Introduction to Unification Theory
Solving Systems of Linear Diophantine Equations

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria
kutsia@risc.jku.at
ACU-Unification

- We saw an example how to solve ACU-unification problem.
- Reduction to systems of linear Diophantine equations (LDEs) over natural numbers.
Elementary ACU-Unification

- Elementary ACU-unification problem

\[\{ f(x, f(x, y)) \overset{?}{=}_{ACU} f(z, f(z, z)) \} \]

reduces to homogeneous linear Diophantine equation

\[2x + y = 3z. \]

- Each equation in the unification problem gives rise to one linear Diophantine equation.

- A most general ACU-unifier is obtained by combining all the unifiers corresponding to the minimal solutions of the system of LDEs.
Elementary ACU-Unification

- $\Gamma = \{ f(x, f(x, y)) = ?_{ACU} f(z, f(z, z)) \}$ and $S = \{ 2x + y = 3z \}$.
- S has three minimal solutions: $(1, 1, 1), (0, 3, 1), (3, 0, 2)$.
- Three unifiers of Γ:

 $\sigma_1 = \{ x \mapsto v_1, y \mapsto v_1, z \mapsto v_1 \}$

 $\sigma_2 = \{ x \mapsto e, y \mapsto f(v_2, f(v_2, v_2)), z \mapsto v_2 \}$

 $\sigma_3 = \{ x \mapsto f(v_3, f(v_3, v_3)), y \mapsto e, z \mapsto f(v_3, v_3) \}$

- A most general unifier of Γ:

 $\sigma = \{ x \mapsto f(v_1, f(v_3, f(v_3, v_3))), y \mapsto f(v_1, f(v_2, f(v_2, v_2))),

 z \mapsto f(v_1, f(v_2, f(v_3, v_3))) \}$
ACU-Unification with constants

- ACU-unification problem with constants

\[
\Gamma = \{ f(x, f(x, y)) \overset{?}{=} \text{ACU} f(a, f(z, f(z, z))) \}
\]

reduces to inhomogeneous linear Diophantine equation

\[
S = \{ 2x + y = 3z + 1 \}.
\]

- The minimal nontrivial natural solutions of \(S \) are \((0, 1, 0)\) and \((2, 0, 1)\).
ACU-Unification with constants

- ACU-unification problem with constants

\[\Gamma = \{ f(x, f(x, y)) \overset{?}{=} \text{ACU} f(a, f(z, f(z, z))) \} \]

reduces to inhomogeneous linear Diophantine equation

\[S = \{ 2x + y = 3z + 1 \}. \]

- Every natural solution of \(S \) is obtained by as the sum of one of the minimal solution and a solution of the corresponding homogeneous LDE \(2x + y = 3z \).

- One element of the minimal complete set of unifiers of \(\Gamma \) is obtained from the combination of one minimal solution of \(S \) with the set of all minimal solutions of \(2x + y = 3z \).
ACU-Unification with constants

- ACU-unification problem with constants

\[\Gamma = \{ f(x, f(x, y)) \equiv_{ACU} f(a, f(z, f(z, z))) \} \]

reduces to inhomogeneous linear Diophantine equation

\[S = \{ 2x + y = 3z + 1 \}. \]

- The minimal complete set of unifiers of \(\Gamma \) is \(\{ \sigma_1, \sigma_2 \} \), where

\[\sigma_1 = \{ x \mapsto f(v_1, f(v_3, f(v_3, v_3))), y \mapsto f(a, f(v_1, f(v_2, f(v_2, v_2)))), z \mapsto f(v_1, f(v_2, f(v_3, v_3))) \} \]

\[\sigma_2 = \{ x \mapsto f(a, f(a, f(v_1, f(v_3, f(v_3, v_3)))), y \mapsto f(v_1, f(v_2, f(v_2, v_2))), z \mapsto f(a, f(v_1, f(v_2, f(v_3, v_3)))) \} \]
How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:

How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:

Evelyne Contejean and Hervé Devie.
An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations.

Generalizes Fortenbacher’s Algorithm for solving a single equation:

Michael Clausen and Albrecht Fortenbacher.
Efficient Solution of Linear Diophantine Equations.
Homogeneous linear Diophantine system with m equations and n variables:

\[
\begin{aligned}
& a_{11}x_1 + \cdots + a_{1n}x_n = 0 \\
& \vdots \\
& a_{m1}x_1 + \cdots + a_{mn}x_n = 0
\end{aligned}
\]

- a_{ij}'s are integers.
- Looking for nontrivial natural solutions.
Homogeneous Case

Example

\[
\begin{align*}
-x_1 + x_2 + 2x_3 - 3x_4 &= 0 \\
-x_1 + 3x_2 - 2x_3 - x_4 &= 0
\end{align*}
\]

