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1. Introduction

Canonical reduction systems are supposed to solve the
following kind of problem:

e we arc given a mathematical structure S
and a congruence relation = on S, (i.e. =C 82)
given by a finite set of generators G (i.e.

~ __ Y

G)

e for any given s,t € S, we want to decide whether
S %JG t

e this should be achieved by a general algorithm de-
pending only on &, and not on the particular con-
gruence = or its set of generators GG



In order to solve such decision problems we introduce
a reduction relation

—a C S xS
with the properties

e — is terminating or Noetherian, i.e. every reduc-
tion chain is finite

o =g = «—, le. the symmetric reflexive transitive

closure of — ¢ is equal to the congruence generated
by G



if in addition to being Noetherian the reduction rela-
tion is also Church-Rosser, then we can solve our initial
problem systematically

the reduction relation — ¢ is Church-Rosser  iff  con-
nectednes w.r.t. “«—¢g”, i.e.

)
a+—ab,
implies the existence of a common successor, i.e.
dc ta —c and b —5c.

in particular this means that two irreducible elements a, b
are congruent if and only if they are syntactically equal.



in order to decide whether
a g@ b

under the conditions of Noetherianity and Church-Rosserness
of — ¢ we do the following;:

e reduce a and b to (any) irreducible @’ and b’ s.t.

a=ay —qgay —qg —>Gam:a/a
b=by—cb—¢c -+ —cb, =0

observe that because of Noetherianity these reduc-
tion chains have to be finite

e check whether ' = b';

if so a = b, otherwise not



but of course in general our set of generators G will not
have this nice Church-Rosser property

the goal now is to transform G into an equivalent set
of generators G



2. Gauss Elimination

the setting:

e vector space V = K" over field K

e generating elements B for a subvectorspace

W = span(B)
e cquivalence relation v Sy w <= v—weW

the problem:

o forveV

e decide: “v =y 07, 1e. “v € span(B) =W" ?



define a reduction relation — p:
for vector b = (0,...,0,b;,...,b,) with b; # 0 we say
lead(b) = 1;
c=(c1,...,¢; £0,...,¢,) — c—%-b
and
c—pd <= dbeB:c—d



clearly — p has the following properties:

e —p Is terminating
e if c —p dthen ¢ —d € span(B) = W

but — p in general is not Church-Rosser:
let
B ={(1,0,0),(1,1,1
{( b ) b )}
1 2

then
(1,2,2) —, (0,2,2)

(1,2,2) —y, (0,1,1)
both results are irreducible,
they are congruent,
but they have no common successor



So what do we do in order to create a situation where
we have a CR reduction system?
Well, we transform the Matrix

b1
B = .
Oim
to row echelon form: i.e. we look at situations, where the
component of a vector, or for this matter a unit vector

i—th pos

can be reduced by 2 different generators b; and by,
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e, — bj e, — bk;
These reduction results are congruent w.r.t. =y, so their
difference by,41 := b; — by, 1s in W; it b,,,41 = 0, then there
was no divergence anyway; otherwise we add b,,.1 to
the set of generators B, thereby enforcing this particular
divergence of reduction to converge:

either e —bj —p,,., € — by
or €, — bk bt € — bj

observe that this represents exactly a step in the forma-
tion of the row echelon form of the matrix B
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this process terminates and yields a set of generators B
s.t.

- A
e — 5 is both Noetherian and CR

o —

UU *
|

So we can decide the membership problem for W by re-
duction w.r.t. B

if in the end we interreduce the elements in B ., we basi-
cally get the Hermite matrix associated to B

12



for our example above this means the following:

B— b= (1,0,0)
bQ — (17171)

now B spans the same vector space W, and we can use
the reduction w.r.t.B to decide membership in W:

(1, 2, 2) —p, (O, 2, 2) —y (O, 0, O)
by <07 17 1) b3 (07 07 O)

So (1,2,2) € W.
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3. Euclid’s algorithm for GCDs

the setting:

e K|x|, the ring of polynomials over a field K

o F'={fi(x), fo(z)} C Klz]
generating an ideal I = (F) in K|x]

e cquivalence relation g =;h <= g—hel

the problem:

e for g € K|z]
e decide: “g =, 07, ie. “ge (F)=1"7
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define a reduction relation — p:
for polynomial f(z) = f,z" + --- fiz + fo with f, # 0
we say lead(f) = deg(f) = n;

o(x) =cpa™+ -+ ¢ a'++

£0

c(x) — %aﬂ_”f(a:), ifi >n

and
c—rpd <= dfeF:c—d
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clearly — r has the following properties:

e — Is terminating
oeifc—pdthenc—de (F)=1
but — in general is not Church-Rosser:
let
F={"+a'+2° 2"~ -1 2'+2°+1}
i f2

then
1 —a? —y —at =+l —y, P+t +2

3]5—1’2 —f —1'3—332—1]

both results are irreducible,
they are congruent,
but they have no common successor
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So what do we do in order to create a situation where
we have a CR reduction system?

