The SAT Problem

Alexander Baumgartner
Research Institute for Symbolic Computation

Boolean Satisfiability Problem

- Boolean variables X.
- Binary/Unary boolean functions F (e.g.: $\wedge, \vee, \Longrightarrow, \oplus, \neg, I d, \ldots$).
- Boolean expressions are built from X, F and parenthesis.
- Truth assignment: Assignment of boolean values to the variables.
- We use 0 for false and 1 for true.
- Satisfying truth assignment: Expression evaluates to 1.

Boolean Satisfiability Problem

Definition (SAT Problem)

Given a boolean expression, does it have a satisfying truth assignment?

Boolean Satisfiability Problem

Definition (SAT Problem)

Given a boolean expression, does it have a satisfying truth assignment?

Example

The expression $\neg\left(\left(x_{1} \vee \neg\left(x_{2} \wedge\left(x_{3} \Longrightarrow x_{2}\right)\right)\right) \vee \neg x_{3}\right)$ is SAT.
There is a satisfying truth assignment $x_{1}=0, x_{2}=1, x_{3}=1$. $x_{1} \wedge \neg x_{1}$ is UNSAT. There is no satisfying truth assignment.

SAT is NP-Complete

- SAT was the first known NP-complete problem.
- Proved in Cook Levin Theorem.
- SAT is in NP.
- All problems in NP are polynomially reducible to SAT.

CNF-SAT

- Literal: Boolean variable or its negation (e.g. x or $\neg x$).
- Clause: Logical OR of one or more literals (e.g. $x_{1} \vee x_{2} \vee \neg x_{3}$).
- A boolean expression is in CNF if it's the logical AND of clauses (e.g. $\left.\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)\right)$.

CNF-SAT is NP-Complete

- CNF-SAT is in NP.
- Trivial, it's a special case of SAT.
- CNF-SAT is NP-hard.
- Can be shown by reducing SAT to CNF-SAT.

CNF-SAT is NP-Complete

- CNF-SAT is in NP.
- Trivial, it's a special case of SAT.
- CNF-SAT is NP-hard.
- Can be shown by reducing SAT to CNF-SAT.
\triangleright Rewrite $\Longrightarrow, \Longleftrightarrow, \oplus, \ldots$ to combinations of \wedge, \vee, \neg. Consider 4 unary and 16 binary boolean functions. $O(n)$.

CNF-SAT is NP-Complete

- CNF-SAT is in NP.
- Trivial, it's a special case of SAT.
- CNF-SAT is NP-hard.
- Can be shown by reducing SAT to CNF-SAT.
\triangleright Rewrite $\Longrightarrow, \Longleftrightarrow, \oplus, \ldots$ to combinations of \wedge, \vee, \neg. Consider 4 unary and 16 binary boolean functions. $O(n)$.
- Convert expression so that negation is applied only to variables.

$$
\begin{array}{ccc}
\neg(f \vee g) & =\neg f \wedge \neg g \\
\neg(f \wedge g) & =\neg f \vee \neg g \\
\neg \neg f & = & f
\end{array}
$$

Straightforward recursive implementation. $O(n)$.

CNF-SAT is NP-Complete

- CNF-SAT is in NP.
- Trivial, it's a special case of SAT.
- CNF-SAT is NP-hard.
- Can be shown by reducing SAT to CNF-SAT.
\triangleright Rewrite $\Longrightarrow, \Longleftrightarrow, \oplus, \ldots$ to combinations of \wedge, \vee, \neg. Consider 4 unary and 16 binary boolean functions. $O(n)$.
- Convert expression so that negation is applied only to variables.

$$
\begin{array}{ccc}
\neg(f \vee g) & =\neg f \wedge \neg g \\
\neg(f \wedge g) & =\neg f \vee \neg g \\
\neg \neg f & = & f
\end{array}
$$

Straightforward recursive implementation. $O(n)$.