Nontrivial solutions:

- \(s_1 = (0, 1, 1, 1) \)
- \(s_2 = (4, 2, 1, 0) \)
- \(s_3 = (0, 2, 2, 2) \)
- \(s_4 = (8, 4, 2, 0) \)
- \(s_5 = (4, 3, 2, 1) \)
- \(s_6 = (8, 5, 3, 1) \)
- \(\ldots \)
Homogeneous Case

Example

\[
\begin{align*}
- x_1 + x_2 + 2x_3 - 3x_4 &= 0 \\
- x_1 + 3x_2 - 2x_3 - x_4 &= 0
\end{align*}
\]

Nontrivial solutions:

\begin{itemize}
 \item $s_1 = (0, 1, 1, 1)$
 \item $s_2 = (4, 2, 1, 0)$
 \item $s_3 = (0, 2, 2, 2) = 2s_1$
 \item $s_4 = (8, 4, 2, 0) = 2s_2$
 \item $s_5 = (4, 3, 2, 1) = s_1 + s_2$
 \item $s_6 = (8, 5, 3, 1) = s_1 + 2s_2$
 \item \ldots
\end{itemize}
Homogeneous Case

Homogeneous linear Diophantine system with m equations and n variables:

\[
\begin{align*}
& a_{11}x_1 + \cdots + a_{1n}x_n = 0 \\
& \quad \vdots \\
& a_{m1}x_1 + \cdots + a_{mn}x_n = 0
\end{align*}
\]

- a_{ij}'s are integers.
- Looking for a basis in the set of nontrivial natural solutions.
Homogeneous linear Diophantine system with m equations and n variables:

\[
\begin{cases}
 a_{11}x_1 + \cdots + a_{1n}x_n = 0 \\
 \vdots \\
 a_{m1}x_1 + \cdots + a_{mn}x_n = 0
\end{cases}
\]

- a_{ij}’s are integers.
- Looking for a basis in the set of nontrivial natural solutions.
- Does it exist?
Homogeneous Case

The basis in the set S of nontrivial natural solutions of a homogeneous LDS is the set of \gg-minimal elements S.

\gg is the ordering on tuples of natural numbers:

$$(x_1, \ldots, x_n) \gg (y_1, \ldots, y_n)$$

if and only if

- $x_i \geq y_i$ for all $1 \leq i \leq n$ and
- $x_i > y_i$ for some $1 \leq i \leq n$.

Matrix Form

Homogeneous linear Diophantine system with m equations and n variables:

$$Ax_\downarrow = 0_\downarrow,$$

where

$$A := \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, \quad x_\downarrow := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad 0_\downarrow := \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$
Matrix Form

- Canonical basis in \mathbb{N}^n: (e_1, \ldots, e_n).

- $e_j = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$, with 1 in j’s row.

- Then $Ax = x_1 A e_1 + \cdots + x_n A e_n$.

a: The linear mapping associated to A.

Then $a(x) = x_1 a(e_1) + \cdots + x_n a(e_n)$.
Matrix Form

- Canonical basis in \mathbb{N}^n: (e_1, \ldots, e_n).

$e_j = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$, with 1 in j’s row.

Then $Ax = x_1 Ae_1 + \cdots + x_n Ae_n$.

a: The linear mapping associated to A.

Then $a(x) = x_1 a(e_1) + \cdots + x_n a(e_n)$.
Case \(m = 1 \): Single homogeneous LDE \(a_1 x_1 + \cdots + a_n x_n = 0 \).

Fortenbacher’s idea:

- Search minimal solutions starting from the elements in the canonical basis of \(\mathbb{N}^n \).
- Suppose the current vector \(v_\downarrow \) is not a solution.
- It can be nondeterministically increased, component by component, until it becomes a solution or greater than a solution.
- To decrease the search space, the following restrictions can be imposed:
 - If \(a(v_\downarrow) > 0 \), then increase by one some \(v_j \) with \(a_j < 0 \).
 - If \(a(v_\downarrow) < 0 \), then increase by one some \(v_j \) with \(a_j > 0 \).
Case $m = 1$: Single homogeneous LDE $a_1 x_1 + \cdots + a_n x_n = 0$

Fortenbacher's idea:

- Search minimal solutions starting from the elements in the canonical basis of \mathbb{N}^n.
- Suppose the current vector v_\downarrow is not a solution.
- It can be nondeterministically increased, component by component, until it becomes a solution or greater than a solution.
- To decrease the search space, the following restrictions can be imposed:
 - If $a(v_\downarrow) > 0$, then increase by one some v_j with $a_j < 0$.
 - If $a(v_\downarrow) < 0$, then increase by one some v_j with $a_j > 0$.
 - (If $a(v_\downarrow)a(e_j\downarrow) < 0$ for some j, increase v_j by one.)
Fortenbacher’s condition
If $a(v_j)a(e_j) < 0$ for some j, increase v_j by one.

