The SAT Problem

Alexander Baumgartner

Research Institute for Symbolic Computation

- ▶ Boolean *variables X*.
- ▶ Binary/Unary boolean *functions* F (e.g.: $\land, \lor, \Longrightarrow, \oplus, \neg, Id, ...$).
- ▶ Boolean *expressions* are built from *X*, *F* and parenthesis.
- ► *Truth assignment:* Assignment of boolean values to the variables.
 - We use 0 for false and 1 for true.
- ► Satisfying truth assignment: Expression evaluates to 1.

Definition (SAT Problem)

Given a boolean expression, does it have a satisfying truth assignment?

Definition (SAT Problem)

Given a boolean expression, does it have a satisfying truth assignment?

Example

The expression $\neg((x_1 \lor \neg(x_2 \land (x_3 \Longrightarrow x_2))) \lor \neg x_3)$ is SAT. There is a satisfying truth assignment $x_1 = 0, x_2 = 1, x_3 = 1$. $x_1 \land \neg x_1$ is UNSAT. There is no satisfying truth assignment.

- ▶ SAT was the first known *NP*-complete problem.
- Proved in Cook Levin Theorem.
 - ► SAT is in NP.
 - ▶ All problems in *NP* are polynomially reducible to SAT.

- ▶ *Literal:* Boolean variable or its negation (e.g. x or $\neg x$).
- Clause: Logical OR of one or more literals (e.g. $x_1 \lor x_2 \lor \neg x_3$).
- ▶ A boolean expression is in *CNF* if it's the logical AND of clauses (e.g. $(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_4) \land (x_4) \land (\neg x_2 \lor \neg x_3 \lor x_4))$.

- ► CNF-SAT is in *NP*.
 - ► Trivial, it's a special case of SAT.
- ► CNF-SAT is *NP*-hard.
 - ► Can be shown by reducing SAT to CNF-SAT.

- ► CNF-SAT is in NP.
 - ► Trivial, it's a special case of SAT.
- ► CNF-SAT is *NP*-hard.
 - Can be shown by reducing SAT to CNF-SAT.
 - ▶ Rewrite ⇒, ⇔, ⊕, ... to combinations of ∧, ∨, ¬. Consider 4 unary and 16 binary boolean functions. O(n).

- ► CNF-SAT is in NP.
 - ► Trivial, it's a special case of SAT.
- ► CNF-SAT is *NP*-hard.
 - Can be shown by reducing SAT to CNF-SAT.
 - Rewrite ⇒, ⇔, ⊕, ... to combinations of ∧, ∨, ¬. Consider 4 unary and 16 binary boolean functions. O(n).
 - Convert expression so that negation is applied only to variables.

$$\neg (f \lor g) = \neg f \land \neg g$$

$$\neg (f \land g) = \neg f \lor \neg g$$

$$\neg \neg f = f$$

Straightforward recursive implementation. O(n).

- ► CNF-SAT is in NP.
 - ► Trivial, it's a special case of SAT.
- ► CNF-SAT is *NP*-hard.
 - Can be shown by reducing SAT to CNF-SAT.
 - Rewrite ⇒, ⇔, ⊕, ... to combinations of ∧, ∨, ¬. Consider 4 unary and 16 binary boolean functions. O(n).
 - Convert expression so that negation is applied only to variables.

$$\neg (f \lor g) = \neg f \land \neg g$$

$$\neg (f \land g) = \neg f \lor \neg g$$

$$\neg \neg f = f$$

Straightforward recursive implementation. O(n).

Construct from the result an expression in CNF. Consider base case where a formula φ is a literal. Consider two recursion cases φ = φ₁ ∧ φ₂ and φ = φ₁ ∨ φ₂.

- ► CNF-SAT is in *NP*.
 - ► Trivial, it's a special case of SAT.
- ► CNF-SAT is *NP*-hard.
 - ► Can be shown by reducing SAT to CNF-SAT.
 - Rewrite ⇒, ⇔, ⊕, ... to combinations of ∧, ∨, ¬. Consider 4 unary and 16 binary boolean functions. O(n).
 - Convert expression so that negation is applied only to variables.

$$\neg (f \lor g) = \neg f \land \neg g$$

$$\neg (f \land g) = \neg f \lor \neg g$$

$$\neg \neg f = f$$

Straightforward recursive implementation. O(n).

- Construct from the result an expression in CNF. Consider base case where a formula φ is a literal. Consider two recursion cases φ = φ₁ ∧ φ₂ and φ = φ₁ ∨ φ₂.
- Proof yields an algorithm to rewrite SAT to CNF-SAT in polynomial time.

$$\neg ((x_1 \lor \neg (x_2 \land (x_3 \Longrightarrow x_2))) \lor \neg x_3)$$

$$\neg ((x_1 \lor \neg (x_2 \land (\neg x_3 \lor x_2))) \lor \neg x_3)$$

$$\land ((\neg x_1 \land (x_2 \land (\neg x_3 \lor x_2))) \land x_3)$$

$$\land (\neg x_1) \land (x_2) \land (\neg x_3 \lor x_2) \land (x_3)$$

- k-SAT = k literals in each clause.
 - ▶ k-SAT is *NP*-complete.