- Construct from the result an expression in CNF. Consider base case where a formula ϕ is a literal. Consider two recursion cases $\phi=\phi_{1} \wedge \phi_{2}$ and $\phi=\phi_{1} \vee \phi_{2}$.

CNF-SAT is NP-Complete

- CNF-SAT is in NP.
- Trivial, it's a special case of SAT.
- CNF-SAT is NP-hard.
- Can be shown by reducing SAT to CNF-SAT.
\triangleright Rewrite $\Longrightarrow, \Longleftrightarrow, \oplus, \ldots$ to combinations of \wedge, \vee, \neg. Consider 4 unary and 16 binary boolean functions. $O(n)$.
- Convert expression so that negation is applied only to variables.

$$
\begin{array}{ccc}
\neg(f \vee g) & = & \neg f \wedge \neg g \\
\neg(f \wedge g) & = & \neg f \vee \neg g \\
\neg \neg f & = & f
\end{array}
$$

Straightforward recursive implementation. $O(n)$.

- Construct from the result an expression in CNF. Consider base case where a formula ϕ is a literal. Consider two recursion cases $\phi=\phi_{1} \wedge \phi_{2}$ and $\phi=\phi_{1} \vee \phi_{2}$.
- Proof yields an algorithm to rewrite SAT to CNF-SAT in polynomial time.

Example SAT to CNF-SAT

- $\neg\left(\left(x_{1} \vee \neg\left(x_{2} \wedge\left(x_{3} \Longrightarrow x_{2}\right)\right)\right) \vee \neg x_{3}\right)$
- $\neg\left(\left(x_{1} \vee \neg\left(x_{2} \wedge\left(\neg x_{3} \vee x_{2}\right)\right)\right) \vee \neg x_{3}\right)$
- $\left(\left(\neg x_{1} \wedge\left(x_{2} \wedge\left(\neg x_{3} \vee x_{2}\right)\right)\right) \wedge x_{3}\right)$
- $\left(\neg x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{3} \vee x_{2}\right) \wedge\left(x_{3}\right)$

Variants of CNF-SAT

- k -SAT $=k$ literals in each clause.
- k-SAT is NP-complete.

Variants of CNF-SAT

- k -SAT $=k$ literals in each clause.
- k-SAT is NP-complete.
- 3-SAT $=3$ literals in each clause.
- e.g. $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{4}\right)$
- 3-SAT is NP-complete.
- 2-SAT $=2$ literals in each clause.
- 2-SAT is NL-complete.

Variants of CNF-SAT

- k -SAT $=k$ literals in each clause.
- k-SAT is NP-complete.
- 3-SAT $=3$ literals in each clause.
- e.g. $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{4}\right)$
- 3-SAT is NP-complete.
- 2 -SAT $=2$ literals in each clause.
- 2-SAT is NL-complete.
- Horn-SAT $=$ Each clause has at most one positive literal (head).
\triangleright e.g. $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1}\right) \wedge\left(x_{2} \vee \neg x_{1}\right)$
- Horn-SAT is P-complete.

Variants of CNF-SAT

- k -SAT $=k$ literals in each clause.
- k-SAT is NP-complete.
- 3-SAT $=3$ literals in each clause.
- e.g. $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{4}\right)$
- 3-SAT is NP-complete.
- 2-SAT $=2$ literals in each clause.
- 2-SAT is NL-complete.
- Horn-SAT $=$ Each clause has at most one positive literal (head).
\downarrow e.g. $\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1}\right) \wedge\left(x_{2} \vee \neg x_{1}\right)$
- Horn-SAT is P-complete.
- MUS-SAT $=$ Minimal unsatisfiable subsets (MUSes).
- MUS = Unsatisfiable subset of clauses such that any of its proper subsets is satisfiable.

SAT Solver

- Input: Boolean expression in CNF.
- Output: $\left\{\begin{array}{l}\text { SAT and satisfying truth assignment or }\end{array}\right.$ UNSAT and (maybe) certificate.

