# Canonical Reduction Systems in Symbolic Mathematics 

Franz Winkler
RISC, JKU

## 1. Introduction

Canonical reduction systems are supposed to solve the following kind of problem:

- we are given a mathematical structure $\mathcal{S}$ and a congruence relation $\cong$ on $\mathcal{S}$, (i.e. $\cong \subseteq \mathcal{S}^{2}$ ) given by a finite set of generators $G$ (i.e. $\cong=\cong_{G}$ )
- for any given $s, t \in \mathcal{S}$, we want to decide whether $s \cong_{G} t$
- this should be achieved by a general algorithm depending only on $\mathcal{S}$, and not on the particular congruence $\cong_{G}$ or its set of generators $G$

In order to solve such decision problems we introduce a reduction relation

$$
\longrightarrow_{G} \subseteq \mathcal{S} \times \mathcal{S}
$$

with the properties

- $\longrightarrow_{G}$ is terminating or Noetherian, i.e. every reduction chain is finite
- $\cong_{G}=\longleftrightarrow{ }_{G}^{*}$, i.e. the symmetric reflexive transitive closure of $\longrightarrow_{G}$ is equal to the congruence generated by $G$
if in addition to being Noetherian the reduction relation is also Church-Rosser, then we can solve our initial problem systematically
the reduction relation $\longrightarrow G$ is Church-Rosser iff connectednes w.r.t. " $\longleftrightarrow G_{G}$ ", i.e.

$$
a \longleftrightarrow{ }_{G}^{*} b,
$$

implies the existence of a common successor, i.e.

$$
\exists c: a \longrightarrow{ }_{G}^{*} c \text { and } b \longrightarrow{ }_{G}^{*} c .
$$

in particular this means that two irreducible elements $a, b$ are congruent if and only if they are syntactically equal.
in order to decide whether

$$
a \cong{ }_{G} b
$$

under the conditions of Noetherianity and Church-Rosserness of $\longrightarrow_{G}$ we do the following:

- reduce $a$ and $b$ to (any) irreducible $a^{\prime}$ and $b^{\prime}$ s.t.

$$
\begin{aligned}
& a=a_{0} \longrightarrow_{G} a_{1} \longrightarrow_{G} \cdots \quad \longrightarrow_{G} a_{m}=a^{\prime}, \\
& b=b_{0} \longrightarrow_{G} b_{1} \longrightarrow_{G} \cdots \quad \longrightarrow_{G} b_{n}=b^{\prime}
\end{aligned}
$$

observe that because of Noetherianity these reduction chains have to be finite

- check whether $a^{\prime}=b^{\prime}$;
if so $a \cong_{G} b$, otherwise not
but of course in general our set of generators $G$ will not have this nice Church-Rosser property the goal now is to transform $G$ into an equivalent set of generators $\hat{G}$


## 2. Gauss Elimination

the setting:

- vector space $V=K^{n}$ over field $K$
- generating elements $B$ for a subvectorspace $W=\operatorname{span}(B)$
- equivalence relation $v \cong_{W} w \Longleftrightarrow v-w \in W$ the problem:
- for $v \in V$
- decide: $" v \cong_{W} 0$ ", i.e. $" v \in \operatorname{span}(B)=W "$ ?
define a reduction relation $\longrightarrow_{B}$ :
for vector $b=\left(0, \ldots, 0, b_{i}, \ldots, b_{n}\right)$ with $b_{i} \neq 0$ we say $\operatorname{lead}(b)=i$;

$$
c=\left(c_{1}, \ldots, c_{i} \neq 0, \ldots, c_{n}\right) \longrightarrow b c-\frac{c_{i}}{b_{i}} \cdot b
$$

and

$$
c \longrightarrow_{B} d \quad \Longleftrightarrow \quad \exists b \in B: c \longrightarrow_{b} d
$$

clearly $\longrightarrow_{B}$ has the following properties:

- $\longrightarrow_{B}$ is terminating
- if $c \longrightarrow_{B} d$ then $c-d \in \operatorname{span}(B)=W$
but $\longrightarrow_{B}$ in general is not Church-Rosser:
let

$$
B=\{\underbrace{(1,0,0)}_{b_{1}}, \underbrace{(1,1,1)}_{b_{2}}\}
$$

then

$$
\begin{aligned}
& (1,2,2) \longrightarrow b_{1}(0,2,2) \\
& (1,2,2) \longrightarrow b_{2}(0,1,1)
\end{aligned}
$$

both results are irreducible, they are congruent, but they have no common successor

So what do we do in order to create a situation where we have a CR reduction system?

