
Automated Reasoning Systems
Introduction

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria
kutsia@risc.uni-linz.ac.at



What is Automated Reasoning

I Reasoning: The process of making inferences.
I Automated reasoning studies methods to automate the

process of reasoning.
I Automated reasoning systems: Computer programs that

implement automated reasoning methods to perform
reasoning automatically (or semi-automatically).



Examples of Reasoning

I All men are mortal. Socrates is a man. Therefore Socrates
is mortal.

I All fruit is tasty if it is not cooked. This apple not tasty.
Therefore, it is cooked.



Are These Reasonings Correct?

I All that glistens is not gold. This pot does not glisten.
Therefore, it is gold.

I All men are mortal. Socrates is not mortal. Therefore,
Socrates is not a man.



Are These Statements True?

I There exists a person with the property that if he (or she) is
a genius then everybody is a genius.

I In idempotent groups the group operation is commutative.



General Picture

Valid formulasValid formulas Provable formulasProvable formulas

Formal language: First-order logic, temporal logic, etc.

Natural language, mathematical problems, program + specification, ...

Natural language, mathematical problems, program + specification, ...

Form
alization

Form
alization

S
em

antics
S

em
antics

C
alculus

C
alculus

Completeness

Soundness

Completeness

Soundness

Modeling

Automated Reasoning



General Picture

Valid formulasValid formulas Provable formulasProvable formulas

Formal language: First-order logic, temporal logic, etc.

Natural language, mathematical problems, program + specification, ...

Natural language, mathematical problems, program + specification, ...

Form
alization

Form
alization

S
em

antics
S

em
antics

C
alculus

C
alculus

Completeness

Soundness

Completeness

Soundness

Modeling

Automated Reasoning



General Picture

Valid formulasValid formulas Provable formulasProvable formulas

Formal language: First-order logic, temporal logic, etc.

Natural language, mathematical problems, program + specification, ...

Natural language, mathematical problems, program + specification, ...

Form
alization

Form
alization

S
em

antics
S

em
antics

C
alculus

C
alculus

Completeness

Soundness

Completeness

Soundness

Modeling

Automated Reasoning



General Picture

Valid formulasValid formulas Provable formulasProvable formulas

Formal language: First-order logic, temporal logic, etc.

Natural language, mathematical problems, program + specification, ...

Natural language, mathematical problems, program + specification, ...

Form
alization

Form
alization

S
em

antics

S
em

antics

C
alculus

C
alculus

Completeness

Soundness

Completeness

Soundness

Modeling

Automated Reasoning



General Picture

Valid formulas

Valid formulas

Provable formulasProvable formulas

Formal language: First-order logic, temporal logic, etc.

Natural language, mathematical problems, program + specification, ...

Natural language, mathematical problems, program + specification, ...

Form
alization

Form
alization

S
em

antics

S
em

antics

C
alculus

C
alculus

Completeness

Soundness

Completeness

Soundness

Modeling

Automated Reasoning



General Picture

Valid formulas

Valid formulas

Provable formulasProvable formulas

Formal language: First-order logic, temporal logic, etc.

Natural language, mathematical problems, program + specification, ...

Natural language, mathematical problems, program + specification, ...

Form
alization

Form
alization

S
em

antics

S
em

antics

C
alculus

C
alculus

Completeness

Soundness

Completeness

Soundness

Modeling

Automated Reasoning



General Picture

Valid formulas

Valid formulas

Provable formulas

Provable formulas

Formal language: First-order logic, temporal logic, etc.

Natural language, mathematical problems, program + specification, ...

Natural language, mathematical problems, program + specification, ...

Form
alization

Form
alization

S
em

antics

S
em

antics

C
alculus

C
alculus

Completeness

Soundness

Completeness

Soundness

Modeling

Automated Reasoning



General Picture

Valid formulas

Valid formulas

Provable formulas

Provable formulas

Formal language: First-order logic, temporal logic, etc.

Natural language, mathematical problems, program + specification, ...

Natural language, mathematical problems, program + specification, ...

Form
alization

Form
alization

S
em

antics

S
em

antics

C
alculus

C
alculus

Completeness

Soundness

Completeness

Soundness

Modeling

Automated Reasoning



General Picture

Valid formulas

Valid formulas

Provable formulas

Provable formulas

Formal language: First-order logic, temporal logic, etc.

