Introduction to Unification Theory

Narrowing

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria
kutsia@risc.jku.at
Overview

Introduction

Basic Narrowing
Outline

Introduction

Basic Narrowing
Introduction

- The most important special case of the E-unification problem, when the equational theory can be represented by a ground convergent set of rewrite rules.
- Narrowing: The process that is used to solve such E-unification problems.
Let E be a set of identities, and R a convergent term rewriting equivalent to E.

σ is an E-unifier of s and t, then $s\sigma$ and $t\sigma$ have the same R-normal forms.

Idea: Construct the unifier and the corresponding reduction chains simultaneously.
Example

- \(E = \{0 + x = x\} \), \(R = \{0 + x \rightarrow x\} \).
- Solve \(E \)-unification problem \(\{y + z \doteq_{E} 0\} \).
- Proceed as follows:
 1. Look for an instance of \(y + z \) to which the rewrite rule applies. Such instance is computed by syntactically unifying \(y + z \) and \(0 + x \), yielding the mgu \(\varphi = \{y \mapsto 0, z \mapsto x\} \).
 2. \((y + z)\varphi = 0 + x\), rewriting it with \(0 + x \rightarrow x \) gives \(x \) and we obtain a new problem \(\{x \doteq_{E} 0\} \).
 3. \(\{x \doteq_{E} 0\} \) has the syntactic mgu \(\vartheta = \{x \mapsto 0\} \).
 4. By this process we have simultaneously constructed the \(E \)-unifier \(\sigma = \varphi\vartheta = \{y \mapsto 0, z \mapsto 0, x \mapsto 0\} \) and the rewrite chain \((y + z)\sigma = 0 + 0 \rightarrow 0 = 0\sigma\).
Preliminaries

- **A rewrite rule**: a directed equation $l \rightarrow r$, where $\text{vars}(r) \subseteq \text{vars}(l)$.
- **A term rewriting system (TRS)**: a set of rewrite rules.
- $s|_p$: The subterm of s at position p.
- $s[t]|_p$: A term obtained from s by replacing its subterm at position p with the term t.
- The **rewrite relation** R associated with a TRS R: $s \rightarrow_R t$ if there exists a variant $l \rightarrow r$ of a rewrite rule in R, a position p in s, and a substitution σ such that $s|_p = l\sigma$ and $t = s[r\sigma]|_p$.
- $s|_p$ is called a **redex**.
Preliminaries

- \(\rightarrow_R \): The transitive-reflexive closure of \(\rightarrow_R \).
- \(s \) reduces to \(t \) in \(R \): \(s \rightarrow_R t \).
- If \(E \) is the set of equations corresponding to \(R \), i.e.,
 \[E = \{ l \equiv r \mid l \rightarrow r \in R \} \],
 then \(\models_E \) coincides with the reflexive-symmetric-transitive closure of \(R \).
- Two terms \(t_1, t_2 \) are joinable (wrt \(R \)), denoted by \(t_1 \downarrow_R t_2 \), if
 there exists a term \(s \) such that \(t_1 \rightarrow_R s \) and \(t_2 \rightarrow_R s \).
- A term \(s \) is a normal form (wrt \(R \)) if there is no term \(t \) with
 \(s \rightarrow_R t \).
Preliminaries

- R is **terminating** if there are no infinite reduction sequences $t_1 \rightarrow_R t_2 \rightarrow_R t_3 \rightarrow_R \cdots$.
- R is **confluent** if for all terms s, t_1, t_2 with $s \rightarrow_R t_1$ and $s \rightarrow_R t_2$ we have $t_1 \Downarrow_R t_2$.
- R is **convergent** if it is confluent and terminating.
Preliminaries

- A constraint system: either \bot (representing failure) or a triple $P; C; S$.
- P: A multiset of equations, representing the schema of the problem.
- C: A set of equations, representing constraints on variables in P.
- S: A set of equations, representing bindings in the solution.
- C plays the role similar to P earlier, the rules from \mathcal{U} will be applied to $C; S$ as before.
- ϑ is said to be a solution (or E-unifier) of a system $P; C; S$ if it E-unifies each equation in P, and unifies each of the equations in C and S; the system \bot has no E-unifiers.
Assumptions

- The rewrite system R is ground convergent with respect to a reduction ordering \succ.