Increasing v_j by one: $a(v_j + e_j) = a(v_j) + a(e_j)$.

Going to the “right direction”, towards the origin.
Case $m = 1$: Single homogeneous LDE $a_1 x_1 + \cdots + a_n x_n = 0$.
Fortenbacher’s algorithm:
Case $m = 1$: Single homogeneous LDE $a_1x_1 + \cdots + a_nx_n = 0$.

Fortenbacher’s algorithm:

- Start with the pair P, M of the set of potential solutions $P = \{e_1 \downarrow, \ldots, e_n \downarrow\}$ and the set of minimal nontrivial solutions $M = \emptyset$.
Case $m = 1$: Single homogeneous LDE $a_1 x_1 + \cdots + a_n x_n = 0$. Fortenbacher’s algorithm:

- Start with the pair P, M of the set of potential solutions $P = \{e_1, \ldots, e_n\}$ and the set of minimal nontrivial solutions $M = \emptyset$.
- Apply repeatedly the rules:
Case $m = 1$: Single homogeneous LDE $a_1 x_1 + \cdots + a_n x_n = 0$.

Fortenbacher’s algorithm:

- Start with the pair P, M of the set of potential solutions $P = \{e_1, \ldots, e_n\}$ and the set of minimal nontrivial solutions $M = \emptyset$.

- Apply repeatedly the rules:

 1. $\{v\} \cup P', M \Rightarrow P', M$, if $v \gg u$ for some $u \in M$.
Case $m = 1$: Single homogeneous LDE $a_1 x_1 + \cdots + a_n x_n = 0$.

Fortenbacher's algorithm:

- Start with the pair P, M of the set of potential solutions $P = \{ e_1 \downarrow, \ldots, e_n \downarrow \}$ and the set of minimal nontrivial solutions $M = \emptyset$.

- Apply repeatedly the rules:

 1. $\{v \downarrow \} \cup P', M \Rightarrow P', M$, if $v \downarrow \gg u \downarrow$ for some $u \downarrow \in M$.

 2. $\{v \downarrow \} \cup P', M \Rightarrow P', \{v \downarrow \} \cup M$, if $a(v \downarrow) = 0$ and rule 1 is not applicable.
Case $m = 1$: Single homogeneous LDE $a_1x_1 + \cdots + a_nx_n = 0$.

Fortenbacher’s algorithm:

- Start with the pair P, M of the set of potential solutions $P = \{e_1, \ldots, e_n\}$ and the set of minimal nontrivial solutions $M = \emptyset$.

- Apply repeatedly the rules:

 1. $\{v\} \cup P', M \rightarrow P', M$, if $v \gg u$ for some $u \in M$.

 2. $\{v\} \cup P', M \rightarrow P', \{v\} \cup M$, if $a(v) = 0$ and rule 1 is not applicable.

 3. $P, M \rightarrow \{v + e_j | v \in P, a(v)a(e_j) < 0, j \in 1..n\}, M$, if rules 1 and 2 are not applicable.
Single Equation: Algorithm

Case $m = 1$: Single homogeneous LDE $a_1 x_1 + \cdots + a_n x_n = 0$.
Fortenbacher’s algorithm:

- Start with the pair P, M of the set of potential solutions $P = \{e_1 \downarrow, \ldots, e_n \downarrow\}$ and the set of minimal nontrivial solutions $M = \emptyset$.

- Apply repeatedly the rules:

 1. $\{v \downarrow\} \cup P', M \Rightarrow P', M$, if $v \downarrow \gg u \downarrow$ for some $u \downarrow \in M$.

 2. $\{v \downarrow\} \cup P', M \Rightarrow P', \{v \downarrow\} \cup M$, if $a(v \downarrow) = 0$ and rule 1 is not applicable.

 3. $P, M \Rightarrow \{v \downarrow + e_j \downarrow \mid v \downarrow \in P, a(v \downarrow)a(e_j \downarrow) < 0, j \in 1..n\}, M$, if rules 1 and 2 are not applicable.

