth assignment.

Alexander Baumgartner SAT Problem

SAT is NP-Complete

I SAT was the first known NP-complete problem.
I Proved in Cook Levin Theorem.

I SAT is in NP.
I All problems in NP are polynomially reducible to SAT.

Alexander Baumgartner SAT Problem

CNF-SAT

I Literal: Boolean variable or its negation (e.g. x or ¬x).

I Clause: Logical OR of one or more literals (e.g. x1 ∨ x2 ∨ ¬x3).

I A boolean expression is in CNF if it’s the logical AND of clauses
(e.g. (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x4) ∧ (x4) ∧ (¬x2 ∨ ¬x3 ∨ x4)).

Alexander Baumgartner SAT Problem

CNF-SAT is NP-Complete

I CNF-SAT is in NP.
I Trivial, it’s a special case of SAT.

I CNF-SAT is NP-hard.
I Can be shown by reducing SAT to CNF-SAT.

I Rewrite =⇒,⇐⇒,⊕, . . . to combinations of ∧,∨,¬.
Consider 4 unary and 16 binary boolean functions. O(n).

I Convert expression so that negation is applied only to variables.

¬(f ∨ g) = ¬f ∧ ¬g
¬(f ∧ g) = ¬f ∨ ¬g
¬¬f = f

Straightforward recursive implementation. O(n).
I Construct from the result an expression in CNF.

Consider base case where a formula φ is a literal.
Consider two recursion cases φ = φ1 ∧ φ2 and φ = φ1 ∨ φ2.

I Proof yields an algorithm to rewrite SAT to CNF-SAT in
polynomial time.

Alexander Baumgartner SAT Problem

CNF-SAT is NP-Complete

I CNF-SAT is in NP.
I Trivial, it’s a special case of SAT.

I CNF-SAT is NP-hard.
I Can be shown by reducing SAT to CNF-SAT.

I Rewrite =⇒,⇐⇒,⊕, . . . to combinations of ∧,∨,¬.
Consider 4 unary and 16 binary boolean functions. O(n).

I Convert expression so that negation is applied only to variables.

¬(f ∨ g) = ¬f ∧ ¬g
¬(f ∧ g) = ¬f ∨ ¬g
¬¬f = f

Straightforward recursive implementation. O(n).
I Construct from the result an expression in CNF.

Consider base case where a formula φ is a literal.
Consider two recursion cases φ = φ1 ∧ φ2 and φ = φ1 ∨ φ2.

I Proof yields an algorithm to rewrite SAT to CNF-SAT in
polynomial time.

Alexander Baumgartner SAT Problem

CNF-SAT is NP-Complete

I CNF-SAT is in NP.
I Trivial, it’s a special case of SAT.

I CNF-SAT is NP-hard.
I Can be shown by reducing SAT to CNF-SAT.

I Rewrite =⇒,⇐⇒,⊕, . . . to combinations of ∧,∨,¬.
Consider 4 unary and 16 binary boolean functions. O(n).

I Convert expression so that negation is applied only to variables.

¬(f ∨ g) = ¬f ∧ ¬g
¬(f ∧ g) = ¬f ∨ ¬g
¬¬f = f

Straightforward recursive implementation. O(n).

I Construct from the result an expression in CNF.
Consider base case where a formula φ is a literal.
Consider two recursion cases φ = φ1 ∧ φ2 and φ = φ1 ∨ φ2.

I Proof yields an algorithm to rewrite SAT to CNF-SAT in
polynomial time.

Alexander Baumgartner SAT Problem

CNF-SAT is NP-Complete

I CNF-SAT is in NP.
I Trivial, it’s a special case of SAT.

I CNF-SAT is NP-hard.
I Can be shown by reducing SAT to CNF-SAT.

I Rewrite =⇒,⇐⇒,⊕, . . . to combinations of ∧,∨,¬.
Consider 4 unary and 16 binary boolean functions. O(n).

I Convert expression so that negation is applied only to variables.

¬(f ∨ g) = ¬f ∧ ¬g
¬(f ∧ g) = ¬f ∨ ¬g
¬¬f = f

Straightforward recursive implementation. O(n).
I Construct from the result an expression in CNF.

Consider base case where a formula φ is a literal.
Consider two recursion cases φ = φ1 ∧ φ2 and φ = φ1 ∨ φ2.

I Proof yields an algorithm to rewrite SAT to CNF-SAT in
polynomial time.

Alexander Baumgartner SAT Problem

CNF-SAT is NP-Complete

I CNF-SAT is in NP.
I Trivial, it’s a special case of SAT.

I CNF-SAT is NP-hard.
I Can be shown by reducing SAT to CNF-SAT.