- k-SAT = k literals in each clause.
 - ▶ k-SAT is *NP*-complete.
- 3-SAT = 3 literals in each clause.

- 2-SAT = 2 literals in each clause.
 - ▶ 2-SAT is *NL*-complete.

- k-SAT = k literals in each clause.
 - ▶ k-SAT is *NP*-complete.
- 3-SAT = 3 literals in each clause.

▶ e.g.
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor \neg x_4)$$

- 3-SAT is NP-complete.
- 2-SAT = 2 literals in each clause.
 - ▶ 2-SAT is *NL*-complete.

▶ Horn-SAT = Each clause has at most one positive literal (head).

• e.g.
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1) \land (x_2 \lor \neg x_1)$$

Horn-SAT is P-complete.

- k-SAT = k literals in each clause.
 - ▶ k-SAT is *NP*-complete.
- ▶ 3-SAT = 3 literals in each clause.

• e.g.
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor \neg x_4)$$

- ▶ 3-SAT is *NP*-complete.
- 2-SAT = 2 literals in each clause.
 - ▶ 2-SAT is *NL*-complete.

▶ Horn-SAT = Each clause has at most one positive literal (head).

• e.g.
$$(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1) \land (x_2 \lor \neg x_1)$$

- Horn-SAT is P-complete.
- ▶ MUS-SAT = Minimal unsatisfiable subsets (MUSes).
 - MUS = Unsatisfiable subset of clauses such that any of its proper subsets is satisfiable.

- ▶ Input: Boolean expression in CNF.
- Output: SAT and satisfying truth assignment or UNSAT and (maybe) certificate.

- ▶ Input: Boolean expression in CNF.
- Output: SAT and satisfying truth assignment or UNSAT and (maybe) certificate.
- ► Trial and error (recursive, backtracking).
- Davis-Putnam-Logemann-Loveland (DPLL).
 - Systematic backtracking algorithm.
- Paturi-Pudlak-Saks-Zani (PPSZ).
 - Heuristic randomized algorithm.

- ▶ Partial truth assignments M, N; Set E of clauses C; Literals I.
- $M \models \neg C$, if C is false under M.
- $E \models C$, if C is true in all models of E.

- ▶ Partial truth assignments M, N; Set E of clauses C; Literals I.
- $M \models \neg C$, if C is false under M.
- $E \models C$, if C is true in all models of E.
 - UnitPropagate

 $M \parallel E \cup \{C \lor I\} \Longrightarrow M \cdot I \parallel E \cup \{C \lor I\},$ if $M \models \neg C$ and I is undefined in M.

- ▶ Partial truth assignments M, N; Set E of clauses C; Literals I.
- $M \models \neg C$, if C is false under M.
- $E \models C$, if C is true in all models of E.
 - UnitPropagate

$$M \parallel E \cup \{C \lor I\} \Longrightarrow M \cdot I \parallel E \cup \{C \lor I\},$$

- if $M \models \neg C$ and *I* is undefined in *M*.
- Decide

 $M \parallel E \Longrightarrow M \cdot I^d \parallel E,$

if I or $\neg I$ occurs in a clause of E and I is undefined in M.

- ▶ Partial truth assignments M, N; Set E of clauses C; Literals I.
- $M \models \neg C$, if C is false under M.
- $E \models C$, if C is true in all models of E.
 - UnitPropagate

$$M \parallel E \cup \{C \lor I\} \Longrightarrow M \cdot I \parallel E \cup \{C \lor I\},$$

- if $M \models \neg C$ and *I* is undefined in *M*.
- Decide

 $M \parallel E \Longrightarrow M \cdot I^d \parallel E,$

if I or $\neg I$ occurs in a clause of E and I is undefined in M.

► Fail

 $M \parallel E \cup \{C\} \Longrightarrow$ fail,

if $M \models \neg C$ and M contains no decision literals.

- ▶ Partial truth assignments M, N; Set E of clauses C; Literals I.
- $M \models \neg C$, if C is false under M.
- $E \models C$, if C is true in all models of E.
 - UnitPropagate

$$M \parallel E \cup \{C \lor I\} \Longrightarrow M \cdot I \parallel E \cup \{C \lor I\},$$

- if $M \models \neg C$ and *I* is undefined in *M*.
- Decide

 $M \parallel E \Longrightarrow M \cdot I^d \parallel E,$

if I or $\neg I$ occurs in a clause of E and I is undefined in M.