Well, we transform the Matrix

$$
B=\left(\begin{array}{c}
b_{1} \\
\cdots \\
b_{m}
\end{array}\right)
$$

to row echelon form; i.e. we look at situations, where the component of a vector, or for this matter a unit vector

$$
e_{i}=(0, \ldots, 0, \underbrace{1}_{i-\text { th pos }}, 0, \ldots, 0),
$$

can be reduced by 2 different generators $b_{j}$ and $b_{k}$

$$
\begin{aligned}
\operatorname{lead}\left(b_{j}\right)= & i=\operatorname{lead}\left(b_{k}\right) \\
& e_{i} \\
\downarrow & \\
e_{i}-b_{j} & \\
& e_{i}-b_{k}
\end{aligned}
$$

These reduction results are congruent w.r.t. $\cong_{W}$, so their difference $b_{m+1}:=b_{j}-b_{k}$ is in $W$; if $b_{m+1}=0$, then there was no divergence anyway; otherwise we add $b_{m+1}$ to the set of generators $B$, thereby enforcing this particular divergence of reduction to converge:

$$
\begin{array}{ll}
\text { either } & e_{i}-b_{j} \longrightarrow b_{m+1} e_{i}-b_{k} \\
\text { or } & e_{i}-b_{k} \longrightarrow b_{m+1} e_{i}-b_{j}
\end{array}
$$

observe that this represents exactly a step in the formation of the row echelon form of the matrix $B$
this process terminates and yields a set of generators $\hat{B}$ s.t.
$\bullet \longleftrightarrow{ }_{B}^{*}=\cong_{W}=\longleftrightarrow_{\hat{B}}^{*}$

- $\longrightarrow_{\hat{B}}$ is both Noetherian and CR

So we can decide the membership problem for $W$ by reduction w.r.t. $\hat{B}$
if in the end we interreduce the elements in $\hat{B}$, we basically get the Hermite matrix associated to $B$
for our example above this means the following:

$$
\begin{aligned}
B \rightarrow b_{1} & =(1,0,0) \\
b_{2} & =(1,1,1) \\
- & ------ \\
b_{3} & =(0,1,1) \quad \rightarrow \hat{B}
\end{aligned}
$$

now $\hat{B}$ spans the same vector space $W$, and we can use the reduction w.r.t. $\hat{B}$ to decide membership in $W$ :

$$
\begin{aligned}
(1,2,2) & \longrightarrow b_{1}(0,2,2) \longrightarrow b_{3}(0,0,0) \\
& b_{b_{2}}(0,1,1) \longrightarrow b_{3}(0,0,0)
\end{aligned}
$$

So $(1,2,2) \in W$.

## 3. Euclid's algorithm for GCDs

the setting:

- $K[x]$, the ring of polynomials over a field $K$
- $F=\left\{f_{1}(x), f_{2}(x)\right\} \subset K[x]$
generating an ideal $I=\langle F\rangle$ in $K[x]$
- equivalence relation $g \equiv_{I} h \Longleftrightarrow g-h \in I$ the problem:
- for $g \in K[x]$
- decide: $" g \equiv_{i} 0$ ", i.e. $" g \in\langle F\rangle=I "$ ?
define a reduction relation $\longrightarrow_{F}$ :
for polynomial $f(x)=f_{n} x^{n}+\cdots f_{1} x+f_{0}$ with $f_{n} \neq 0$
we say $\operatorname{lead}(f)=\operatorname{deg}(f)=n$;

$$
\begin{aligned}
& c(x)=c_{m} x^{m}+\cdots+\underbrace{c_{i}}_{\neq 0} x^{i}+\cdots+c_{0} \\
& \longrightarrow f \\
& c(x)-\frac{c_{i}}{f_{n}} x^{i-n} f(x), \quad \text { if } i \geq n
\end{aligned}
$$

and

$$
c \longrightarrow_{F} d \quad \Longleftrightarrow \quad \exists f \in F: c \longrightarrow_{f} d
$$

clearly $\longrightarrow_{F}$ has the following properties:
$\bullet \longrightarrow_{F}$ is terminating

- if $c \longrightarrow{ }_{F} d$ then $c-d \in\langle F\rangle=I$
but $\longrightarrow_{F}$ in general is not Church-Rosser:
let

$$
F=\{\underbrace{x^{5}+x^{4}+x^{3}-x^{2}-x-1}_{f_{1}}, \underbrace{x^{4}+x^{2}+1}_{f_{2}}\}
$$

then

$$
\begin{aligned}
& x^{5}-x^{2} \longrightarrow f_{1}-x^{4}-x^{3}+x+1 \longrightarrow f_{2}-x^{3}+x^{2}+x+2 \\
& x^{5}-x^{2} \longrightarrow f_{2}-x^{3}-x^{2}-x
\end{aligned}
$$

both results are irreducible,
they are congruent,
but they have no common successor

So what do we do in order to create a situation where we have a CR reduction system?