I Rewrite =⇒,⇐⇒,⊕, . . . to combinations of ∧,∨,¬.
Consider 4 unary and 16 binary boolean functions. O(n).

I Convert expression so that negation is applied only to variables.

¬(f ∨ g) = ¬f ∧ ¬g
¬(f ∧ g) = ¬f ∨ ¬g
¬¬f = f

Straightforward recursive implementation. O(n).
I Construct from the result an expression in CNF.

Consider base case where a formula φ is a literal.
Consider two recursion cases φ = φ1 ∧ φ2 and φ = φ1 ∨ φ2.

I Proof yields an algorithm to rewrite SAT to CNF-SAT in
polynomial time.

Alexander Baumgartner SAT Problem

Example SAT to CNF-SAT

I ¬((x1 ∨ ¬(x2 ∧ (x3 =⇒ x2))) ∨ ¬x3)

I ¬((x1 ∨ ¬(x2 ∧ (¬x3 ∨ x2))) ∨ ¬x3)

I ((¬x1 ∧ (x2 ∧ (¬x3 ∨ x2))) ∧ x3)

I (¬x1) ∧ (x2) ∧ (¬x3 ∨ x2) ∧ (x3)

Alexander Baumgartner SAT Problem

Variants of CNF-SAT

I k-SAT = k literals in each clause.
I k-SAT is NP-complete.

I 3-SAT = 3 literals in each clause.

I e.g. (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ ¬x4)
I 3-SAT is NP-complete.

I 2-SAT = 2 literals in each clause.
I 2-SAT is NL-complete.

I Horn-SAT = Each clause has at most one positive literal (head).
I e.g. (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1) ∧ (x2 ∨ ¬x1)
I Horn-SAT is P-complete.

I MUS-SAT = Minimal unsatisfiable subsets (MUSes).
I MUS = Unsatisfiable subset of clauses such that any of its proper

subsets is satisfiable.

Alexander Baumgartner SAT Problem

Variants of CNF-SAT

I k-SAT = k literals in each clause.
I k-SAT is NP-complete.

I 3-SAT = 3 literals in each clause.

I e.g. (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ ¬x4)
I 3-SAT is NP-complete.

I 2-SAT = 2 literals in each clause.
I 2-SAT is NL-complete.

I Horn-SAT = Each clause has at most one positive literal (head).
I e.g. (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1) ∧ (x2 ∨ ¬x1)
I Horn-SAT is P-complete.

I MUS-SAT = Minimal unsatisfiable subsets (MUSes).
I MUS = Unsatisfiable subset of clauses such that any of its proper

subsets is satisfiable.

Alexander Baumgartner SAT Problem

Variants of CNF-SAT

I k-SAT = k literals in each clause.
I k-SAT is NP-complete.

I 3-SAT = 3 literals in each clause.

I e.g. (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ ¬x4)
I 3-SAT is NP-complete.

I 2-SAT = 2 literals in each clause.
I 2-SAT is NL-complete.

I Horn-SAT = Each clause has at most one positive literal (head).
I e.g. (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1) ∧ (x2 ∨ ¬x1)
I Horn-SAT is P-complete.

I MUS-SAT = Minimal unsatisfiable subsets (MUSes).
I MUS = Unsatisfiable subset of clauses such that any of its proper

subsets is satisfiable.

Alexander Baumgartner SAT Problem

Variants of CNF-SAT

I k-SAT = k literals in each clause.
I k-SAT is NP-complete.

I 3-SAT = 3 literals in each clause.

I e.g. (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ ¬x4)
I 3-SAT is NP-complete.

I 2-SAT = 2 literals in each clause.
I 2-SAT is NL-complete.

I Horn-SAT = Each clause has at most one positive literal (head).
I e.g. (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1) ∧ (x2 ∨ ¬x1)
I Horn-SAT is P-complete.

I MUS-SAT = Minimal unsatisfiable subsets (MUSes).
I MUS = Unsatisfiable subset of clauses such that any of its proper

subsets is satisfiable.

Alexander Baumgartner SAT Problem

SAT Solver

I Input: Boolean expression in CNF.

I Output:

{
SAT and satisfying truth assignment or
UNSAT and (maybe) certificate.

I Trial and error (recursive, backtracking).
I Davis-Putnam-Logemann-Loveland (DPLL).

I Systematic backtracking algorithm.

I Paturi-Pudlak-Saks-Zani (PPSZ).
I Heuristic randomized algorithm.

Alexander Baumgartner SAT Problem

SAT Solver

I Input: Boolean expression in CNF.

I Output:

{
SAT and satisfying truth assignment or
UNSAT and (maybe) certificate.

I Trial and error (recursive, backtracking).
I Davis-Putnam-Logemann-Loveland (DPLL).

I Systematic backtracking algorithm.

