
2. Equational Theories

2.1. Syntax

Def. 2.1.1: Let S be a non-empty set (of sorts). A type (over S) is a
finite sequence of sorts; so Θ, the type language, is defined as Θ = S+.

A type T = S1 · · ·SnS ∈ Θ is usually written as T = S1 × · · · × Sn → S.
We say that S1 · · ·Sn is the definition type of T and S is its image type.

n is the arity of T .

Example 2.1.2: As a set of sorts we take

S0 = { INTEGER, BOOLEAN } .

Types over S0 are for example:

T 0 = INTEGER,

T 1 = INTEGER× INTEGER→ INTEGER,
T 2 = INTEGER× INTEGER→ BOOLEAN.

Def. 2.1.3: A signature over (the set of sorts) S is a pair (Σ, r), where Σ

is a set (of operators or function symbols), and r is a typing function
r : Σ→ Θ.
Often we will assume the typing function r to be implicitly given, and we

simply speak of the signature Σ.
If r(C) = S ∈ S, then C is called a constant (operator).

Example 2.1.4: (Example 2.1.2 cont.)

Σ0 = {0,SUCC,PLUS,TRUE,FALSE,NE }, together with

r(0) = INTEGER,

r(SUCC) = INTEGER→ INTEGER,
r(PLUS) = INTEGER× INTEGER→ INTEGER,
r(TRUE) = r(FALSE) = BOOLEAN,

r(NE) = INTEGER× INTEGRE→ BOOLEAN,

is a signature over S0.

Def. 2.1.5: Let Σ be a signature over S. A Σ-algebra is a pair (A,F),

where A is a S-indexed family of sets, i.e. A = {AS|S ∈ S}, and F is a

17

Σ-indexed family of functions, i.e. F = {FF |F ∈ Σ}, s.t.

if r(F) = S then FF ∈ As, and
if r(F) = S1 × · · · × Sn → S then FF = AS1

× · · · × ASn
→ AS.

AS is the carrier set or universe of sort S. FF is the operation or

function of the algebra associated with the operator or function symbol
F .

Often we denote a Σ-algebra simply by its carrier A. Often we will also
simply write F instead of FF .

Example 2.1.6: (Example 2.1.4 cont.)
We get a Σ0-algebra (A0,F0) by setting

A0
INTEGER := N, A0

BOOLEAN := B = {true, false},

F0(0) is (the integer constant) 0,
F0(SUCC) is the successor function in N,
F0(PLUS) is the addition function in N,

F0(TRUE) is (the boolean constant) true,
F0(FALSE) is (the boolean constant) false,

F0(NE) is the function from N
2 to B which returns true if and only if

the arguments are different.

Based on a signature Σ we will now define terms as the basic building

block of equations. So we will create a Σ-algebra simply from the syntactic
material available in the signature. Furthermore, we need to introduce
suitable notation for referring to subterms.

Def. 2.1.7: Let Σ be a signature over S. We consider the following

Σ-algebra (with carrier) T (Σ):

• if C ∈ Σ is a constant of sort S, then C is an element of T (Σ)S,

• if F ∈ Σ with r(F) = S1 × · · · × Sn → S and ti ∈ T (Σ)Si
for all

1 ≤ i ≤ n, then F t1 . . . tn is an element of T (Σ)S,

• nothing else is in T (Σ).

For every F ∈ Σ the function FF takes t1, . . . , tn and produces F t1 . . . tn.

For better readability we will often write F (t1, . . . , tn) instead of F t1 . . . tn.
The algebra T (Σ) is called the algebra of ground terms or the initial

18

F��
��

�
�

�
��

@
@

@
@@

t1 t
n

�
�

�
�

A
A
A
A

. �
�

�
�

A
A
A
A

Figure 1: isomorphism term ↔ tree

algebra over Σ.
The carrier set T (Σ)S is called the set of terms of sort S.

The algebra of ground terms is isomorphic (by a Σ-isomorphism, as
will be introduced later) to the algebra of trees over the signature Σ; this

isomorphism relates a term

F (t1, . . . , tn)

with the tree as shown in Figure 1; i.e. the corresponding tree has a root
labeled with F and subtrees corresponding to the subterms t1, . . . , tn. In

computer science we typically speak of “abstract syntax trees”, whereas in
algebra we often speak of “words”.