- R is represented as a numbered sequence of rules

\[
\{l_1 \rightarrow r_1, \ldots, l_n \rightarrow r_n\}.
\]

- The index of a rule is its number in this sequence.
Preliminaries

Restricted form of substitution:

Definition
Given a rewrite system R, a substitution ϑ is R-reduced (or just reduced if R is unimportant) if for every $x \in \text{dom}(\vartheta)$, x is in R-normal form.

Example

$$R = \{f(f(x, y), z) \rightarrow f(x, f(y, z)), f(x, x) \rightarrow x\}.$$
$$\vartheta_1 = \{x \mapsto f(f(u, v), w), y \mapsto f(a, f(a, a))\} : \text{not } R\text{-reduced}.$$
$$\vartheta_2 = \{x \mapsto f(u, f(v, w)), y \mapsto a\} : R\text{-reduced}.$$

For any ϑ and terminating set of rules R one can find an R-equivalent reduced substitution ϑ'.
Outline

Introduction

Basic Narrowing
The Calculus \mathcal{B} for Basic Narrowing

The rule set S:

Trivial: $P; \{s \doteq ? s\} \cup C'; S \Longrightarrow P; C'; S.$

Decomposition: $P; \{f(s_1, \ldots, s_n) \doteq ? f(t_1, \ldots, t_n)\} \cup C'; S \Longrightarrow P; \{s_1 \doteq? t_1, \ldots, s_n \doteq? t_n\} \cup C'; S,$

where $n \geq 0$.

Orient: $P; \{t \doteq ? x\} \cup C'; S \Longrightarrow P; \{x \doteq ? t\} \cup C'; S$

if t is not a variable.

Basic Variable $P; \{x \doteq ? t\} \cup C'; S \Longrightarrow$

Elimination: $P; C'\{x \mapsto t\}; S\{x \mapsto t\} \cup \{x \approx t\},$

if $x \notin \text{vars}(t)$.
The Calculus \mathcal{B} for Basic Narrowing

Two extra rules:

Constrain: $\{e\} \cup P'; C; S \xrightarrow{\text{Con}} P'; \{e\sigma_S\} \cup C'; S$.

Lazy Paramodulation:

$\{e[t]\} \cup P'; C; S \xrightarrow{\text{LP}}$

$\{e[r]\} \cup P'; \{l\sigma_S \overset{?}{=} t\sigma_S\} \cup C; S$,

for a fresh variant of $l \rightarrow r$ from R, where

- $e[t]$ is an equation where the term t occurs,
- t is not a variable,
- the top symbol of l and t are the same.
Theorem

Let R be a ground convergent set of rewrite rules. If $P; \emptyset; \emptyset \rightarrow^*_B \emptyset; \emptyset; S$, then σ_S is an R-unifier of P.

Proof.

Exercise.
Completeness of the Calculus \mathcal{B}

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P; \emptyset; \emptyset$, then there exists a sequence $P; \emptyset; \emptyset \xrightarrow{\star} \emptyset; \emptyset; S$ such that $\sigma_S \leq_R \vars(P) \vartheta$.

Proof.

- We may assume that $P\vartheta$ is ground and that ϑ is R-reduced, since the relation \succ does not distinguish between R-equivalent substitutions.

- Thus, we will prove a stronger result, that when ϑ is R-reduced, then $\sigma_S \leq_{\vars(P)} \vartheta$.
Completeness of the Calculus \mathcal{B}

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P; \emptyset; \emptyset$, then there exists a sequence $P; \emptyset; \emptyset \xrightarrow{\mathcal{B}} \emptyset; \emptyset; S$ such that $\sigma_S \leq^R_{\text{vars}(P)} \vartheta$.

Proof (cont.)

The complexity $\langle M, n_1, n_2, n_3 \rangle$ for $P; C; S$ and its solution ϑ:

- $M =$ The multiset of all terms occurring in $P \vartheta$;
- $n_1 =$ The number of distinct variables in C;
- $n_2 =$ The number of symbols in C;
- $n_3 =$ The number of equations $t \vdash_{E} ? x \in C$ where t is not a variable.

Associate to it the well-founded ordering: The multiset extension of \prec for the first component, and the ordering on natural numbers on the remaining components.
Completeness of the Calculus \mathcal{B}

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P; \emptyset; \emptyset$, then there exists a sequence $P; \emptyset; \emptyset \xrightarrow{*_{\mathcal{B}}} \emptyset; \emptyset; S$ such that $\sigma_S \leq^R \varsigma(P) \vartheta$.

Proof (cont.)