I Paturi-Pudlak-Saks-Zani (PPSZ).
I Heuristic randomized algorithm.

Alexander Baumgartner SAT Problem

DPLL Rules

I Partial truth assignments M,N; Set E of clauses C ; Literals l .

I M |= ¬C , if C is false under M.
I E |= C , if C is true in all models of E .

I UnitPropagate
M ‖ E ∪ {C ∨ l} =⇒ M · l ‖ E ∪ {C ∨ l},

if M |= ¬C and l is undefined in M.
I Decide

M ‖ E =⇒ M · ld ‖ E ,
if l or ¬l occurs in a clause of E and l is undefined in M.

I Fail
M ‖ E ∪ {C} =⇒ fail,

if M |= ¬C and M contains no decision literals.
I Backjump

M · ld · N ‖ E =⇒ M · l ′ ‖ E ,
if there is some clause C ∨ l ′ such that E |= C ∨ l ′ and M |= ¬C
and l ′ is undefined in M and l or ¬l occurs in a clause of E .

Alexander Baumgartner SAT Problem

DPLL Rules

I Partial truth assignments M,N; Set E of clauses C ; Literals l .

I M |= ¬C , if C is false under M.
I E |= C , if C is true in all models of E .

I UnitPropagate
M ‖ E ∪ {C ∨ l} =⇒ M · l ‖ E ∪ {C ∨ l},

if M |= ¬C and l is undefined in M.

I Decide
M ‖ E =⇒ M · ld ‖ E ,

if l or ¬l occurs in a clause of E and l is undefined in M.
I Fail

M ‖ E ∪ {C} =⇒ fail,
if M |= ¬C and M contains no decision literals.

I Backjump
M · ld · N ‖ E =⇒ M · l ′ ‖ E ,

if there is some clause C ∨ l ′ such that E |= C ∨ l ′ and M |= ¬C
and l ′ is undefined in M and l or ¬l occurs in a clause of E .

Alexander Baumgartner SAT Problem

DPLL Rules

I Partial truth assignments M,N; Set E of clauses C ; Literals l .

I M |= ¬C , if C is false under M.
I E |= C , if C is true in all models of E .

I UnitPropagate
M ‖ E ∪ {C ∨ l} =⇒ M · l ‖ E ∪ {C ∨ l},

if M |= ¬C and l is undefined in M.
I Decide

M ‖ E =⇒ M · ld ‖ E ,
if l or ¬l occurs in a clause of E and l is undefined in M.

I Fail
M ‖ E ∪ {C} =⇒ fail,

if M |= ¬C and M contains no decision literals.
I Backjump

M · ld · N ‖ E =⇒ M · l ′ ‖ E ,
if there is some clause C ∨ l ′ such that E |= C ∨ l ′ and M |= ¬C
and l ′ is undefined in M and l or ¬l occurs in a clause of E .

Alexander Baumgartner SAT Problem

DPLL Rules

I Partial truth assignments M,N; Set E of clauses C ; Literals l .

I M |= ¬C , if C is false under M.
I E |= C , if C is true in all models of E .

I UnitPropagate
M ‖ E ∪ {C ∨ l} =⇒ M · l ‖ E ∪ {C ∨ l},

if M |= ¬C and l is undefined in M.
I Decide

M ‖ E =⇒ M · ld ‖ E ,
if l or ¬l occurs in a clause of E and l is undefined in M.

I Fail
M ‖ E ∪ {C} =⇒ fail,

if M |= ¬C and M contains no decision literals.

I Backjump
M · ld · N ‖ E =⇒ M · l ′ ‖ E ,

if there is some clause C ∨ l ′ such that E |= C ∨ l ′ and M |= ¬C
and l ′ is undefined in M and l or ¬l occurs in a clause of E .

Alexander Baumgartner SAT Problem

DPLL Rules

I Partial truth assignments M,N; Set E of clauses C ; Literals l .

I M |= ¬C , if C is false under M.
I E |= C , if C is true in all models of E .

I UnitPropagate
M ‖ E ∪ {C ∨ l} =⇒ M · l ‖ E ∪ {C ∨ l},

if M |= ¬C and l is undefined in M.
I Decide

M ‖ E =⇒ M · ld ‖ E ,
if l or ¬l occurs in a clause of E and l is undefined in M.

I Fail
M ‖ E ∪ {C} =⇒ fail,

if M |= ¬C and M contains no decision literals.
I Backjump

M · ld · N ‖ E =⇒ M · l ′ ‖ E ,
if there is some clause C ∨ l ′ such that E |= C ∨ l ′ and M |= ¬C
and l ′ is undefined in M and l or ¬l occurs in a clause of E .

Alexander Baumgartner SAT Problem

DPLL Efficiently

I O(n) space complexity.