SAT Solver

- Input: Boolean expression in CNF.
- Output: $\left\{\begin{array}{l}\text { SAT and satisfying truth assignment or } \\ \text { UNSAT and (maybe) certificate. }\end{array}\right.$
- Trial and error (recursive, backtracking).
- Davis-Putnam-Logemann-Loveland (DPLL).
- Systematic backtracking algorithm.
- Paturi-Pudlak-Saks-Zani (PPSZ).
- Heuristic randomized algorithm.

DPLL Rules

- Partial truth assignments M, N; Set E of clauses C; Literals I.
- $M \models \neg C$, if C is false under M.
- $E \models C$, if C is true in all models of E.

DPLL Rules

- Partial truth assignments M, N; Set E of clauses C; Literals I.
- $M \models \neg C$, if C is false under M.
- $E \models C$, if C is true in all models of E.
- UnitPropagate

$$
\begin{aligned}
& \quad M\|E \cup\{C \vee I\} \Longrightarrow M \cdot I\| E \cup\{C \vee I\} \text {, } \\
& \text { if } M \models \neg C \text { and } I \text { is undefined in } M \text {. }
\end{aligned}
$$

DPLL Rules

- Partial truth assignments M, N; Set E of clauses C; Literals I.
- $M \models \neg C$, if C is false under M.
- $E \models C$, if C is true in all models of E.
- UnitPropagate

$$
M\|E \cup\{C \vee I\} \Longrightarrow M \cdot I\| E \cup\{C \vee I\}
$$

if $M \models \neg C$ and I is undefined in M.

- Decide

$$
M\left\|E \Longrightarrow M \cdot I^{d}\right\| E
$$

if I or $\neg /$ occurs in a clause of E and I is undefined in M.

DPLL Rules

- Partial truth assignments M, N; Set E of clauses C; Literals I.
- $M \models \neg C$, if C is false under M.
- $E \models C$, if C is true in all models of E.
- UnitPropagate

$$
M\|E \cup\{C \vee I\} \Longrightarrow M \cdot I\| E \cup\{C \vee I\}
$$

if $M \models \neg C$ and I is undefined in M.

- Decide

$$
M\left\|E \Longrightarrow M \cdot I^{d}\right\| E
$$

if I or $\neg /$ occurs in a clause of E and I is undefined in M.

- Fail

$$
M \| E \cup\{C\} \Longrightarrow \text { fail, }
$$

if $M \models \neg C$ and M contains no decision literals.

DPLL Rules

- Partial truth assignments M, N; Set E of clauses C; Literals I.
- $M \vDash \neg C$, if C is false under M.
- $E \models C$, if C is true in all models of E.
- UnitPropagate

$$
M\|\dot{E} \cup\{C \vee I\} \Longrightarrow M \cdot I\| E \cup\{C \vee I\}
$$

if $M \models \neg C$ and I is undefined in M.

- Decide

$$
M\left\|E \Longrightarrow M \cdot I^{d}\right\| E
$$

if I or $\neg /$ occurs in a clause of E and I is undefined in M.

- Fail

$$
M \| E \cup\{C\} \Longrightarrow \text { fail, }
$$

if $M \models \neg C$ and M contains no decision literals.

- Backjump

$$
M \cdot I^{d} \cdot N\left\|E \Longrightarrow M \cdot I^{\prime}\right\| E
$$

if there is some clause $C \vee I^{\prime}$ such that $E \models C \vee I^{\prime}$ and $M \models \neg C$ and I is undefined in M and I or $\neg /$ occurs in a clause of E.

DPLL Efficiently

- $O(n)$ space complexity.
- $O\left(2^{n}\right)$ time complexity.
- Efficiency issues:
- Efficient data structure for unit propagation.
- Select literal in Decide rule.
- Select literal in Backjump rule.
- Reuse gained information after back jump - Reduce search space.