Show by induction on this measure that if ϑ is a solution of $P; C; S'$ with S' in a solved form, then there exists a sequence

$$P; C; S' \xrightarrow{*} \emptyset; \emptyset; S$$

such that $\sigma_S \leq^{\mathcal{X}} \vartheta$, where $\mathcal{X} = \varsigma(P, C, S')$.

The base case $\emptyset; \emptyset; S$ is trivial.
Completeness of the Calculus B

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P; \emptyset; \emptyset$, then there exists a sequence $P; \emptyset; \emptyset \xrightarrow{\ast}_B \emptyset; \emptyset; S$ such that $\sigma_S \leq_R \vartheta$.

Proof (cont.)

For the induction step there are several overlapping cases:

1. If $C = \{s :? t\} \cup C'$, then $sv\vartheta = tv\vartheta$ and we use S to generate a transformation step to a smaller system containing the same set of variables, and with the same solution. By the induction hypothesis, we have

$$P; C; S' \xrightarrow{\mathcal{S}} P; C''; S'' \xrightarrow{\ast} \emptyset; \emptyset; S$$

such that $\sigma_S \leq_{\mathcal{X}} \vartheta$ for $\mathcal{X} = \text{vars}(P, C, S')$.
Completeness of the Calculus \mathcal{B}

Theorem

Let R be a ground convergent set of rewrite rules. If \emptyset is an R-reduced solution of $P; \emptyset; \emptyset$, then there exists a sequence $P; \emptyset; \emptyset \longrightarrow^* \emptyset; \emptyset; S$ such that $\sigma_S \leq_R \vars(P) \emptyset$.

Proof (cont.)

2. If $P = \{s \leftarrow t\} \cup P'$ and $s\emptyset = t\emptyset$, then we may apply Constrain to obtain a smaller system (reducing the component M) with the same solution and the same set of variables, and we conclude as in the previous case.
Completeness of the Calculus \mathcal{B}

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P; \emptyset; \emptyset$, then there exists a sequence $P; \emptyset; \emptyset \Longrightarrow^* \emptyset; \emptyset; S$ such that $\sigma_S \leq^R_{\text{vars}(P)} \vartheta$.

Proof (cont.)

3. Assume $P = \{s \overset{?}{=} t\} \cup P'$ and there is an innermost redex in, say $s\vartheta$.
 - If more than one instance of a rule from R reduces this redex, we choose the rule with the smallest index in the set R.
 - Since ϑ is R-reduced, the redex must occur inside the non-variable positions of s.
Completeness of the Calculus \mathcal{B}

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P; \emptyset; \emptyset$, then there exists a sequence $P; \emptyset; \emptyset \xrightarrow{\ast} \emptyset; \emptyset; S$ such that $\sigma_S \leq^{\text{vars}(P)}_R \vartheta$.

Proof (cont.)

3. ▶ Hence, we have the transformation:

$$\{s[s'] \overset{?}{=} t \} \cup P'; C; S' \xrightarrow{\text{LP}}$$

$$\{s[r] \overset{?}{=} t \} \cup P'; \{l\sigma'_S \overset{?}{=} s'\sigma'_S \} \cup C; S'$$

▶ The new system smaller with respect to its new solution $\vartheta' = \vartheta \rho$. ϑ' is still R-reduced.

▶ By the induction hypothesis,

$$\{s[r] \overset{?}{=} t \} \cup P'; \{l\sigma'_S \overset{?}{=} s'\sigma'_S \} \cup C; S' \xrightarrow{\ast} \emptyset; \emptyset; S$$ such that $\sigma_S \leq^\mathcal{X} \vartheta'$ with $\mathcal{X} = \text{vars}(l, r, P, C, S')$, and since $x\vartheta = x\vartheta'$ for every $x \in \text{vars}(P, C, S')$, the induction is complete.
Example

- $R = \{0 + x \rightarrow x, s(x) + y \rightarrow s(x + y)\}$
- Goal: $\{z + z \vdash s(s(0))\}$
- Successful derivation:

\[
\begin{align*}
\{z + z \vdash s(s(0))\}; \emptyset; \emptyset & \Rightarrow_{LP} \\
\{s(x + y) \vdash s(s(0))\}; \{z + z \vdash s(x) + y\}; \emptyset & \Rightarrow_{D} \\
\{s(x + y) \vdash s(s(0))\}; \{z \vdash s(x), z \vdash y\}; \emptyset & \Rightarrow_{BVE} \\
\{s(x + y) \vdash s(s(0))\}; \{s(x) \vdash y\}; \{z \approx s(x)\} & \Rightarrow_{O} \\
\{s(x + y) \vdash s(s(0))\}; \{y \vdash s(x)\}; \{z \approx s(x)\} & \Rightarrow_{BVE} \\
\{s(x + y) \vdash s(s(0))\}; \emptyset; \{z \approx s(x), y \approx s(x)\} & \Rightarrow_{LP} \\
\{s(x') \vdash s(s(0))\}; \{x + s(x) \vdash 0 + x'\};& \\
\{z \approx s(x), y \approx s(x)\} & \Rightarrow_{D}
\end{align*}
\]
Example