Well, we consider (smallest) situations in which a term
2! can be reduced by two different polynomials; i.c. we
compute a remainder sequence starting with fi, fo:

F =5
2
/3 = rem( f1, f2)
fk (# 0)

firr (=00 F={fi.fo.- . fi}

then fi will be the greatest common divisor (ged) of f;
and fy, and

ge(F) <= filh <= h—;0
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in terms of the algorihmic scheme of reduction and com-
pletion we can view this process in the following way:

e we look at terms z' which can be reduced w.r.t. two
different generators f;, fi

e this means that ¢ > deg(f;), deg(fx)

e the smallest such situation occurs when

i = max(deg(f;), deg(fx)),

and all the other cases are instantiations of such basic
situations

18



(assuming w.l.o.g. leading coefficients to be 1)

2" = max(lead(f;), lead(fy))
T — f; z' = fk
These reduction results are congruent w.r.t. =;, so their
difference f,,41 = fj — fr isin I; if f,,,41 = 0, then there
was no divergence anyway; otherwise we add f,, 11 to

the set of generators F', thereby enforcing this particular
divergence of reduction to converge:

either o' — f; — ¢ 2" — fi
or T = fr e T
observe that this represents exactly a step in the forma-

tion of the remainder sequence (in fact one step in the
division of f; by fi, or vice versa)
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A

this process terminates and yields a set of generators F'
s.t.

0%}:512%}

e —; is both Noetherian and CR

So we can decide the membership problem for I by re-
duction w.r.t. F

if in the end we interreduce the elements in F , we simply
get only the ged in the generating set F

20



for our example above this means the following:

F— fi= 2+2t+23—22—-2-1
fo= zt+2*+1
fo= at—a®-20-1= Ji—x- fo
fi= PHr+l= s(fa—f3)
fs= 0= f3j($2—$—1)f4
— F

now F generates the same ideal I, and we can use the
reduction w.r.t.F to decide membership in I:

1
— 202 + 2x + 2 —, 0
5 2 3 2

x’—x —y, —T7— 2" - —>f40

-1t —y —xt -+l —y, P+t 42

So x° — 22 € 1.
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3. Grobner Bases algorithm for
polynomial rings

the setting:

o K[xy,...,x,), the ring of multivariate polynomials
over a field K

o '={f,....fu} C Kl|x1,...,2,)]
generating an ideal I = (F) in K|xy, ..., x,]

e cquivalence relation g =;h <= g—hel

the problem:

o for g € Klxy,...,1,)
e decide: “g=;07,1e. “ge (F)y=1"7
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define a reduction relation — p:

first define a linear ordering < on the terms/power prod-
ucts in the variables x4, . .., z, respecting the multiplica-
tive structure of this set of terms, called an admissible
ordering; i.c.

0,...,0)

o 1 =zl < s for every term s

o if s <t and u any term, then s-u <t-u

examples of such admissible ordering are
lexicographic orderings,
graduated lexicographic orderings,
and many others ...

so every non-zero polynomial f has a well-defined
leading term lead(f) and a
non-zero leading coefficient lc(f).
By le(f) we denote the exponent (vector) of lead(f).
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and

g —r 9 = T.A

if e — le(f) € N

g—rh <

24
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then — p has the following properties:

e — Is terminating
eifg—phtheng—he (F)=1

but — ¢ in general is not Church-Rosser:
let
F={g%y’ +y—1 azy+a}
fi f2

then
2yt — n —y+1
e ——
both results are irreducible,
they are congruent,
but they have no common successor
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So what do we do in order to create a situation where
we have a CR reduction system?

Well, as in the previous cases (Gauss elimination, Eu-
clidean algorithm) we investigate the “smallest” situa-
tions in which something can be reduced in essentially 2
different ways

e we look at terms x® which can be reduced w.r.t. two
different generators f;, fi

e this means that lead(f;)|x° and also lead( fy)|z*

e the (finitely many) smallest such situations occur
when

z¢ = lem(lead( f;), lead( fx))

(least common multiple), and all the other cases are
instantiations of such basic situations
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(assuming w.l.o.g. leading coefficients to be 1)

2" = max(lead(f;), lead(fy))
l l
r' — [ z' = fi
These reduction results are congruent w.r.t. =;, so their
difference fy41 = f; — frisin I. If f,,,41 = 0, then there
was no divergence anyway; otherwise we add f,, 11 to

the set of generators F', thereby enforcing this particular
divergence of reduction to converge:

either o' — f; — ¢ 2" — fi
o o= i e T
observe that this represents exactly a step in the forma-

tion of the remainder sequence (in fact one step in the
division of f; by fi or vice versa)

27



A

this process terminates and yields a set of generators F'
s.t.