Next we introduce (general) terms, which are constructed from ground

terms and variables.

Def. 2.1.8: Let V be a S-indexed family of sets VS. The elements of VS

are called variables of sort S. We assume VS ∩ VS′ = ∅ for S 6= S ′ and
VS ∩ Σ = ∅ for S ∈ S.

By Σ ∪ V we denote the signature which we get by adding to Σ every
element of VS as a constant of sort S.

The resulting algebra T (Σ∪V) is called the free Σ-algebra generated by
V, or the term algebra over Σ and V.

The carrier set T (Σ ∪ V)S is called the set of terms of sort S.

If the signature and the set of variables is clear from the context, then
we simply write G for T (Σ) and T for T (Σ ∪ V).

Example 2.1.9: (Example 2.1.6 cont.)
In the initial algebra or algebra of ground terms T (Σ0) we have, for exam-

19

NE

�����

HHHHH

x127 PLUS

HHHHH

�����

x15 SUCC

x8

Figure 2: isomorphic tree in Example 2.1.9

ple, the ground terms

0 .. of sort INTEGER
SUCC(PLUS(0,SUCC(0))) of sort INTEGER

TRUE .. of sort BOOLEAN
NE(PLUS(0,SUCC(0)), 0) of sort BOOLEAN

If we take
V0

INTEGER
= {x0, x1, x2, . . .}

as variables of sort INTEGER and

V0
BOOLEAN = {y0, y1, y2, . . .}

as variables of sort BOOLEAN — so V0 is the family consisting of
V0

INTEGER
and V0

BOOLEAN
— then the term algebra T (Σ0 ∪ V0) contains,

for instance, the terms

0, x5 ... of sort INTEGER

SUCC(PLUS(x7,SUCC(0))) of sort INTEGER
NE(x127,PLUS(x15,SUCC(x8))) of sort BOOLEAN .

The last term corresponds to the tree in Figure 2.

Def. 2.1.10: Let t be a term in a term algebra T . The set of occurrences
or positions in t is the following subset of N

∗, the set of finite sequences

of natural numbers:

occ(t) :=

{

{Λ}, if t is a variable or a constant,
{Λ} ∪ {i · p | 1 ≤ i ≤ n, p ∈ occ(t)}, if t = F (t1, . . . , tn) .

20

By Λ we denote the empty sequence, and “·” denotes the concatenation of
sequences (so Λ · p = p = p · Λ).

Now suppose that p1, p2, q ∈ occ(t). By ≤ we denote the prefix ordering
on N

∗; i.e.

p1 ≤ p2 iff p2 = p1 · p
′ for some p′ ∈ N

∗ .

If p1 ≤ p2, then by p2/p1 we mean the sequence p′, for which p2 = p1 · p′; p′

is the quotient of p2 by p1.
p1 and p2 are disjoint or perpendicular, p1 ⊥ p2, iff p1 6≤ p2 and p2 6≤ p1.

Def. 2.1.11: Let t, s be terms in T , and p ∈ occ(t). The subterm of t

at p is

tp :=

{

t if p = Λ ,
(ti)q if p = i · q for i ∈ N, q ∈ N

∗ and t = F (t1, . . . , tn) .

The set V(t) of variables occurring in t is

V(t) := {x ∈ V | x = t/p for a p ∈ occ(t)} .

The result of the replacement of the subterm of t at p by s is defined
as

t[p← s] :=

s if p = Λ ,
F (t1, . . . , ti−1, ti[q ← s], ti+1, . . . , tn)

if p = i · q for some i ∈ N, q ∈ N
∗, and t = F (t1, . . . , tn).

Example 2.1.12: Set Σ0,V0 be as in Example 2.1.9.

t = NE(x127,PLUS(x15,SUCC(x8))) is a term in T (Σ0 ∪ V0).
occ(t) = {Λ, 1, 2, 2 · 1, 2 · 2, 2 · 2 · 1}.
We have 2 · 2 ≤ 2 · 2 · 1, 2 · 2 · 1/2 · 2 = 1, and 1 ⊥ 2 · 2.