Natural language, mathematical problems, program + specification, ...

Natural language, mathematical problems, program + specification, ...

Form
alization

Form
alization

S
em

antics

S
em

antics

C
alculus

C
alculus

Completeness

Soundness

Completeness

Soundness

Modeling

Automated Reasoning



General Picture

Valid formulas

Valid formulas Provable formulas

Provable formulas

Formal language: First-order logic, temporal logic, etc.

Natural language, mathematical problems, program + specification, ...

Natural language, mathematical problems, program + specification, ...

Form
alization

Form
alization

S
em

antics

S
em

antics

C
alculus

C
alculus

Completeness

Soundness

Completeness

Soundness

Modeling

Automated Reasoning



General Picture

Valid formulas

Valid formulas Provable formulas

Provable formulas

Formal language: First-order logic, temporal logic, etc.

Natural language, mathematical problems, program + specification, ...

Natural language, mathematical problems, program + specification, ...

Form
alization

Form
alization

S
em

antics

S
em

antics

C
alculus

C
alculus

Completeness

Soundness

Completeness

Soundness

Modeling

Automated Reasoning



Informal Example

Problem formulation (Chang and Lee, 1973):

Suppose that stock prices go down if the prime interest rate
goes up. Suppose also that most people are unhappy when
stock prices go down. Assume that prime interest rate does
go up. Are most people unhappy?

Formalization:

I P : prime interest rate goes up.

I S : stock prices go down.

I U : most people are unhappy.

I If the prime interest rate goes up, stock prices go down: P ⇒ S.

I If stock prices go down, most people are unhappy: S ⇒ U.

We should show that if P ⇒ S, S ⇒ U, and P hold, then U holds as
well.



Informal Example

Problem formulation (Chang and Lee, 1973):

Suppose that stock prices go down if the prime interest rate
goes up. Suppose also that most people are unhappy when
stock prices go down. Assume that prime interest rate does
go up. Are most people unhappy?

Formalization:

I P : prime interest rate goes up.

I S : stock prices go down.

I U : most people are unhappy.

I If the prime interest rate goes up, stock prices go down: P ⇒ S.

I If stock prices go down, most people are unhappy: S ⇒ U.

We should show that if P ⇒ S, S ⇒ U, and P hold, then U holds as
well.



Informal Example

I We should show that if P ⇒ S, S ⇒ U, and P hold, then U holds
as well.

I That means, ((P ⇒ S) ∧ (S ⇒ U) ∧ P)⇒ U is valid.

Semantically:

P S U P ⇒ S S ⇒ U ((P ⇒ S) ∧ (S ⇒ U) ∧ P)⇒ U
true true true true true true
true true false true false true
true false true false true true
true false false false true true
false true true true true true
false false true true true true
false true false true false true
false false false true true true



Informal Example
I We should show that if P ⇒ S, S ⇒ U, and P hold, then U holds

as well.

To solve this problem by (automated) reasoning, we need to have a
corresponding calculus.

I Assume we have such a calculus that is sound and complete.
I Then we should prove U in this calculus from the assumptions

P ⇒ S, S ⇒ U, and P.
I (Assume the calculus has the modus ponens rule:

A and A⇒ B imply B)

Proof:

1. P ⇒ S (Assumption)

2. S ⇒ U (Assumption)

3. P (Assumption)

4. S (From 3 and 1 by modus ponens)

5. U (From 4 and 2 by modus ponens)



Informal Example
I We should show that if P ⇒ S, S ⇒ U, and P hold, then U holds

as well.

To solve this problem by (automated) reasoning, we need to have a
corresponding calculus.

I Assume we have such a calculus that is sound and complete.
I Then we should prove U in this calculus from the assumptions

P ⇒ S, S ⇒ U, and P.
I (Assume the calculus has the modus ponens rule:

A and A⇒ B imply B)

Proof:

1. P ⇒ S (Assumption)

2. S ⇒ U (Assumption)

3. P (Assumption)

4. S (From 3 and 1 by modus ponens)

5. U (From 4 and 2 by modus ponens)



Informal Example
I We should show that if P ⇒ S, S ⇒ U, and P hold, then U holds

as well.

To solve this problem by (automated) reasoning, we need to have a
corresponding calculus.