Some Implementation Strategies

- Variable (and value) selection heuristic.
- Clause learning.
- Conflict-directed backjumping.
- Assignment stack shrinking.
- Conflict clause minimization.
- The watched literals scheme.
- Fast backjumping.
- Randomized restarts.

Solver Types

- Single-engine solver.
- Portfolio approach.
- Interacting multi-engine approach.
- Parallel approach.

Events

- Biannual SAT-Race/Challenge (2012, June 17-20, Trento, Italy).
- Biannual SAT-Competition (2013, July 8-12, Helsinki, Finland).
- Clear input/output specification.
- Different problem types:
- Application,
- Hand crafted,
- Random.
http://www.satcompetition.org/

SAT-Challenge 2012 / Application SAT+UNSAT

Rank	RiG	Solver	\# solved	$\%$ solved	cum. run- time	median run- time
-	-	Virtual Best Solver (VBS)	568	94.7	56528	30.3
1	1	SATzilla2012 APP	531	88.5	85194	114.0
2	2	SATzilla2012 ALL	515	85.8	86638	122.2
3	1	Industrial SAT Solver	499	83.2	93705	160.2
-	-	lingeling (SAT Competition 2011 Bronze)	488	81.3	84715	135.3
4	2	interactSAT	480	80.0	87676	152.5
5	1	glucose	475	79.2	71501	114.4
6	2	SINN	472	78.7	86302	146.4
7	3	ZENN	468	78.0	74019	124.7
8	4	Lingeling	467	77.8	91973	185.5
9	5	linge_dyphase	458	76.3	90192	204.4
10	6	simpsat	453	75.5	95737	222.0

http://baldur.iti.kit.edu/SAT-Challenge-2012/

Input Format

c This is UnifRandomKSATGenerator
c uniform random 6-SAT generated instance with:
c clause length: 6
c number variables: 200
c number clauses: 8674
c clause to variable ratio: 43.37
c random number generator name: SHA1PRNG
c random number generator provider: SUN
c random number generator seed: 591561685814725618
p cnf 2008674
-40 14689 -186 107 -36 0
$6599-673-119300$
35-41-59-180-144 1980
-91-105 $497961-180$
$-15287185-130-66-1190$

Output Format

c predict which solver should be used
c solver ranking 248310567
c run and check best solver $26 \ldots$
c child timeout set to 1200
c child exited successfully
c TIME USED: 0.000000
c clasp version 2.0.0-RC2
c Reading from test.cnf
c Solving...
c Answer: 1

v-199 2000
s SATISFIABLE
c Models: 1+
c Time : 0.004s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
c CPU Time : 0.000s

Solving Problems with SAT

- State of the art SAT solvers are highly sophisticated.
- Encode problem as boolean expression.
- Use a SAT solver to find satisfying truth assignment.

Encode 3-Coloring Problem

- Given a graph (V, E) find an assignment of one of 3 colors to each vertex such that no two adjacent vertices share a color.

Encode 3-Coloring Problem

- Given a graph (V, E) find an assignment of one of 3 colors to each vertex such that no two adjacent vertices share a color.
- For each vertex $v \in V$:
$(v(1) \vee v(2) \vee v(3)) \wedge(\neg v(1) \vee \neg v(2)) \wedge(\neg v(1) \vee \neg v(3)) \wedge(\neg v(2) \vee \neg v(3))$

Encode 3-Coloring Problem

- Given a graph (V, E) find an assignment of one of 3 colors to each vertex such that no two adjacent vertices share a color.
- For each vertex $v \in V$:
$(v(1) \vee v(2) \vee v(3)) \wedge(\neg v(1) \vee \neg v(2)) \wedge(\neg v(1) \vee \neg v(3)) \wedge(\neg v(2) \vee \neg v(3))$
- For each edge $(v, u) \in E$:

$$
(\neg v(1) \vee \neg u(1)) \wedge(\neg v(2) \vee \neg u(2)) \wedge(\neg v(3) \vee \neg u(3))
$$

- Vertex v colored with color i iff $v(i)$ true in the model.