Also t2·2 = SUCC(x8) and V(t) = {x8, x15, x127}.
If we let s := PLUS(0, x1), then t[2 · 2 ← s] =

NE(x127,PLUS(x15,PLUS(0, x1))).

We mention some simple relation between these notions. Proofs are
mere technicalities.

Lemma 2.1.13: Let s, t be terms in T , and p, q ∈ N
∗.

21

(i) If p · q ∈ occ(s), then q ∈ occ(sp) and s/p·q = (sp)q.

(ii) If p ∈ occ(s) and q ∈ occ(sp), then p · q ∈ occ(s).

Lemma 2.1.14: (properties of replacement) Let s, t, u ∈ T , p, p1, p2 ∈
occ(s), q ∈ occ(t).

(i) (embedding) s[p← t]p·q = tq.

(associativity) s[p← t][p · q ← u] = s[p← t[q ← u]].

(ii) Let p1 ⊥ p2.

(persistence) s[p1 ← t]p2
= sp2

.

(commutativity) s[p1 ← t][p2 ← u] = s[p2 ← u][p1← t].

(iii) Let p2 ≤ p1.

(distributivity) s[p1 ← t]p2
= (sp2

)[p1/p2 ← t].

(dominance) s[p1 ← t][p2 ← u] = s[p2 ← u].

Proof of (embedding): by induction on the length of p.
If p = Λ, then s[Λ← t]Λ·q = t/q.
Now assume (induction hypothesis) that the assertion holds for some p̃,

and then consider p = i · p̃, for some i ∈ N. Let s = F (s1, . . . , si, . . . , sn).
We get

s[p← t]p·q = s[i · p̃← t]i·p̃·q
= F (s1, . . . , si[p̃← t], . . . , sn)i·p̃·q

= si[p̃← t]p̃·q
= (ind.hyp.) tq .

This completes the proof.

Def. 2.1.15: Let A,B be Σ-algebras. Let h : A → B be an S-indexed

family of mappings hS : AS → BS.
Then we say that h is a Σ-morphism from A to B iff for all F ∈ Σ

with r(F) = S1 × · · · × Sn → S we have

hS(FA(a1, . . . , an)) = FB(hS1
(a1), . . . , hSn

(an)) .

22

Def. 2.1.16: Let A be a Σ-algebra. A mapping ν : V → A is called
an evaluation function over A. (Actually ν is an S-indexed family of

mapping νS : VS → AS , for S ∈ S.)

Theorem 2.1.17 (freeness of the term algebra): Let A be a Σ-algebra.

Every evaluation function ν : V → A can be extended uniquely to a Σ-
morphism from T (Σ ∪ V) to A.

Def. 2.1.18: A substitution is a Σ-endomorphism σ on T , such that

σ(x) = x for almost all (i.e. all but finitely many) variables.
D(σ) := {x ∈ V | σ(x) 6= x} is called the domain of σ.

σ is a ground substitution iff V(σ(x)) = ∅ for all x ∈ D(σ).

A substitution σ is characterized by the corresponding set

{σ(x)→ x | x ∈ D(σ)}.

Example 2.1.19: (a) Let A0 be the Σ0-algebra of Example 2.1.6.

We get another Σ0-algebra A1 by setting
A1

INTEGER := Z5, A1
BOOLEAN := B = {true, false},

F1(0) is 0,

F1(SUCC) is the successor function modulo 5,
F1(PLUS) is the addition function modulo 5,

F1(TRUE) is (the boolean constant) true,
F1(FALSE) is (the boolean constant) false,

F1(NE) is the function which always returns false.
The mapping h : A0 → A1 with

hINTEGER(m) = m mod 5, and hBOOLEAN(b) = false

is a Σ0-morphism from A0 to A1.

(b) Let V0 be as in Example 2.1.9. Then the mapping ν : V0 → A0 with

νINTEGER(xi) = i and νBOOLEAN(yi) =

{

true for i even
false for i odd

is an evaluation function over A0.
If we extend ν to a Σ0-morphism from T (Σ0 ∪ V0) to A0, then we get, for

23

instance,

ν(NE(x127,PLUS(x15,SUCC(x8))) =

NEA0(ν(x127),PLUSA0(ν(x15),SUCCA0(ν(x8)))) =
NEA0(127,PLUSA0(15, 9))) =

NEA0(127, 24) =
true .