I Assume we have such a calculus that is sound and complete.
I Then we should prove U in this calculus from the assumptions

P ⇒ S, S ⇒ U, and P.
I (Assume the calculus has the modus ponens rule:

A and A⇒ B imply B)

Proof:

1. P ⇒ S (Assumption)

2. S ⇒ U (Assumption)

3. P (Assumption)

4. S (From 3 and 1 by modus ponens)

5. U (From 4 and 2 by modus ponens)



Informal Example

I In the example we used propositional logic.
I Often we need more powerful logics.
I For instance, we need first-order logic to express this:

I All men are mortal. Socrates is a man.
Therefore Socrates is mortal.

I ∀x .man(x)⇒ mortal(x): All men are mortal.
I man(socrates): Socrates is a man.
I mortal(socrates): Socrates is mortal.



Informal Example

I In the example we used propositional logic.
I Often we need more powerful logics.
I For instance, we need first-order logic to express this:

I All men are mortal. Socrates is a man.
Therefore Socrates is mortal.

I ∀x .man(x)⇒ mortal(x): All men are mortal.
I man(socrates): Socrates is a man.
I mortal(socrates): Socrates is mortal.



First-Order Logic

I Syntax
I Semantics
I Inference system



Syntax

I Alphabet
I Terms
I Formulas



Alphabet

A first-order alphabet consists of the following sets of symbols:
I A countable set of variables V.
I For each n ≥ 0, a set of n-ary function symbols Fn.

Elements of F0 are called constants.
I For each n ≥ 0, a set of n-ary predicate symbols Pn.
I Logical connectives ¬, ∨, ∧,⇒,⇔.
I Quantifiers ∃, ∀.

Notation:
I x , y , z for variables.
I f ,g for function symbols.
I a,b, c for constants.
I p,q for predicate symbols.



Alphabet

A first-order alphabet consists of the following sets of symbols:
I A countable set of variables V.
I For each n ≥ 0, a set of n-ary function symbols Fn.

Elements of F0 are called constants.
I For each n ≥ 0, a set of n-ary predicate symbols Pn.
I Logical connectives ¬, ∨, ∧,⇒,⇔.
I Quantifiers ∃, ∀.

Notation:
I x , y , z for variables.
I f ,g for function symbols.
I a,b, c for constants.
I p,q for predicate symbols.



Terms

Definition
I A variable is a term.
I If t1, . . . , tn are terms and f ∈ Fn, then f (t1, . . . , tn) is a term.

Notation:
I s, t , r for terms.



Terms

Definition
I A variable is a term.
I If t1, . . . , tn are terms and f ∈ Fn, then f (t1, . . . , tn) is a term.

Notation:
I s, t , r for terms.



Formulas

Definition
I If t1, . . . , tn are terms and p ∈ Fn, then p(t1, . . . , tn) is a

formula. It is called an atomic formula or an atom.
I If A is a formula, ¬A is a formula.
I If A and B are formulas, then A ∨ B, A ∧ B, A⇒ B, and

A⇔ B are formulas.
I If A is a formula, then ∃x .A and ∀x .A are formulas.

Notation:
I A,B for formulas.



Formulas

Definition
I If t1, . . . , tn are terms and p ∈ Fn, then p(t1, . . . , tn) is a

formula. It is called an atomic formula or an atom.
I If A is a formula, ¬A is a formula.
I If A and B are formulas, then A ∨ B, A ∧ B, A⇒ B, and

A⇔ B are formulas.
I If A is a formula, then ∃x .A and ∀x .A are formulas.

Notation:
I A,B for formulas.



Example

Translating English sentences into first-order logic formulas:
1. For each natural number there exists exactly one

immediate successor natural number.

∀x .(∃y .(y .
= succ(x) ∧ ∀z.(z .

= succ(x)⇒ y .
= z)))

2. There is no natural number whose immediate successor is
0.

¬∃x .0 .
= succ(x)

3. For each nonzero natural number there exists exactly one
immediate predecessor natural number.

∀x .(¬(x .
= 0)⇒ ∃y .(y .

= pred(x) ∧ ∀z.(z .
= pred(x)⇒ y .

= z)))

Assume:
I succ,pred unary function symbols.
I

.
= binary predicate symbol.



Example

Translating English sentences into first-order logic formulas:
1. For each natural number there exists exactly one

immediate successor natural number.
∀x .(∃y .(y .