- If \emptyset, M is reached, return M.
System of Equations: Idea

- General case: System of homogeneous LDEs.
- $a(x_{\downarrow}) = 0_{\downarrow}$.
- Generalizing Fortenbacher’s idea:
 - Search minimal solutions starting from the elements in the canonical basis of \mathbb{N}^n.
 - Suppose the current vector v_{\downarrow} is not a solution.
 - It can be nondeterministically increased, component by component, until it becomes a solution or greater than a solution.
 - To decrease the search space, increase only those components that lead to the “right direction”.
System of Equations: How to Restrict

- “Right direction”: Towards the origin.
- If $a(v_\downarrow) \neq 0_\downarrow$, then do $a(v_\downarrow + e_{j_\downarrow}) = a(v_\downarrow) + a(e_{j_\downarrow})$.
- $a(v_\downarrow) + a(e_{j_\downarrow})$ should lie in the half-space containing O.
- **Contejean-Devie condition**: If $a(v_\downarrow) \cdot a(e_{j_\downarrow}) < 0$ for some j, increase v_j by one. (\cdot is the scalar product.)
How to Restrict: Comparison

▶ Fortenbacher’s condition
If $a(v_{\downarrow}) a(e_{j\downarrow}) < 0$ for some j, increase v_j by one.

▶ Contejean-Devie condition
If $a(v_{\downarrow}) \cdot a(e_{j\downarrow}) < 0$ for some j, increase v_j by one.
System of Equations: Algorithm

System of homogeneous LDEs: \(a(x_\downarrow) = 0 \downarrow \).
Contejean-Devie algorithm:

- Start with the pair \(P, M \) where
 - \(P = \{ e_{1\downarrow}, \ldots, e_{n\downarrow} \} \) is the set of potential solutions,
 - \(M = \emptyset \) is the set of minimal nontrivial solutions.

- Apply repeatedly the rules:
 1. \(\{ v_\downarrow \} \cup P', M \rightarrow P', M \),
 if \(v_\downarrow \gg u_\downarrow \) for some \(u_\downarrow \in M \).
 2. \(\{ v_\downarrow \} \cup P', M \rightarrow P', \{ v_\downarrow \} \cup M, \)
 if \(a(v_\downarrow) = 0_\downarrow \) and rule 1 is not applicable.
 3. \(P, M \rightarrow \{ v_\downarrow + e_{j\downarrow} \mid v_\downarrow \in P, a(v_\downarrow) \cdot a(e_{j\downarrow}) < 0, j \in 1..n \}, M, \)
 if rules 1 and 2 are not applicable.

- If \(\emptyset, M \) is reached, return \(M \).
Contejean-Devie Algorithm on an Example

\[
\begin{align*}
- x_1 + x_2 + 2x_3 - 3x_4 &= 0 \\
- x_1 + 3x_2 - 2x_3 - x_4 &= 0
\end{align*}
\]

\[e_1 \downarrow = (1, 0, 0, 0)^T \quad e_2 \downarrow = (0, 1, 0, 0)^T\]
\[e_3 \downarrow = (0, 0, 1, 0)^T \quad e_4 \downarrow = (0, 0, 0, 1)^T\]

1. \(\{v\downarrow\} \cup P', M \rightarrow P', M,\)
 if \(v\downarrow \gg u\downarrow\) for some \(u\downarrow \in M.\)

2. \(\{v\downarrow\} \cup P', M \rightarrow P', \{v\downarrow\} \cup M,\)
 if \(a(v\downarrow) = 0\downarrow\) and rule 1 is not applicable.

3. \(P, M \rightarrow \{v\downarrow + e_j \downarrow \mid v\downarrow \in P,\)
 \(a(v\downarrow) \cdot a(e_j \downarrow) < 0, \ j \in 1..n\}, M,\)
 if rules 1 and 2 are not applicable.
Contejean-Devie Algorithm on an Example

\[
\begin{align*}
- x_1 &+ x_2 + 2x_3 - 3x_4 = 0 \\
- x_1 &+ 3x_2 - 2x_3 - x_4 = 0
\end{align*}
\]

\[e_1 \downarrow = (1, 0, 0, 0)^T \quad e_2 \downarrow = (0, 1, 0, 0)^T\]
\[e_3 \downarrow = (0, 0, 1, 0)^T \quad e_4 \downarrow = (0, 0, 0, 1)^T\]

1. \(\{v\downarrow\} \cup P', M \rightarrow P', M\),
 if \(v\downarrow \gg u\downarrow\) for some \(u\downarrow \in M\).

2. \(\{v\downarrow\} \cup P', M \rightarrow P', \{v\downarrow\} \cup M\),
 if \(a(v\downarrow) = 0\downarrow\) and rule 1 is not applicable.

3. \(P, M \rightarrow \{v\downarrow + e_j\downarrow \mid v\downarrow \in P, \)
 \(a(v\downarrow) \cdot a(e_j\downarrow) < 0, j \in 1..n\}, M\),
 if rules 1 and 2 are not applicable.
Contejean-Devie Algorithm on an Example

\[
\begin{aligned}
-x_1 &+ x_2 + 2x_3 - 3x_4 = 0 \\
-x_1 &+ 3x_2 - 2x_3 - x_4 = 0
\end{aligned}
\]

\[e_1 \downarrow = (1, 0, 0, 0)^T \quad e_2 \downarrow = (0, 1, 0, 0)^T\]
\[e_3 \downarrow = (0, 0, 1, 0)^T \quad e_4 \downarrow = (0, 0, 0, 1)^T\]

1. \(\{v\downarrow\} \cup P', M \Rightarrow P', M,\)
 if \(v\downarrow \gg u\downarrow\) for some \(u\downarrow \in M\).

