Automated Reasoning Systems Resolution Theorem Proving: Prover9

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria kutsia@risc.uni-linz.ac.at

May 11, 2011

Prover9

- Automated theorem prover from the Argonne group
- Successor of Otter
- Author: Bill McCune
- ► Theory: First-order logic with equality
- Inference rules: Based on resolution and paramodulation
- Main Applications: In abstract algebra and formal logic
- ► Implemented in C.
- Web page: http://www.cs.unm.edu/~mccune/prover9/

Running Prover9

- 1. Prepare the input file containing the logical specification of a conjecture and the search parameters.
- 2. Issue a command that runs Prover9 on the input file and produces an output file.
- Look at the output.
- 4. maybe run Prover9 again with different search parameters.

How to Run Prover9

From the command line:

- Pun: prover9 -f inputfile
 Or prover9 -f inputfile > outputfile
 Or prover9 < inputfile
 Or prover9 < inputfile > outputfile
- ► There can be several input files, e.g., prover9 -f file1 ... filen > outputfile
- ► Time limit can be specified from the command line: prover9 -t 10 -f inputfile > outputfile Using GUI.

Syntax

- ▶ Ordinary symbols: made from the characters a-z, A-Z, 0-9, \$, and _.
- ▶ Special symbols: made from the special characters: $\{+-*/^<>= ^\circ?@&|!#';$.
- Quoted symbols: any string enclosed in double quotes.
- Special characters can not be mixed with the others to make symbols, unless quoted symbols are formed.

Syntax

Meaning	Connective	Example
negation	_	(-p)
disjunction		(p q r)
conjunction	&	(p & q & r)
implication	->	(b -> d)
backward implic.	<-	(b <- d)
equivalence	<->	(p <-> q)
universal quant.	all	(all x all y p(x,y))
existential quant.	exists	(exists x exists y p(x,y))
true	\$T	
false	\$F	
equality	=	(a = b)
negated equality	! =	(a != b)

Syntax

- Symbols are assigned precedences.
- Infix, prefix, and postfix declarations are used.
- ► All that helps to avoid excessive use of parentheses.
- Details: http://www.cs.unm.edu/~mccune/prover9/manual/2009-11A/syntax.html#declarations
- ► For instance, terms involving +, * and binary can be written in infix notation: a+b, a+b, a-b.

Syntax

- Prover9 input file: A sequence of lists and commands.
- Lists (of formulas or clauses) can be used to declare, for instance, which formulas or clauses are assumptions and which ones are goals.
- Commands can be used, for instance, to set certain options.
- ► The order is largely irrelevant, except for some special cases.

Input File

Example

```
assign(max_seconds, 30).
% Is Socrates mortal?
formulas(assumptions).
   all x (man(x) -> mortal(x)).
   man(socrates).
end_of_list.

formulas(goals).
   mortal(socrates).
end_of_list.
```

Input File

Example

```
assign(max_seconds, 30).

formulas(usable).
   all x (man(x) -> mortal(x)).
   man(socrates).
end_of_list.

formulas(sos).
   -mortal(socrates).
end_of_list.
```

Input File

Example

```
assign(max_seconds, 30).

formulas(sos).
   all x (man(x) -> mortal(x)).
   man(socrates).
   -mortal(socrates).
end_of_list.
```

Input File

Example

```
assign(max_seconds, 30).
% Is Socrates mortal?
clauses(assumptions).
   - man(x) | mortal(x).
   man(socrates).
end_of_list.

formulas(goals).
   mortal(socrates).
end_of_list.
```

Distinction Between Clauses and Formulas

- ► Formulas can have any of the logic connectives, and all variables are explicitly quantified. Formulas go into lists that start with formulas (list_name).
- ► Clauses are simple disjunctions in which all variables are implicitly universally quantified. Clauses go into lists that start with clauses (list_name).
- Clauses without variables are also formulas, so they can go into either kind of list. (An exception: clauses can have attributes, and formulas cannot.)
- Because variables in clauses are not explicitly quantified, a rule is needed for distinguishing variables from constants in clauses (see terms below). No such rule is needed for formulas.
- Prover9's inference rules operate on clauses. If formulas are input, Prover9 immediately translates them into clauses.

Mail Loop: Given Clause Algorithm

Operates on the sos and usable lists.

While the sos list is not empty:

- 1. Select a given clause from sos and move it to the usable list;
- Infer new clauses using the inference rules in effect; each new clause must have the given clause as one of its parents and members of the usable list as its other parents;
- 3. Process each new clause;
- Append new clauses that pass the retention tests to the sos list.

end of while loop.

Input File

Example

Barbers paradox:

- There is a town with just one male barber.
- Every man in the town keeps himself clean-shaven.
- ▶ Some shave themselves, some are shaved by the barber.
- ► The barber shaves all and only those men in town who do not shave themselves.
- Does the barber shave himself?

Input File

Example

Barbers paradox:

- There is a town with just one male barber.
- ► Every man in the town keeps himself clean-shaven.
- ▶ Some shave themselves, some are shaved by the barber.
- ► The barber shaves all and only those men in town who do not shave themselves.
- ▶ Does the barber shave himself?

Run Prover9 on Examples

Example

Assumption : $\forall x \forall y \ Q(x) \Rightarrow P(y, y)$.

Assumption : $\forall x \forall y \ P(x,b) \lor Q(f(y,x))$.

Goal: $\exists x \ P(a, x)$.

Example

Assumption: $\forall x \forall y \forall z (x * y) * z = x * (y * z).$

Assumption : $\forall x \ x * 1 = x$.

Assumption: $\forall x \ x * x^{-1} = 1$.

Assumption : $\forall x \ x * x = 1$.

Goal: $\forall x \forall y \ x * y = y * x$.