= succ(x) ∧ ∀z.(z .
= succ(x)⇒ y .

= z)))

2. There is no natural number whose immediate successor is
0.

¬∃x .0 .
= succ(x)

3. For each nonzero natural number there exists exactly one
immediate predecessor natural number.

∀x .(¬(x .
= 0)⇒ ∃y .(y .

= pred(x) ∧ ∀z.(z .
= pred(x)⇒ y .

= z)))

Assume:
I succ,pred unary function symbols.
I

.
= binary predicate symbol.



Example

Translating English sentences into first-order logic formulas:
1. For each natural number there exists exactly one

immediate successor natural number.
∀x .(∃y .(y .

= succ(x) ∧ ∀z.(z .
= succ(x)⇒ y .

= z)))
2. There is no natural number whose immediate successor is

0.

¬∃x .0 .
= succ(x)

3. For each nonzero natural number there exists exactly one
immediate predecessor natural number.

∀x .(¬(x .
= 0)⇒ ∃y .(y .

= pred(x) ∧ ∀z.(z .
= pred(x)⇒ y .

= z)))

Assume:
I succ,pred unary function symbols.
I

.
= binary predicate symbol.



Example

Translating English sentences into first-order logic formulas:
1. For each natural number there exists exactly one

immediate successor natural number.
∀x .(∃y .(y .

= succ(x) ∧ ∀z.(z .
= succ(x)⇒ y .

= z)))
2. There is no natural number whose immediate successor is

0.
¬∃x .0 .

= succ(x)

3. For each nonzero natural number there exists exactly one
immediate predecessor natural number.

∀x .(¬(x .
= 0)⇒ ∃y .(y .

= pred(x) ∧ ∀z.(z .
= pred(x)⇒ y .

= z)))

Assume:
I succ,pred unary function symbols.
I

.
= binary predicate symbol.



Example

Translating English sentences into first-order logic formulas:
1. For each natural number there exists exactly one

immediate successor natural number.
∀x .(∃y .(y .

= succ(x) ∧ ∀z.(z .
= succ(x)⇒ y .

= z)))
2. There is no natural number whose immediate successor is

0.
¬∃x .0 .

= succ(x)
3. For each nonzero natural number there exists exactly one

immediate predecessor natural number.

∀x .(¬(x .
= 0)⇒ ∃y .(y .

= pred(x) ∧ ∀z.(z .
= pred(x)⇒ y .

= z)))

Assume:
I succ,pred unary function symbols.
I

.
= binary predicate symbol.



Example

Translating English sentences into first-order logic formulas:
1. For each natural number there exists exactly one

immediate successor natural number.
∀x .(∃y .(y .

= succ(x) ∧ ∀z.(z .
= succ(x)⇒ y .

= z)))
2. There is no natural number whose immediate successor is

0.
¬∃x .0 .

= succ(x)
3. For each nonzero natural number there exists exactly one

immediate predecessor natural number.
∀x .(¬(x .

= 0)⇒ ∃y .(y .
= pred(x) ∧ ∀z.(z .

= pred(x)⇒ y .
= z)))

Assume:
I succ,pred unary function symbols.
I

.
= binary predicate symbol.



Semantics

I Meaning of a first-order language consists of an universe
and an appropriate meaning of each symbol.

I This pair is called structure.
I Structure fixes interpretation of function and predicate

symbols.
I Meaning of variables is determined by a variable

assignment.
I Interpretation of terms and formulas.



Structure

I Structure: a pair (D, I).
I D is a nonempty universe, the domain of interpretation.
I I is an interpretation function defined on D that fixes the

meaning of each symbol associating
I to each f ∈ Fn an n-ary function fI : Dn → D,

(in particular, cI ∈ D for each constant c)
I to each p ∈ Pn different from .

=, an n-ary relation pI on D.



Variable Assignment

I A structure S = (D, I) is given.
I Variable assignment σS maps each x ∈ V into an element

of D: σS(x) ∈ D.
I Given a variable x , an assignment ϑS is called an x-variant

of σS iff ϑS(y) = σS(y) for all y 6= x .



Interpretation of Terms

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of a term t under S and σS , ValS,σS (t):
I ValS,σS (x) = σS(x).
I ValS,σS (f (t1, . . . , tn)) = fI(ValS,σS (t1), . . . ,ValS,σS (tn)).