2. \(\{v\downarrow\} \cup P', M \Rightarrow P', \{v\downarrow\} \cup M,\)
 if \(a(v\downarrow) = 0\downarrow\) and rule 1 is not applicable.

3. \(P, M \Rightarrow \{v\downarrow + e_j\downarrow \mid v\downarrow \in P,\)
 \(a(v\downarrow) \cdot a(e_j\downarrow) < 0, j \in 1..n\}, M,\)
 if rules 1 and 2 are not applicable.
Contejean-Devie Algorithm on an Example

\[
\begin{align*}
- x_1 + x_2 + 2x_3 - 3x_4 &= 0 \\
- x_1 + 3x_2 - 2x_3 - x_4 &= 0
\end{align*}
\]

\[e_1 \downarrow = (1, 0, 0, 0)^T \quad e_2 \downarrow = (0, 1, 0, 0)^T \]
\[e_3 \downarrow = (0, 0, 1, 0)^T \quad e_4 \downarrow = (0, 0, 0, 1)^T\]

1. \(\{v_\downarrow\} \cup P', M \longrightarrow P', M\), if \(v_\downarrow \gg u_\downarrow\) for some \(u_\downarrow \in M\).

2. \(\{v_\downarrow\} \cup P', M \longrightarrow P', \{v_\downarrow\} \cup M\), if \(a(v_\downarrow) = 0_\downarrow\) and rule 1 is not applicable.

3. \(P, M \longrightarrow \{v_\downarrow + e_j \downarrow \mid v_\downarrow \in P, a(v_\downarrow) \cdot a(e_j \downarrow) < 0, j \in 1..n\}, M\), if rules 1 and 2 are not applicable.
Contejean-Devie Algorithm on an Example

\[
\begin{align*}
- x_1 + x_2 + 2x_3 - 3x_4 &= 0 \\
- x_1 + 3x_2 - 2x_3 - x_4 &= 0
\end{align*}
\]

\[e_{1\downarrow} = (1, 0, 0, 0)^T \quad e_{2\downarrow} = (0, 1, 0, 0)^T\]
\[e_{3\downarrow} = (0, 0, 1, 0)^T \quad e_{4\downarrow} = (0, 0, 0, 1)^T\]

1. \(\{v\downarrow\} \cup P', M \rightarrow P', M\),
 if \(v\downarrow \gg u\downarrow\) for some \(u\downarrow \in M\).

2. \(\{v\downarrow\} \cup P', M \rightarrow P', \{v\downarrow\} \cup M\),
 if \(a(v\downarrow) = 0\downarrow\) and rule 1 is not applicable.

3. \(P, M \rightarrow \{v\downarrow + e_{j\downarrow} \mid v\downarrow \in P, \quad a(v\downarrow) \cdot a(e_{j\downarrow}) < 0, \quad j \in 1..n\}, M\),
 if rules 1 and 2 are not applicable.
Contejean-Devie Algorithm on an Example

\[
\begin{align*}
- x_1 + x_2 + 2x_3 - 3x_4 &= 0 \\
- x_1 + 3x_2 - 2x_3 - x_4 &= 0
\end{align*}
\]

\[e_1 = (1, 0, 0, 0)^T \quad e_2 = (0, 1, 0, 0)^T\]
\[e_3 = (0, 0, 1, 0)^T \quad e_4 = (0, 0, 0, 1)^T\]

1. \(\{v\} \cup P', M \rightarrow P', M\), if \(v \gg u\) for some \(u \in M\).

2. \(\{v\} \cup P', M \rightarrow P', \{v\} \cup M\), if \(a(v) = 0\) and rule 1 is not applicable.

3. \(P, M \rightarrow \{v + e_j \mid v \in P, a(v) \cdot a(e_j) < 0, j \in 1..n\}, M\), if rules 1 and 2 are not applicable.
Condejean-Devie Algorithm on an Example

\[
\begin{align*}
- x_1 + x_2 + 2x_3 - 3x_4 &= 0 \\
- x_1 + 3x_2 - 2x_3 - x_4 &= 0
\end{align*}
\]

\[e_1\downarrow = (1, 0, 0, 0)^T \quad e_2\downarrow = (0, 1, 0, 0)^T\]
\[e_3\downarrow = (0, 0, 1, 0)^T \quad e_4\downarrow = (0, 0, 0, 1)^T\]

1. \(\{v\downarrow\} \cup P', M \Rightarrow P', M\),
 if \(v\downarrow \gg u\downarrow\) for some \(u\downarrow \in M\).