Well, we consider (smallest) situations in which a term $x^{i}$ can be reduced by two different polynomials; i.e. we compute a remainder sequence starting with $f_{1}, f_{2}$ :

$$
\begin{aligned}
F= & f_{1} \\
& f_{2} \\
& --- \\
& f_{3} \quad:=\operatorname{rem}\left(f_{1}, f_{2}\right) \\
& \vdots \\
& f_{k} \quad(\neq 0) \quad \\
& f_{k+1} \quad(=0) \quad \hat{F}=\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}
\end{aligned}
$$

then $f_{k}$ will be the greatest common divisor $(\operatorname{gcd})$ of $f_{1}$ and $f_{2}$, and

$$
g \in\langle F\rangle \Longleftrightarrow f_{k} \mid h \Longleftrightarrow h \longrightarrow_{\hat{F}} 0
$$

in terms of the algorihmic scheme of reduction and completion we can view this process in the following way:

- we look at terms $x^{i}$ which can be reduced w.r.t. two different generators $f_{j}, f_{k}$
- this means that $i \geq \operatorname{deg}\left(f_{j}\right), \operatorname{deg}\left(f_{k}\right)$
- the smallest such situation occurs when
$i=\max \left(\operatorname{deg}\left(f_{j}\right), \operatorname{deg}\left(f_{k}\right)\right)$,
and all the other cases are instantiations of such basic
situations
(assuming w.l.o.g. leading coefficients to be 1)

$$
\begin{array}{cc}
x^{i}=\max \left(\operatorname{lead}\left(f_{j}\right),\right. & \left.\operatorname{lead}\left(f_{k}\right)\right) \\
\downarrow & \downarrow \\
x^{i}-f_{j} & x^{i}-f_{k}
\end{array}
$$

These reduction results are congruent w.r.t. $\equiv_{I}$, so their difference $f_{m+1}:=f_{j}-f_{k}$ is in $I$; if $f_{m+1}=0$, then there was no divergence anyway; otherwise we add $f_{m+1}$ to the set of generators $F$, thereby enforcing this particular divergence of reduction to converge:

$$
\begin{array}{ll}
\text { either } & x^{i}-f_{j} \longrightarrow f_{m+1} x^{i}-f_{k} \\
\text { or } & x^{i}-f_{k} \longrightarrow f_{m+1} x^{i}-f_{j}
\end{array}
$$

observe that this represents exactly a step in the formation of the remainder sequence (in fact one step in the division of $f_{j}$ by $f_{k}$ or vice versa)
this process terminates and yields a set of generators $\hat{F}$ s.t.
$\bullet \longleftrightarrow{ }_{F}^{*}=\equiv_{I}=\longleftrightarrow_{\hat{F}}^{*}$

- $\longrightarrow_{\hat{F}}$ is both Noetherian and CR

So we can decide the membership problem for $I$ by reduction w.r.t. $\hat{F}$
if in the end we interreduce the elements in $\hat{F}$, we simply get only the gcd in the generating set $\hat{F}$
for our example above this means the following:

$$
\begin{array}{rll}
F \rightarrow f_{1} & =x^{5}+x^{4}+x^{3}-x^{2}-x-1 & \\
& f_{2}=x^{4}+x^{2}+1 & \\
-------- & & \\
& f_{3}=x \cdot f_{2} \\
f_{4} & =x^{4}-x^{2}-2 x-1= & \frac{1}{2}\left(f_{2}-f_{3}\right) \\
f_{5} & =0= & f_{3}-\left(x^{2}-x-1\right) f_{4} \\
& & \rightarrow \hat{F}
\end{array}
$$

now $\hat{F}$ generates the same ideal $I$, and we can use the reduction w.r.t. $\hat{F}$ to decide membership in $I$ :

$$
\begin{aligned}
& x^{5}-x^{2} \longrightarrow f_{1}-x^{4}-x^{3}+x+1 \\
& \longrightarrow f_{2}-x^{3}+x^{2}+x+2 \\
& x_{4}-x^{2}+2 x+2 \longrightarrow f_{4} 0 \\
& x^{5}-x^{2} \longrightarrow f_{2}-x^{3}-x^{2}-x \\
& \text { So } x^{5}-x^{2} \in I .
\end{aligned}
$$

## 3. Gröbner Bases algorithm for polynomial rings

the setting:

- $K\left[x_{1}, \ldots, x_{n}\right]$, the ring of multivariate polynomials over a field $K$
- $F=\left\{f_{1}, \ldots, f_{m}\right\} \subset K\left[x_{1}, \ldots, x_{n}\right]$
generating an ideal $I=\langle F\rangle$ in $K\left[x_{1}, \ldots, x_{n}\right]$
- equivalence relation $g \equiv_{I} h \Longleftrightarrow g-h \in I$
the problem:
- for $g \in K\left[x_{1}, \ldots, x_{n}\right]$
- decide: " $g \equiv_{I} 0$ ", i.e. $" g \in\langle F\rangle=I$ " ?
define a reduction relation $\longrightarrow_{F}$ :
first define a linear ordering $<$ on the terms $/$ power products in the variables $x_{1}, \ldots, x_{n}$ respecting the multiplicative structure of this set of terms, called an admissible ordering; i.e.
- $1=x^{(0, \ldots, 0)} \leq s$ for every term $s$
- if $s \leq t$ and $u$ any term, then $s \cdot u \leq t \cdot u$
examples of such admissible ordering are
lexicographic orderings,
graduated lexicographic orderings, and many others ...
so every non-zero polynomial $f$ has a well-defined leading term lead $(f)$ and a non-zero leading coefficient lc $(f)$.
By le $(f)$ we denote the exponent (vector) of lead $(f)$.
for polynomial $g=\cdots+g_{e} x^{e=\left(e_{1}, \ldots, e_{n}\right)}+\cdots$ with $g_{e} \neq 0$

$$
\begin{aligned}
& g \quad \longrightarrow_{f} \quad g-\frac{g_{e}}{\operatorname{lc}(f)} x^{e-\operatorname{le}(f)} f(x), \\
& \text { if } e-\operatorname{le}(f) \in \mathbb{N}^{n}
\end{aligned}
$$

and

$$
g \longrightarrow_{F} h \quad \Longleftrightarrow \quad \exists f \in F: g \longrightarrow_{f} h
$$

then $\longrightarrow_{F}$ has the following properties:
$\bullet \longrightarrow_{F}$ is terminating

- if $g \longrightarrow{ }_{F} h$ then $g-h \in\langle F\rangle=I$
but $\longrightarrow_{F}$ in general is not Church-Rosser:
let

$$
F=\{\underbrace{x^{2} y^{2}+y-1}_{f_{1}}, \underbrace{x^{2} y+x}_{f_{2}}\}
$$

then

$$
\begin{aligned}
& x^{2} y^{2} \longrightarrow f_{1}-y+1 \\
& x^{2} y^{2} \longrightarrow f_{2}-x y
\end{aligned}
$$

both results are irreducible,
they are congruent,
but they have no common successor

So what do we do in order to create a situation where we have a CR reduction system?

Well, as in the previous cases (Gauss elimination, Euclidean algorithm) we investigate the "smallest" situations in which something can be reduced in essentially 2 different ways

- we look at terms $x^{e}$ which can be reduced w.r.t. two different generators $f_{j}, f_{k}$
- this means that lead $\left(f_{j}\right) \mid x^{e}$ and also lead $\left(f_{k}\right) \mid x^{e}$
- the (finitely many) smallest such situations occur when

$$
x^{e}=\operatorname{lcm}\left(\operatorname{lead}\left(f_{j}\right), \operatorname{lead}\left(f_{k}\right)\right)
$$

(least common multiple), and all the other cases are instantiations of such basic situations
(assuming w.l.o.g. leading coefficients to be 1)

$$
\begin{array}{cc}
x^{i}=\max \left(\operatorname{lead}\left(f_{j}\right),\right. & \left.\operatorname{lead}\left(f_{k}\right)\right) \\
\downarrow & \downarrow \\
x^{i}-f_{j} & x^{i}-f_{k}
\end{array}
$$

These reduction results are congruent w.r.t. $\equiv_{I}$, so their difference $f_{m+1}=f_{j}-f_{k}$ is in $I$. If $f_{m+1}=0$, then there was no divergence anyway; otherwise we add $f_{m+1}$ to the set of generators $F$, thereby enforcing this particular divergence of reduction to converge:

$$
\begin{array}{ll}
\text { either } & x^{i}-f_{j} \longrightarrow f_{m+1} x^{i}-f_{k} \\
\text { or } & x^{i}-f_{k} \longrightarrow f_{m+1} x^{i}-f_{j}
\end{array}
$$

observe that this represents exactly a step in the formation of the remainder sequence (in fact one step in the division of $f_{j}$ by $f_{k}$ or vice versa)
this process terminates and yields a set of generators $\hat{F}$ s.t.
$\bullet \longleftrightarrow{ }_{F}^{*}=\equiv_{I}=\longleftrightarrow_{\hat{F}}^{*}$