I O(2n) time complexity.
I Efficiency issues:

I Efficient data structure for unit propagation.
I Select literal in Decide rule.
I Select literal in Backjump rule.
I Reuse gained information after back jump - Reduce search space.

Alexander Baumgartner SAT Problem

Some Implementation Strategies

I Variable (and value) selection heuristic.

I Clause learning.

I Conflict-directed backjumping.

I Assignment stack shrinking.

I Conflict clause minimization.

I The watched literals scheme.

I Fast backjumping.

I Randomized restarts.

I ...

Alexander Baumgartner SAT Problem

Solver Types

I Single-engine solver.

I Portfolio approach.

I Interacting multi-engine approach.

I Parallel approach.

Alexander Baumgartner SAT Problem

Events

I Biannual SAT-Race/Challenge (2012, June 17-20, Trento, Italy).

I Biannual SAT-Competition (2013, July 8-12, Helsinki, Finland).

I Clear input/output specification.
I Different problem types:

I Application,
I Hand crafted,
I Random.

http://www.satcompetition.org/

Alexander Baumgartner SAT Problem

http://www.satcompetition.org/

SAT-Challenge 2012 / Application SAT+UNSAT

http://baldur.iti.kit.edu/SAT-Challenge-2012/

Alexander Baumgartner SAT Problem

http://baldur.iti.kit.edu/SAT-Challenge-2012/

Input Format

c This is UnifRandomKSATGenerator
c uniform random 6-SAT generated instance with:
c clause length: 6
c number variables: 200
c number clauses: 8674
c clause to variable ratio: 43.37
c random number generator name: SHA1PRNG
c random number generator provider: SUN
c random number generator seed: 591561685814725618
p cnf 200 8674
-40 146 89 -186 107 -36 0
65 99 -6 73 -119 30 0
35 -41 -59 -180 -144 198 0
-91 -105 49 79 61 -18 0
-152 87 185 -130 -66 -119 0
...

Alexander Baumgartner SAT Problem

Output Format

c predict which solver should be used
c solver ranking 2 4 8 3 1 0 5 6 7
c run and check best solver 26 ...
c child timeout set to 1200
c child exited successfully
c TIME USED: 0.000000
c clasp version 2.0.0-RC2
c Reading from test.cnf
c Solving...
c Answer: 1
v -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20
...
v -199 200 0
s SATISFIABLE

c Models : 1+
c Time : 0.004s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
c CPU Time : 0.000s

Alexander Baumgartner SAT Problem

Solving Problems with SAT

I State of the art SAT solvers are highly sophisticated.

I Encode problem as boolean expression.

I Use a SAT solver to find satisfying truth assignment.

Alexander Baumgartner SAT Problem

Encode 3-Coloring Problem

I Given a graph (V ,E) find an assignment of one of 3 colors to
each vertex such that no two adjacent vertices share a color.

I For each vertex v ∈ V :

(v(1)∨v(2)∨v(3))∧(¬v(1)∨¬v(2))∧(¬v(1)∨¬v(3))∧(¬v(2)∨¬v(3))

I For each edge (v , u) ∈ E :

(¬v(1) ∨ ¬u(1)) ∧ (¬v(2) ∨ ¬u(2)) ∧ (¬v(3) ∨ ¬u(3))

I Vertex v colored with color i iff v(i) true in the model.

Alexander Baumgartner SAT Problem

Encode 3-Coloring Problem

I Given a graph (V ,E) find an assignment of one of 3 colors to
each vertex such that no two adjacent vertices share a color.

I For each vertex v ∈ V :

(v(1)∨v(2)∨v(3))∧(¬v(1)∨¬v(2))∧(¬v(1)∨¬v(3))∧(¬v(2)∨¬v(3))

I For each edge (v , u) ∈ E :

(¬v(1) ∨ ¬u(1)) ∧ (¬v(2) ∨ ¬u(2)) ∧ (¬v(3) ∨ ¬u(3))

I Vertex v colored with color i iff v(i) true in the model.

Alexander Baumgartner SAT Problem

Encode 3-Coloring Problem

I Given a graph (V ,E) find an assignment of one of 3 colors to
each vertex such that no two adjacent vertices share a color.

I For each vertex v ∈ V :

(v(1)∨v(2)∨v(3))∧(¬v(1)∨¬v(2))∧(¬v(1)∨¬v(3))∧(¬v(2)∨¬v(3))

I For each edge (v , u) ∈ E :

(¬v(1) ∨ ¬u(1)) ∧ (¬v(2) ∨ ¬u(2)) ∧ (¬v(3) ∨ ¬u(3))

I Vertex v colored with color i iff v(i) true in the model.

Alexander Baumgartner SAT Problem