- \(R = \{ 0 + x \rightarrow x, s(x) + y \rightarrow s(x + y) \} \)
- Goal: \(\{ z + z \doteq ? s(s(0)) \} \)
- Successful derivation (cont.):

\[
\{ s(x') \doteq ? s(s(0)) \}; \{ x \doteq ? 0, s(x) \doteq ? x' \}; \{ z \approx s(x), y \approx s(x) \} \implies_{\text{BVE}} \\
\{ s(x') \doteq ? s(s(0)) \}; \{ s(0) \doteq ? x' \}; \{ z \approx s(0), y \approx s(0), x \approx 0 \} \implies_{\text{O}} \\
\{ s(x') \doteq ? s(s(0)) \}; \{ x' \doteq ? s(0) \}; \{ z \approx s(0), y \approx s(0), x \approx 0 \} \implies_{\text{BVE}} \\
\{ s(x') \doteq ? s(s(0)) \}; \emptyset; \{ z \approx s(0), y \approx s(0), x \approx 0, x' \approx s(0) \} \implies_{\text{C}} \\
\emptyset; \{ s(s(0)) \doteq ? s(s(0)) \}; \{ z \approx s(0), y \approx s(0), x \approx 0, x' \approx s(0) \} \implies_{\text{T}} \\
\emptyset; \emptyset; \{ z \approx s(0), y \approx s(0), x \approx 0, x' \approx s(0) \}.
\]
Counterexample for Nonterminating R

If R is not terminating, B may not find solutions.

Counterexample by A. Middeldorp and E. Hamoen, 1994:

- $R = \{ f(x) \rightarrow g(x, x), a \rightarrow b, g(a, b) \rightarrow c, g(b, b) \rightarrow f(a) \}$
- Goal: $\{ f(a) \vdash c \}$
- The goal is unifiable ($f(a) \vdash c$), but B can not verify it:

$$
\begin{align*}
\{ f(a) \vdash c \}; \emptyset; \emptyset & \rightarrow_{\text{LP}} \\
\{ g(x, x) \vdash c \}; \{ f(x) \vdash f(a) \}; \emptyset & \rightarrow_{\text{D}} \\
\{ g(x, x) \vdash c \}; \{ x \vdash a \}; \emptyset & \rightarrow_{\text{BVE}} \\
\{ g(x, x) \vdash c \}; \emptyset; \{ x \approx a \} & \rightarrow_{\text{C}} \\
\emptyset; \{ g(a, a) \vdash c \}; \{ x \approx a \} & \rightarrow \bot
\end{align*}
$$
Counterexample for Nonterminating R

If R is not terminating, B may not find solutions.

Counterexample by A. Middeldorp and E. Hamoen, 1994:

- $R = \{f(x) \rightarrow g(x, x), a \rightarrow b, g(a, b) \rightarrow c, g(b, b) \rightarrow f(a)\}$
- Goal: $\{f(a) \doteqdot c\}$
- Second unsuccessful derivation:

\[
\begin{align*}
\{f(a) \doteqdot c\}; \emptyset; \emptyset \rightarrow_{\text{LP}} \\
\{g(x, x) \doteqdot c\}; \{f(x) \doteqdot f(a)\}; \emptyset \rightarrow_{\text{D}} \\
\{g(x, x) \doteqdot c\}; \{x \doteqdot a\}; \emptyset \rightarrow_{\text{BVE}} \\
\{g(x, x) \doteqdot c\}; \emptyset; \{x \approx a\} \rightarrow_{\text{LP}} \\
\{c \doteqdot c\}; \{g(a, a) \doteqdot g(a, b)\}; \{x \approx a\} \rightarrow_{\text{D}} \\
\{c \doteqdot c\}; \{a \doteqdot b, a \doteqdot a\}; \{x \approx a\} \rightarrow \bot
\end{align*}
\]
Counterexample for Nonterminating R

If R is not terminating, B may not find solutions.