Interpretation of Terms

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of a term t under S and σS , ValS,σS (t):
I ValS,σS (x) = σS(x).
I ValS,σS (f (t1, . . . , tn)) = fI(ValS,σS (t1), . . . ,ValS,σS (tn)).



Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of an atomic formula under S and σS is one of
true, false:

I ValS,σS (s
.
= t) = true iff ValS,σS (s) = ValS,σS (t).

I ValS,σS (p(t1, . . . , tn)) = true iff
(ValS,σS (t1), . . . ,ValS,σS (tn)) ∈ pI .



Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of an atomic formula under S and σS is one of
true, false:

I ValS,σS (s
.
= t) = true iff ValS,σS (s) = ValS,σS (t).

I ValS,σS (p(t1, . . . , tn)) = true iff
(ValS,σS (t1), . . . ,ValS,σS (tn)) ∈ pI .



Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of an atomic formula under S and σS is one of
true, false:

I ValS,σS (s
.
= t) = true iff ValS,σS (s) = ValS,σS (t).

I ValS,σS (p(t1, . . . , tn)) = true iff
(ValS,σS (t1), . . . ,ValS,σS (tn)) ∈ pI .



Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Value of an atomic formula under S and σS is one of
true, false:

I ValS,σS (s
.
= t) = true iff ValS,σS (s) = ValS,σS (t).

I ValS,σS (p(t1, . . . , tn)) = true iff
(ValS,σS (t1), . . . ,ValS,σS (tn)) ∈ pI .



Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false:

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x .A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x .A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .



Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false:

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x .A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x .A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .



Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false:

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x .A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x .A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .



Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false:

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x .A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x .A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .



Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false:

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x .A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x .A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .



Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false:

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x .A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x .A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .



Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false:

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x .A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x .A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .



Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false:

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x .A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x .A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .



Interpretation of Formulas

I A structure S = (D, I) and a variable assignment σS are
given.

I Values of compound formulas under S and σS are also
either true or false:

I ValS,σS (¬A) = true iff ValS,σS (A) = false.
I ValS,σS (A ∨ B) = true iff

ValS,σS (A) = true or ValS,σS (B) = true.
I ValS,σS (A ∧ B) = true iff

ValS,σS (A) = true and ValS,σS (B) = true.
I ValS,σS (A⇒ B) = true iff

ValS,σS (A) = false or ValS,σS (B) = true.
I ValS,σS (A⇔ B) = true iff ValS,σS (A) = ValS,σS (B).
I ValS,σS (∃x .A) = true iff

ValS,ϑS (A) = true for some x-variant ϑS of σS .
I ValS,σS (∀x .A) = true iff

ValS,ϑS (A) = true for all x-variants ϑS of σS .



Interpretation of Formulas

I A structure S = (D, I) is given.
I The value of a formula A under S is either true or false:

I ValS(A) = true iff ValS , σS(A) = true for all σS .
I S is called a model of A iff ValS(A) = true.
I Written �S A.



Interpretation of Formulas

I A structure S = (D, I) is given.
I The value of a formula A under S is either true or false:

I ValS(A) = true iff ValS , σS(A) = true for all σS .
I S is called a model of A iff ValS(A) = true.
I Written �S A.



Interpretation of Formulas

I A structure S = (D, I) is given.
I The value of a formula A under S is either true or false:

I ValS(A) = true iff ValS , σS(A) = true for all σS .
I S is called a model of A iff ValS(A) = true.
I Written �S A.



Interpretation of Formulas

I A structure S = (D, I) is given.
I The value of a formula A under S is either true or false:

I ValS(A) = true iff ValS , σS(A) = true for all σS .
I S is called a model of A iff ValS(A) = true.
I Written �S A.



Example

I Formula: ∀x .(p(x)⇒ q(f (x),a))

I Define S = (D, I) as
I D = {1,2},
I aI = 1,
I fI(1) = 2, fI(2) = 1,
I pI = {2},
I qI = {(1,1), (1,2), (2,2)}.

I If σS(x) = 1, then ValS,σS (∀x .(p(x)⇒ q(f (x),a))) = true.
I If σS(x) = 2, then ValS,σS (∀x .(p(x)⇒ q(f (x),a))) = true.
I Hence, �S A.