0%22512%}

e —; is both Noetherian and CR

So we can decide the membership problem for I by re-
duction w.r.t. F

If in the end we interreduce the elements in F , we get a
minimal Grobner basis for the ideal 1.
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for our example above this means the following:

F— fi= 2%°+y—1

fo= ay+ua

f3= —zyty—1= fi—y-fo
fi= y—1= fot(x+1)f;
fs= —z= fs+ (=11

— F

now F generates the same ideal I, and we can use the
reduction w.r.t.F' to decide membership in I:

vyt —p Y+l oy 0
vyt vy —wy 0

So 2%y? € 1.
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4. Knuth-Bendix algorithm for
1st order equ.theories

the setting:

e a term algebra 7 (X, V') over a signature 3
and variables V'

o I = {s;, =t; | i € I} asct of equations over T
generating an equational theory =g

e cquivalence relation s =gt <= s=1¢e€=p

the problem:

o fors,t € T(X,V)

e decide: “s=gt’ ?
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define a reduction relation on 7 (X, V') by orienting the
equations

c; . S; — ti
in one of the ways (according to a reduction ordering)

r; S¢—>ti or ti—>8¢

(w.lo.g. assume r; : s; — ;.
This leads to a so-called “rewrite rule system (RRS)”

R:{Ti‘iél}

31



The reduction — g works in the following way: if there
is a substitution o such that o(s;) = u, then any term
containing w as a subterm can be reduced to the corre-
sponding term, where u is replaced by o(t;):

U—pv = dp,i,0 1 up = o(s;), and
v=ulp— o(t;)] .

In general the termination property is undecidabel for
rewrite rule systems. But there are several sufficient con-
ditions; e.g. s; > t; w.r.t. a reduction ordering. For
the following let us assume that the rules can be ordered
w.r.t. such a reduction ordering.
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then — 5 has the following properties:

e — 1 is terminating (if, e.g., the rules are ordered
w.r.t. a reduction ordering)

.%)*R::E

but — g in general is not Church-Rosser:
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let G consist of the axioms of group theory
G={{(1) 1-xz=ux,
2) a7t =1,
3) (x-y)-z=x-(y-2) }

which are oriented (lexicographic path ordering with
1> . > 1) to give the rewrite rule system

R={(1) 12—z,
2) 71z — 1,
3) (@ y)-z—x-(y-2) }
then

-1

x‘l-(az-y) —@3) (x 'fﬁ)'y —(2) L-y —1) Y

both results are irreducible,
they are congruent modulo =g,
but they have no common successor
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So again the goal is to transform the RRS R into an

equivalent R

—h = —*
R R

which has the Church-Rosser property

As in the previous cases (Gauss elimination, Euclidean
algorithm, Grobner bases) we investigate “smallest” sit-
uations in which a term can be reduced in essentially 2
different ways

e we look at terms which can be reduced w.r.t. two
different rules r; : s; — t;, ;155 — 1

e this means that there is a most general unifier (sub-
stitution) o s.t.

a(sj) = o(si)p

for some position p
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if

U(£Z>|p - U(SJ)
then
o(s;) =u
Lo

o(t;)  o(si)lp < o))
these reduction results are obviously equal modulo =g;
so are normal forms vy, v9 to which they can be reduced.
If v1 # wvq, then we try to orient them into a new rule
which will not violate the termination property
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if this process terminates and yields a set of rules R then

.<—>E::E:<—>}Z

° — ;s both Noetherian and CR

So we can decide the equatily modulo E by reduction
wrt. R

in the end we can interreduce the elements in K and so
get a minimal set of rewrite rules for =p
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for the example of group theory this means that be-
cause of

—1

z i (ey) —p (@hr)y —p iy —a) vy

we add the new rule

@y —
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for the case of group theory this process (Knuth-Bendix)
actually terminates and yields the following minimal rewrite
rule system:

(1) 12—z,

2) o lz—1,

3) (z-y)-z—ux-(y-2),
4) a7t (z-y) — oy,

b)) z-1—ux,

6) 17t —1,

(M @) —ua,

8) x-ax7t—1,

9) x-(a7ty) —v,
(10)  (z-y)t—y o
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5. Related and modified algorithms

Characteristic sets (algebraic, differential)
conditional term rewriting

40