Lemma 2.1.20: Let s, t ∈ T , σ a substitution, p ∈ occ(s). Then we have

the following:

(i) occ(σ(s)) = occ(s) ∪
⋃

q ∈ occ(s)

sq ∈ V

{q · q′ | q′ ∈ occ(σ(sq))}.

(ii) σ(s)p = σ(sp).

(iii) If sp ∈ V, then σ(s)pq = σ(sp)q for all q ∈ occ(σ(sp)).

(iv) σ(s[p← t]) = σ(s)[p← σ(t)].

Def. 2.1.21: Let s, t ∈ T . Then t is an instance of s, written as s � t,
iff σ(s) = t for a substitution σ.
� is a partial ordering on T , the subsumption ordering.

If s � t and s 6= t then we write s ≺ t.

Lemma 2.1.22: ≺ is a Noetherian relation on T ; i.e., there is no finite
sequence of term t0, t1, . . . such that · · · ≺ t1 ≺ t0.

Now we are prepared to speak about equations and equational theo-

ries. For equational theories we introduce a proof calculus, the equational
calculus. This is nothing else but a restriction of inference rules in 1st
order predicate calculus to the situation of equational axioms with only

universal quantification (which is not explicity written) and “=” as the
only predicate. This system is also called equational logic.

24

Definition 2.1.23: A Σ–equation (or equation for short) is a pair s = t,
such that s, t ∈ TS for a sort S ∈ S.

Let E be a set of equations and s, t ∈ T . Then s and t are provably equal
modulo E, or s = t is provable from E, written as E ⊢ s = t, iff s = t
can be derived from E in finitely many steps in the following equational

calculus:

(G1) elements of E are axioms:

u1 = u2

for all u1 = u2 ∈ E

(G2) reflexivity, symmetry, and transitivity:

u1 = u1
,

u1 = u2

u2 = u1
,

u1 = u2, u2 = u3

u1 = u3

for all u1, u2, u3 ∈ T

(G3) substitution rule:
u1 = u2

σ(u1) = σ(u2)

for all u1, u2 ∈ T , σ a substitution

(G4) replacement rule:

u1 = u′1, . . . , un = u′n
F (u1, . . . , un) = F (u′1, . . . , u

′
n)

for all u1, . . . , un, u
′
1, . . . , u

′
n ∈ T , F ∈ Σ with appropriate type

The equational theory =E generated by E consists of all equations,

which can be proven from E:

=E = { s = t | E ⊢ s = t }.

We also use the notation s =E t instead of E ⊢ s = t.

E is called a basis for the equational theory =E.

Compare [BN98], p.42.

25

Def. 2.1.24: Let A be a Σ-algebra. A sort-preservind equivalence relation
∼ on A is called a Σ-congruence on A iff
(

∀F ∈ Σ of definition type S1 . . . Sn

)

(

∀a1, b1 ∈ AS1
, . . . , an, bn ∈ ASn

)

a1 ∼ b1, . . . , an ∼ bn =⇒ F (a1, . . . , an) ∼ F (b1, . . . , bn) .

Theorem 2.1.25: Let E be a set of equations. Then =E is the weakest
Σ-congruence over the term algebra T , which contains all pairs σ(s) = σ(t)

for s = t ∈ E and σ a substitution.

Proof: Let

K :=
⋂

{

K | K is a Σ− congruence over T containing

all σ(s) = σ(t) for s = t ∈ E and σ a substitution
}

.

It is clear that K is a Σ-congruence, and it is the weakest Σ-congruence

with these properties.
We show that =E = K.

Because of (G2) the relation =E is an equivalence relation.
Now consider F ∈ Σ with definition type S1 . . . Sn, ui, u

′
i ∈ TSi

and ui =E

u′i for 1 ≤ i ≤ n. Because of (G4) we have F (u1, . . . , un) = F (u′1, . . . , u
′
n).