► Fail

 $M \parallel E \cup \{C\} \Longrightarrow$ fail,

if $M \models \neg C$ and M contains no decision literals.

Backjump

 $M \cdot I^d \cdot N \parallel E \Longrightarrow M \cdot I' \parallel E$, if there is some clause $C \vee I'$ such that $E \models C \vee I'$ and $M \models \neg C$ and I' is undefined in M and I or $\neg I$ occurs in a clause of E.

- O(n) space complexity.
- $O(2^n)$ time complexity.
- Efficiency issues:
 - Efficient data structure for unit propagation.
 - Select literal in Decide rule.
 - Select literal in Backjump rule.
 - ▶ Reuse gained information after back jump Reduce search space.

Some Implementation Strategies

- ▶ Variable (and value) selection heuristic.
- Clause learning.
- Conflict-directed backjumping.
- Assignment stack shrinking.
- Conflict clause minimization.
- The watched literals scheme.
- Fast backjumping.
- Randomized restarts.

▶ ...

- ► Single-engine solver.
- Portfolio approach.
- Interacting multi-engine approach.
- Parallel approach.

- ▶ Biannual SAT-Race/Challenge (2012, June 17-20, Trento, Italy).
- Biannual SAT-Competition (2013, July 8-12, Helsinki, Finland).
- Clear input/output specification.
- Different problem types:
 - Application,
 - Hand crafted,
 - Random.

```
http://www.satcompetition.org/
```

SAT-Challenge 2012 / Application SAT+UNSAT

Rank	RiG	Solver	# solved	% solved	cum. run- time	median run- time
-	-	Virtual Best Solver (VBS)	568	94.7	56528	30.3
1	1	SATzilla2012 APP	531	88.5	85194	114.0
2	2	SATzilla2012 ALL	515	85.8	86638	122.2
3	1	Industrial SAT Solver	499	83.2	93705	160.2
-	-	lingeling (SAT Competition 2011 Bronze)	488	81.3	84715	135.3
4	2	interactSAT	480	80.0	87676	152.5
5	1	glucose	475	79.2	71501	114.4
6	2	SINN	472	78.7	86302	146.4
7	3	ZENN	468	78.0	74019	124.7
8	4	Lingeling	467	77.8	91973	185.5
9	5	linge_dyphase	458	76.3	90192	204.4
10	6	simpsat	453	75.5	95737	222.0

http://baldur.iti.kit.edu/SAT-Challenge-2012/

Input Format

c This is UnifRandomKSATGenerator c uniform random 6-SAT generated instance with: c clause length: 6 c number variables: 200 c number clauses: 8674 c clause to variable ratio: 43.37 c random number generator name: SHA1PRNG c random number generator provider: SUN c random number generator seed: 591561685814725618 p cnf 200 8674 -40 146 89 -186 107 -36 0 65 99 -6 73 -119 30 0 35 - 41 - 59 - 180 - 144 198 0 -91 -105 49 79 61 -18 0 -152 87 185 -130 -66 -119 0

Output Format

```
c predict which solver should be used ....
c solver ranking 2 4 8 3 1 0 5 6 7
c run and check best solver 26
c child timeout set to 1200
c child exited successfully
c TIME USED: 0.000000
c clasp version 2.0.0-RC2
c Reading from test.cnf
c Solving...
c Answer: 1
v -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20
v -199 200 0
s SATISFIABLE
c Models : 1+
c Time : 0.004s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
c CPU Time : 0.000s
```

- ▶ State of the art SAT solvers are highly sophisticated.
- Encode problem as boolean expression.
- Use a SAT solver to find satisfying truth assignment.

► Given a graph (V, E) find an assignment of one of 3 colors to each vertex such that no two adjacent vertices share a color.

- ▶ Given a graph (V, E) find an assignment of one of 3 colors to each vertex such that no two adjacent vertices share a color.
- For each vertex $v \in V$:

 $(v(1) \lor v(2) \lor v(3)) \land (\neg v(1) \lor \neg v(2)) \land (\neg v(1) \lor \neg v(3)) \land (\neg v(2) \lor \neg v(3))$

- ▶ Given a graph (V, E) find an assignment of one of 3 colors to each vertex such that no two adjacent vertices share a color.
- For each vertex $v \in V$:

 $(v(1) \lor v(2) \lor v(3)) \land (\neg v(1) \lor \neg v(2)) \land (\neg v(1) \lor \neg v(3)) \land (\neg v(2) \lor \neg v(3))$

For each edge $(v, u) \in E$:

 $(\neg v(1) \lor \neg u(1)) \land (\neg v(2) \lor \neg u(2)) \land (\neg v(3) \lor \neg u(3))$

▶ Vertex v colored with color i iff v(i) true in the model.