Example

I Formula: ∀x .(p(x)⇒ q(f (x),a))
I Define S = (D, I) as

I D = {1,2},
I aI = 1,
I fI(1) = 2, fI(2) = 1,
I pI = {2},
I qI = {(1,1), (1,2), (2,2)}.

I If σS(x) = 1, then ValS,σS (∀x .(p(x)⇒ q(f (x),a))) = true.
I If σS(x) = 2, then ValS,σS (∀x .(p(x)⇒ q(f (x),a))) = true.
I Hence, �S A.



Example

I Formula: ∀x .(p(x)⇒ q(f (x),a))
I Define S = (D, I) as

I D = {1,2},
I aI = 1,
I fI(1) = 2, fI(2) = 1,
I pI = {2},
I qI = {(1,1), (1,2), (2,2)}.

I If σS(x) = 1, then ValS,σS (∀x .(p(x)⇒ q(f (x),a))) = true.

I If σS(x) = 2, then ValS,σS (∀x .(p(x)⇒ q(f (x),a))) = true.
I Hence, �S A.



Example

I Formula: ∀x .(p(x)⇒ q(f (x),a))
I Define S = (D, I) as

I D = {1,2},
I aI = 1,
I fI(1) = 2, fI(2) = 1,
I pI = {2},
I qI = {(1,1), (1,2), (2,2)}.

I If σS(x) = 1, then ValS,σS (∀x .(p(x)⇒ q(f (x),a))) = true.
I If σS(x) = 2, then ValS,σS (∀x .(p(x)⇒ q(f (x),a))) = true.

I Hence, �S A.



Example

I Formula: ∀x .(p(x)⇒ q(f (x),a))
I Define S = (D, I) as

I D = {1,2},
I aI = 1,
I fI(1) = 2, fI(2) = 1,
I pI = {2},
I qI = {(1,1), (1,2), (2,2)}.

I If σS(x) = 1, then ValS,σS (∀x .(p(x)⇒ q(f (x),a))) = true.
I If σS(x) = 2, then ValS,σS (∀x .(p(x)⇒ q(f (x),a))) = true.
I Hence, �S A.



Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat



Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat



Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat



Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat



Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.

Formulas

Valid Non-valid

Valid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat



Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.

Formulas

Valid Non-valid

Valid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat



Validity, Unsatisfiability

I A formula A is valid, if �S A for all S.
I Written � A.
I A formula A is unsatisfiable, if �S A for no S.
I If A is valid, then ¬A is unsatisfiable and vice versa.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat



Inference System

I Several inference systems exist for first-order logic.
I Today: The Resolution Calculus



The Resolution Calculus

I Operates on the clausal fragment of first-order logic
I Clause: A formula of the form ∀x1. · · · .∀xn.(L1 ∨ · · · ∨ Lk ),

where
I each Li is a literal, i.e., either an atomic formula or its

negation,
I L1 ∨ · · · ∨ Lk contains no variables other than x1, . . . , xn

I Every first-order formula can be reduced to a set of
clauses.

I The reduction preserves unsatisfiability.
I Clauses are often written without quantifier prefix:

L1 ∨ · · · ∨ Lk .



The Resolution Calculus

Two inference rules: Binary resolution and factoring.

I Binary resolution:

L1 ∨ A ¬L2 ∨ B
(A ∨ B)σ

where σ is a most general unifier of L1 and L2.
I Factoring:

L1 ∨ L2 ∨ A
(L1 ∨ A)σ

where σ is a most general unifier of L1 and L2.



Unification

I Process of equation solving.
I Used in the inference rules to make two literals identical.
I Unification algorithm computes a most general unifier for

solvable systems equations
I For unsolvable ones, it reports failure.

Example

I {x 7→ a, y 7→ f (a)} is a most general unifier of p(x , f (x))
and p(a, y).

I p(x) and p(f (x)) do not have a unifier as well as p(x) and
q(y).



Unification

I Process of equation solving.
I Used in the inference rules to make two literals identical.
I Unification algorithm computes a most general unifier for

solvable systems equations
I For unsolvable ones, it reports failure.

Example

I {x 7→ a, y 7→ f (a)} is a most general unifier of p(x , f (x))
and p(a, y).

I p(x) and p(f (x)) do not have a unifier as well as p(x) and
q(y).