2. \(\{v\downarrow\} \cup P', M \Rightarrow P', \{v\downarrow\} \cup M\),
 if \(a(v\downarrow) = 0\downarrow\) and rule 1 is not applicable.

3. \(P, M \Rightarrow \{v\downarrow + e_j\downarrow \mid v\downarrow \in P, a(v\downarrow) \cdot a(e_j\downarrow) < 0, j \in 1..n\}, M\),
 if rules 1 and 2 are not applicable.
Contejean-Devie Algorithm on an Example

\[
\begin{align*}
-x_1 + x_2 + 2x_3 - 3x_4 &= 0 \\
-x_1 + 3x_2 - 2x_3 - x_4 &= 0
\end{align*}
\]

\[e_{1}\downarrow = (1, 0, 0, 0)^T \quad e_{2}\downarrow = (0, 1, 0, 0)^T\]
\[e_{3}\downarrow = (0, 0, 1, 0)^T \quad e_{4}\downarrow = (0, 0, 0, 1)^T\]

1. \(\{v\downarrow\} \cup P', M \rightarrow P', M\),
 if \(v\downarrow \gg u\downarrow\) for some \(u\downarrow \in M\).

2. \(\{v\downarrow\} \cup P', M \rightarrow P', \{v\downarrow\} \cup M\),
 if \(a(v\downarrow) = 0\downarrow\) and rule 1 is not applicable.

3. \(P, M \rightarrow \{v\downarrow + e_j\downarrow \mid v\downarrow \in P, a(v\downarrow) \cdot a(e_j\downarrow) < 0, j \in 1..n\}, M\),
 if rules 1 and 2 are not applicable.
Contejean-Devie Algorithm on an Example

\[
\begin{align*}
- x_1 &+ x_2 + 2x_3 - 3x_4 = 0 \\
- x_1 &+ 3x_2 - 2x_3 - x_4 = 0
\end{align*}
\]

\[
e_1\downarrow = (1, 0, 0, 0)^T \quad e_2\downarrow = (0, 1, 0, 0)^T \\
e_3\downarrow = (0, 0, 1, 0)^T \quad e_4\downarrow = (0, 0, 0, 1)^T
\]

1. \(\{v\downarrow\} \cup P', M \rightarrow P', M\), if \(v\downarrow \gg u\downarrow\) for some \(u\downarrow \in M\).

2. \(\{v\downarrow\} \cup P', M \rightarrow P', \{v\downarrow\} \cup M\), if \(a(v\downarrow) = 0\downarrow\) and rule 1 is not applicable.

3. \(P, M \rightarrow \{v\downarrow + e_j\downarrow \mid v\downarrow \in P, \quad a(v\downarrow) \cdot a(e_j\downarrow) < 0, \quad j \in 1..n\}\), \(M\), if rules 1 and 2 are not applicable.
Contejean-Devie Algorithm on an Example

\[
\begin{align*}
&\left\{-x_1 + x_2 + 2x_3 - 3x_4 = 0
ight. \\
&\left.-x_1 + 3x_2 - 2x_3 - x_4 = 0\right.
\end{align*}
\]

\[e_1 \downarrow = (1, 0, 0, 0)^T \quad e_2 \downarrow = (0, 1, 0, 0)^T\]
\[e_3 \downarrow = (0, 0, 1, 0)^T \quad e_4 \downarrow = (0, 0, 0, 1)^T\]

1. \(\{v\downarrow\} \cup P', M \rightarrow P', M\),
 if \(v \downarrow \gg u \downarrow\) for some \(u \downarrow \in M\).

2. \(\{v\downarrow\} \cup P', M \rightarrow P', \{v\downarrow\} \cup M\),
 if \(a(v \downarrow) = 0 \downarrow\) and rule 1 is not applicable.

3. \(P, M \rightarrow \{v \downarrow + e_j \downarrow \mid v \downarrow \in P,\)
 \(a(v \downarrow) \cdot a(e_j \downarrow) < 0, j \in 1..n\}, M\),
 if rules 1 and 2 are not applicable.
Contejean-Devie Algorithm on an Example

\[
\begin{align*}
- x_1 + x_2 + 2x_3 - 3x_4 &= 0 \\
- x_1 + 3x_2 - 2x_3 - x_4 &= 0
\end{align*}
\]

\[e_1\downarrow = (1, 0, 0, 0)^T \quad e_2\downarrow = (0, 1, 0, 0)^T \]
\[e_3\downarrow = (0, 0, 1, 0)^T \quad e_4\downarrow = (0, 0, 0, 1)^T \]

1. \(\{v\downarrow\} \cup P', M \Rightarrow P', M\),
 if \(v\downarrow \gg u\downarrow\) for some \(u\downarrow \in M\).