Counterexample by A. Middeldorp and E. Hamoen, 1994:

$R = \{f(x) \rightarrow g(x, x), a \rightarrow b, g(a, b) \rightarrow c, g(b, b) \rightarrow f(a)\}$

Goal: $\{f(a) \not\Rightarrow c\}$

Third unsuccessful derivation:

\[
\begin{align*}
\{f(a) \not\Rightarrow c\}; \emptyset; \emptyset & \Rightarrow_{LP} \{g(x, x) \not\Rightarrow c\}; \{f(x) \not\Rightarrow f(a)\}; \emptyset \Rightarrow_{D} \{g(x, x) \not\Rightarrow c\}; \{x \not\Rightarrow a\}; \emptyset \Rightarrow_{BVE} \{g(x, x) \not\Rightarrow c\}; \emptyset; \{x \approx a\} \Rightarrow_{LP} \{f(a) \not\Rightarrow c\}; \{g(a, a) \not\Rightarrow g(b, b)\}; \{x \approx a\} \Rightarrow_{D} \{f(a) \not\Rightarrow c\}; \{a \not\Rightarrow b\}; \{x \approx a\} \Rightarrow \bot
\end{align*}
\]
Counterexample for Nonterminating R

If R is not terminating, B may not find solutions.

Counterexample by A. Middeldorp and E. Hamoen, 1994:

1. $R = \{f(x) \rightarrow g(x, x), a \rightarrow b, g(a, b) \rightarrow c, g(b, b) \rightarrow f(a)\}$
2. Goal: $\{f(a) \not\Rightarrow c\}$
3. Fourth unsuccessful derivation:

\[
\begin{align*}
\{f(a) \not\Rightarrow c\}; \emptyset; \emptyset & \Rightarrow_{LP} \{f(b) \not\Rightarrow c\}; \emptyset; \emptyset \\
\{f(b) \not\Rightarrow c\}; \{a \not\Rightarrow a\}; \emptyset & \Rightarrow_{T} \{f(b) \not\Rightarrow c\}; \emptyset; \emptyset \\
\{g(x, x) \not\Rightarrow c\}; \{f(x) \not\Rightarrow f(b)\}; \emptyset & \Rightarrow_{D} \\
\{g(x, x) \not\Rightarrow c\}; \{x \not\Rightarrow b\}; \emptyset & \Rightarrow_{BVE} \\
\emptyset; \{g(b, b) \not\Rightarrow c\}; \{x \Rightarrow b\} & \Rightarrow_{C} \\
\emptyset; \{g(b, b) \not\Rightarrow c\}; \{x \Rightarrow b\} & \Rightarrow_{\bot}
\end{align*}
\]
Counterexample for Nonterminating R

If R is not terminating, B may not find solutions.

Counterexample by A. Middeldorp and E. Hamoen, 1994:

- $R = \{f(x) \rightarrow g(x, x), a \rightarrow b, g(a, b) \rightarrow c, g(b, b) \rightarrow f(a)\}$
- Goal: $\{f(a) \doteq c\}$
- An infinite derivation:

$$\{f(a) \doteq c\}; \emptyset; \emptyset \Rightarrow_{\text{LP}}$$
$$\{f(b) \doteq c\}; \{a \doteq a\}; \emptyset \Rightarrow_{\text{T}} \{f(b) \doteq c\}; \emptyset; \emptyset \Rightarrow_{\text{LP}}$$
$$\{g(x, x) \doteq c\}; \{f(x) \doteq f(b)\}; \emptyset \Rightarrow_{\text{D}}$$
$$\{g(x, x) \doteq c\}; \{x \doteq b\}; \emptyset \Rightarrow_{\text{BVE}}$$
$$\{g(x, x) \doteq c\}; \emptyset; \{x \approx b\} \Rightarrow_{\text{LP}}$$
$$\{f(a) \doteq c\}; \{g(b, b) \doteq g(b, b)\}; \{x \approx b\} \Rightarrow_{\text{T}}$$
$$\{f(a) \doteq c\}; \emptyset; \{x \approx b\} \Rightarrow \ldots$$
Strategies and refinements

- Variety of strategies and refinements can be developed for the basic narrowing calculus without destroying completeness.
- For instance, composite rules, simplification, redex orderings and variable abstraction.
- For more details, see, e.g.,

 F. Baader and W. Snyder. Unification theory.