So =E is a Σ-congruence, and therefore

=E ⊇ K . (1)

We show “=E ⊆ K by induction on the length l of the proof for s =E t.
If l = 1, the only step in the proof must be an application of (G1) or of
the first part of (G2). In both cases s = t ∈ K.

In the induction hypothesis we assume that for every equation s =E t
having a proof of length < l, the pair (s, t) is in K.

Now let s =E t have a proof of length l. If the last proof step is one of
(G1), (G2), or (G4), then by inspection we see that also (s, t) has to be in

K.
Finally we have to show that also the application of rule (G3) does not
lead out of K. We consider the modified equational basis

E ′ := { σ(s) = σ(t) | s = t ∈ E and σ a substitution} .

Obviously
=E′ = =E ,

26

so it suffices to show that =E′⊆ K.
In the same way as above we see that (G1,2,4) do not lead out of K. But

in a proof modulo E ′ there is no need to ever use rule (G3). Consider a
shortest proof modulo E ′, in which we use (G3), say

P : s1 = t1
...
sj = tj
...

sn = tn

The last proof step being an application of (G3), there must be a j < n
such that sn = σ(sj), tn = σ(tj). Now instead of every axiom e in P we

could use the axiom σ(e). Thus in proof step j we would get σ(sj) = σ(tj)
without ever having used rule (G3). So

=E = =E′ ⊆ K (2)

and this completes the proof.

27

2.2. Semantics

Def. 2.2.1: Let A be a Σ-algebra and s = t an equation. Then we call

s = t valid in A, or A a model of s = t, and we write A |= s = t or
s =A t, iff ν(s) = ν(t) for every evaluation function ν : V(s) ∪ V(t)→ A.
If E is a set of equations, then E is valid in A, or A is a model of E, iff

A |= e for every e ∈ E.

Example 2.2.2: The equation x1 + x2 = x2 + x1 is valid both in A0 (see
Example 2.1.6) and also in A1 (see Example 2.1.19).

The equation x1 + x1 + x1 + x1 + x1 = 0 is not valid in A0 but it is valid
in A1.

Def. 2.2.3: (a) If E is a set of equations, then by M(E) we denote the

class of all models of E. M(E) is called the variety of E.
(b) If C is a class of algebras (over the same signature Σ), then the valid-
ity problem for C asks for a decision of C |= e for arbitrary C ∈ C and

Σ-equation e. If this is the case, then we say that e is valid in C and we
write C |= e.

If C consists of only one algebra C, then we also speak of the word prob-
lem over C.

(c) Let E be a set of equations and s = t an equation. Then we say that
s = t follows from E, or s and t are semantically equal modulo E, and

we write E |= s = t, iff M(E) |= s = t; i.e., s = t is valid in every model
of E.

Example 2.2.4: We consider the axioms for groups:

G : 1 · x = x ,
x−1 · x = 1 ,

(x · y) · z = x · (y · z) .

Then we have

G |= x−1 · ((y−1 · y) · x) = z−1 · z .

We can see this in the following way:

Let A be an algebra with a constant one, a unary operation inv and a
binary operation times.

28

Assume that A ∈M(G); so for all a, b, c ∈ A we have:

times(one, a) = a ,
times(inv(a), a) = one ,

times(times(a, b), c) = times(a, times(b, c)) .

Now for an arbitrary evaluation function ν we have

ν(x−1 · ((y−1 · y) · x)) =

times(inv(ν(x)), times(times(inv(ν(y)), ν(y)), ν(x))) =
times(inv(ν(x)), times(one, ν(x))) =

one =
times(inv(ν(z)), ν(z)) =

ν(z−1 · z) .

In general, the notions of “provability” and “validity” do not coincide
in a (1st order) logical theory. However, in equational logic, which is a

very restricted form of 1st order predicate logic, they do coincide. This
has been proven by G.Birkoff.

Theorem 2.2.5: (G. Birkhoff, see [B35] 1) Let E be the basis of an

equational theory. Then

E |= s = t ⇐⇒ E ⊢ s = t .

Proof: see J.Avenhaus, “Reduktionssysteme”, p. 86.

1[B35] G. Birkhoff, “On the structure of abstract algebras”, Proc. Cambridge Phil. Soc. 31, pp.
433–454 (1935)

29