2. \(\{v\downarrow\} \cup P', M \Rightarrow P', \{v\downarrow\} \cup M\),
 if \(a(v\downarrow) = 0\downarrow\) and rule 1 is not applicable.

3. \(P, M \Rightarrow \{v\downarrow + e_j\downarrow \mid v\downarrow \in P,\ a(v\downarrow) \cdot a(e_j\downarrow) < 0, j \in 1..n\}, M\),
 if rules 1 and 2 are not applicable.
Contejean-Devie Algorithm on an Example

\[
\begin{align*}
-x_1 + x_2 + 2x_3 - 3x_4 &= 0 \\
-x_1 + 3x_2 - 2x_3 - x_4 &= 0
\end{align*}
\]

\[e_1 \downarrow = (1, 0, 0, 0)^T \quad e_2 \downarrow = (0, 1, 0, 0)^T \]

\[e_3 \downarrow = (0, 0, 1, 0)^T \quad e_4 \downarrow = (0, 0, 0, 1)^T \]

1. \(\{v \downarrow\} \cup P', M \implies P', M, \)
 if \(v \downarrow \gg u \downarrow \) for some \(u \downarrow \in M \).

2. \(\{v \downarrow\} \cup P', M \implies P', \{v \downarrow\} \cup M, \)
 if \(a(v \downarrow) = 0 \downarrow \) and rule 1 is not applicable.

3. \(P, M \implies \{v \downarrow + e_j \downarrow \mid v \downarrow \in P, \)
 \(a(v \downarrow) \cdot a(e_j \downarrow) < 0, j \in 1..n\}, M, \)
 if rules 1 and 2 are not applicable.
Contejean-Devie Algorithm on an Example

\[
\begin{aligned}
- x_1 + x_2 + 2x_3 - 3x_4 &= 0 \\
- x_1 + 3x_2 - 2x_3 - x_4 &= 0
\end{aligned}
\]

\[e_1 \downarrow = (1, 0, 0, 0)^T \quad e_2 \downarrow = (0, 1, 0, 0)^T \]
\[e_3 \downarrow = (0, 0, 1, 0)^T \quad e_4 \downarrow = (0, 0, 0, 1)^T \]

1. \(\{v \downarrow\} \cup P', M \rightarrow P', M\), if \(v \downarrow \gg u \downarrow\) for some \(u \downarrow \in M\).

2. \(\{v \downarrow\} \cup P', M \rightarrow P', \{v \downarrow\} \cup M\), if \(a(v \downarrow) = 0\) and rule 1 is not applicable.

3. \(P, M \rightarrow \{v \downarrow + e_j \downarrow \mid v \downarrow \in P\), \(a(v \downarrow) \cdot a(e_j \downarrow) < 0, j \in 1..n\}\), \(M\), if rules 1 and 2 are not applicable.
Contejean-Devie Algorithm on an Example

\[
\begin{align*}
- x_1 + x_2 + 2x_3 - 3x_4 &= 0 \\
- x_1 + 3x_2 - 2x_3 - x_4 &= 0
\end{align*}
\]

\[
e_1 = (1, 0, 0, 0)^T \\
e_2 = (0, 1, 0, 0)^T \\
e_3 = (0, 0, 1, 0)^T \\
e_4 = (0, 0, 0, 1)^T
\]

1. \(\{v\} \cup P', M \implies P', M, \) if \(v \gg u \) for some \(u \in M \).

2. \(\{v\} \cup P', M \implies P', \{v\} \cup M, \) if \(a(v) = 0 \) and rule 1 is not applicable.

3. \(P, M \implies \{v + e_j | v \in P, \ a(v) \cdot a(e_j) < 0, j \in 1..n\}, M, \) if rules 1 and 2 are not applicable.
Contejean-Devie Algorithm on an Example

\[
\begin{align*}
- x_1 + x_2 + 2x_3 - 3x_4 &= 0 \\
- x_1 + 3x_2 - 2x_3 - x_4 &= 0
\end{align*}
\]

\[e_1 \downarrow = (1, 0, 0, 0)^T \quad e_2 \downarrow = (0, 1, 0, 0)^T \]
\[e_3 \downarrow = (0, 0, 1, 0)^T \quad e_4 \downarrow = (0, 0, 0, 1)^T\]

1. \(\{v \downarrow\} \cup P', M \Rightarrow P' \cup M\), if \(v \downarrow \gg u \downarrow\) for some \(u \downarrow \in M\).