Proving by Resolution

I Given a set of clauses S and a hypothesis H, to prove H
from S by resolution one should

1. Negate the hypothesis;
2. Add the negated hypothesis to S and start derivation, trying

to obtain the contradiction;
3. In the derivation, use binary resolution and factoring rules

to generate new clauses, add them to S;
4. If the empty clause appears, stop: Contradiction found, H is

proved;
5. If no step can be made and the empty clause is not found,

then H can not be proved.
I Binary resolution + factoring is a refutationally complete

inference system: A set of clauses is unsatisfiable iff these
rules lead to the contradiction.



Example. Proving by Resolution

Given a trapezoid, prove that the interior alternate angles
obtained by the intersection of a diagonal with the bases are
equal:

a b

cd



Example. Proving by Resolution

a b

cd

Formalization. Notation:

I trap(x1, x2, x3, x4) : Trapezoid with left upper vertex x1, right
upper vertex x2, right lower vertex x3, left lower vertex x4.

I par(x1, x2, y1, y2) : The line x1x2 is parallel to the line y1y2.

I eq(x1, x2, x3, y1, y2, y3) : The angles x1x2x3 and y1y2y3 are equal.



Example. Proving by Resolution

a b

cd

Formalization. Assumptions and hypothesis:

1. ∀x1.∀x2.∀x3.∀x4.trap(x1, x2, x3, x4)⇒ par(x1, x2, x3, x4).

2. ∀x1.∀x2.∀y1.∀y2.par(x1, x2, y1, y2)⇒ eq(x1, x2, y2, y1, y2, x2).

3. trap(a,b, c,d).

4. eq(a,b,d , c,d ,b) (Hypothesis)



Example. Proving by Resolution

a b

cd

Formalization. Proof from clausified assumptions and the negated
hypothesis:

1. ¬trap(x1, x2, x3, x4) ∨ par(x1, x2, x3, x4)

2. ¬par(x1, x2, y1, y2) ∨ eq(x1, x2, y2, y1, y2, x2).

3. trap(a,b, c,d).

4. ¬eq(a,b,d , c,d ,b)

5. ¬par(a,b, c,d) (Resolvent of 2 and 4)

6. ¬trap(a,b, c,d) (Resolvent of 5 and 1)

7. � (Resolvent of 6 and 3, contradiction found.)



Another Example. Proving by Resolution

Factoring is important!

Show that the given set of clauses (1-3) is unsatisfiable:

1. ¬p(x , y) ∨ q(x , y).

2. p(x , y) ∨ q(y , x).

3. ¬q(a,a) ∨ ¬q(b,b)

4. q(x1, y1) ∨ q(y1, x1). (Resolvent of 1 and 2)

5. q(x1, x1) (Factor of 4)

6. ¬q(b,b) (Resolvent of 5 and 3)

7. � (Resolvent of 5 and 6, contradiction found.)



Proving by Resolution

I Unrestricted application of the inference rules might lead to
search space explosion.

I Most of the generated clauses are redundant.
I How to avoid generating them?
I Resolution strategies.



Ordered Resolution

I One of most efficient resolution strategies.
I Assumes a partial ordering on terms and literals.
I Ordered inference:

I A subset of the literals is marked as maximal
I (If the clause is ground, i.e, without variables, the order is

total, and the greatest literal is marked as maximal)
I The inference rules may be restricted in some cases so that

they apply only to maximal literals.



Set-of-Support Strategy

I Task: Prove by resolution + factoring that the set of clauses
S is unsatisfiable.

I Split S into two sets: U and SOS.
I Names: U for usable, SOS for set-of-support.
I Strategy: Do not allow resolution between clauses in U.

Put new clauses in SOS.
I Complete if U is satisfiable.



How to Deal With Equality

I Roughly: Replace equals by equals.
I Rule: Paramodulation

s = t ∨ C1 L[r ] ∨ C2

(L[t ] ∨ C1 ∨ C2)σ

where L[r ] is a literal in which the term r occurs and σ is a
most general unifier of r and s.

I Unrestricted replacement leads to search space explosion.
I Restrictions: r can not be a variable, sσϑ � tσϑ for some ϑ

where � is the given ordering, etc.



Resolution Theorem Provers

I Quite some state-of-the-art theorem provers are based on
resolution.

I Among them Prover9 (the successor of Otter) and Vampire
(most successful prover in the CASC competitions).

I Next lecture: Prover9.