2. \(\{v \downarrow\} \cup P', M \Rightarrow P' \cup \{v \downarrow\} \cup M\), if \(a(v \downarrow) = 0 \downarrow\) and rule 1 is not applicable.

3. \(P, M \Rightarrow \{v \downarrow + e_j \downarrow \mid v \downarrow \in P, a(v \downarrow) \cdot a(e_j \downarrow) < 0, j \in 1..n\}\), if rules 1 and 2 are not applicable.
Contejean-Devie Algorithm on an Example

\[
\begin{align*}
- x_1 + x_2 + 2x_3 - 3x_4 &= 0 \\
- x_1 + 3x_2 - 2x_3 - x_4 &= 0
\end{align*}
\]
Properties of the Algorithm

- Completeness
- Soundness
- Termination

In the theorems:

\[a(x_\downarrow) = 0_\downarrow: \text{An } n\text{-variate system of homogeneous LDEs.} \]

\((e_1\downarrow, \ldots, e_n\downarrow): \text{The canonical basis of } \mathbb{N}^n.\)

\(\mathcal{B}(a(x_\downarrow) = 0_\downarrow): \text{Basis in the set of nontrivial natural solutions of} \]

\[a(x_\downarrow) = 0_\downarrow. \]

\(\|v_\downarrow\|: \text{Euclidean norm of } v_\downarrow.\)
Properties of the Algorithm

Theorem (Completeness)

Let \((e_1\downarrow, \ldots, e_n\downarrow), \emptyset \longmapsto^* \emptyset, M\) be the sequence of transformations performed by the Contejean-Devie algorithm for \(a(x\downarrow) = 0\downarrow\). Then

\[B(a(x\downarrow) = 0\downarrow) \subseteq M. \]
Properties of the Algorithm

Theorem (Soundness)

Let \((e_1 \downarrow, \ldots, e_n \downarrow), \emptyset \Longrightarrow^* \emptyset, M\) be the sequence of transformations performed by the Contejean-Devie algorithm for \(a(x\downarrow) = 0\downarrow\). Then

\[M \subseteq \mathcal{B}(a(x\downarrow) = 0\downarrow). \]
Properties of the Algorithm

Lemma (Limit Lemma)

Let \(v_1 \downarrow, v_2 \downarrow, \ldots \) be an infinite sequence satisfying the Contejean-Devie condition for \(a(x \downarrow) = 0 \downarrow \):

- \(v_1 \downarrow \) is a basic vector and for each \(i \geq 1 \) there exists \(1 \leq j \leq n \) such that \(a(v_i \downarrow) \cdot a(e_j \downarrow) < 0 \) and \(v_{i+1} \downarrow = v_i \downarrow + e_j \downarrow \).

Then

\[
\lim_{k \to \infty} \frac{\| a(v_k \downarrow) \|}{k} = 0
\]

Theorem (Termination)

Let \(v_1 \downarrow, v_2 \downarrow, \ldots \) be an infinite sequence satisfying the conditions of the Limit Lemma. Then there exist \(v \downarrow \) and \(k \) such that

- \(v \downarrow \) is a solution of \(a(x \downarrow) = 0 \downarrow \), and

- \(v \downarrow \ll v_k \downarrow \).
Non-Homogeneous Case

Non-homogeneous linear Diophantine system with \(m \) equations and \(n \) variables:

\[
\begin{align*}
\begin{cases}
 a_{11}x_1 + \cdots + a_{1n}x_n &= b_1 \\
 \vdots & \vdots & \vdots \\
 a_{m1}x_1 + \cdots + a_{mn}x_n &= b_m
\end{cases}
\end{align*}
\]

- \(a \)'s and \(b \)'s are integers.
- Matrix form: \(a(x_\downarrow) = b_\downarrow \).
Non-Homogeneous Case. Solving Idea

Turn the system into a homogeneous one, denoted S_0:

$$
\begin{align*}
-b_1 x_0 &+ a_{11} x_1 + \cdots + a_{1n} x_n = 0 \\
\vdots \\
-b_m x_0 &+ a_{m1} x_1 + \cdots + a_{mn} x_n = 0
\end{align*}
$$

- Solve S_0 and keep only the solutions with $x_0 \leq 1$.
- $x_0 = 1$: a minimal solution for $a(x_\downarrow) = b_\downarrow$.
- $x_0 = 0$: a minimal solution for $a(x_\downarrow) = 0_\downarrow$.
- Any solution of the non-homogeneous system $a(x_\downarrow) = b_\downarrow$ has the form $x_\downarrow + y_\downarrow$ where:
 - x_\downarrow is a minimal solution of $a(x_\downarrow) = b_\downarrow$.
 - y_\downarrow is a linear combination (with natural coefficients) of minimal solutions of $a(x_\downarrow) = 0_\downarrow$.