- $\longrightarrow_{\hat{F}}$ is both Noetherian and CR

So we can decide the membership problem for $I$ by reduction w.r.t. $\hat{F}$

If in the end we interreduce the elements in $\hat{F}$, we get a minimal Gröbner basis for the ideal $I$.
for our example above this means the following:

$$
\begin{array}{rlrl}
F \rightarrow f_{1} & =x^{2} y^{2}+y-1 & & \\
f_{2} & =x^{2} y+x \\
- & ----- \\
f_{3} & =-x y+y-1= & f_{1}-y \cdot f_{2} \\
f_{4} & =y-1= & f_{2}+(x+1) f_{3} \\
f_{5} & =-x= & f_{3}+(x-1) f_{4} \\
& & \rightarrow \hat{F}
\end{array}
$$

now $\hat{F}$ generates the same ideal $I$, and we can use the reduction w.r.t. $\hat{F}$ to decide membership in $I$ :

$$
\begin{array}{lll}
x^{2} y^{2} \longrightarrow f_{1}-y+1 & \longrightarrow f_{4} & 0 \\
x^{2} y^{2} \longrightarrow f_{2} & -x y & \longrightarrow f_{5}
\end{array} 0
$$

So $x^{2} y^{2} \in I$.

## 4. Knuth-Bendix algorithm for 1st order equ.theories

the setting:

- a term algebra $\mathcal{T}(\Sigma, V)$ over a signature $\Sigma$ and variables $V$
- $E=\left\{s_{i}=t_{i} \mid i \in I\right\}$ a set of equations over $\mathcal{T}$ generating an equational theory $={ }_{E}$
- equivalence relation $s \equiv_{E} t \Longleftrightarrow s=t \in={ }_{E}$
the problem:
- for $s, t \in \mathcal{T}(\Sigma, V)$
- decide: " $s={ }_{E} t$ " ?
define a reduction relation on $\mathcal{T}(\Sigma, V)$ by orienting the equations

$$
e_{i}: \quad s_{i}=t_{i}
$$

in one of the ways (according to a reduction ordering)

$$
r_{i}: \quad s_{i} \longrightarrow t_{i} \quad \text { or } \quad t_{i} \longrightarrow s_{i}
$$

(w.l.o.g. assume $r_{i}: s_{i} \longrightarrow t_{i}$.

This leads to a so-called "rewrite rule system (RRS)"

$$
R=\left\{r_{i} \mid i \in I\right\}
$$

The reduction $\longrightarrow_{R}$ works in the following way: if there is a substitution $\sigma$ such that $\sigma\left(s_{i}\right)=u$, then any term containing $u$ as a subterm can be reduced to the corresponding term, where $u$ is replaced by $\sigma\left(t_{i}\right)$ :

$$
\begin{aligned}
u \longrightarrow R v \quad \exists p, i, \sigma: & u_{\mid p}=\sigma\left(s_{i}\right), \text { and } \\
& v=u\left[p \longleftarrow \sigma\left(t_{i}\right)\right]
\end{aligned}
$$

In general the termination property is undecidabel for rewrite rule systems. But there are several sufficient conditions; e.g. $s_{i}>t_{i}$ w.r.t. a reduction ordering. For the following let us assume that the rules can be ordered w.r.t. such a reduction ordering.
then $\longrightarrow_{R}$ has the following properties:
$\bullet \longrightarrow R$ is terminating (if, e.g., the rules are ordered w.r.t. a reduction ordering)
$\bullet \longleftrightarrow{ }_{R}^{*}==_{E}$
but $\longrightarrow_{R}$ in general is not Church-Rosser:
let $G$ consist of the axioms of group theory

$$
\begin{aligned}
G=\{ & (1) 1 \cdot x=x \\
& (2) x^{-1} \cdot x=1 \\
& (3)(x \cdot y) \cdot z=x \cdot(y \cdot z)\}
\end{aligned}
$$

which are oriented (lexicographic path ordering with ${ }^{-1}>\cdot>1$ ) to give the rewrite rule system

$$
\begin{aligned}
R=\{ & (1) 1 \cdot x \longrightarrow x \\
& (2) x^{-1} \cdot x \longrightarrow 1, \\
& (3)(x \cdot y) \cdot z \longrightarrow x \cdot(y \cdot z)\}
\end{aligned}
$$

then
$x^{-1} \cdot(x \cdot y) \longleftarrow_{(3)}\left(x^{-1} \cdot x\right) \cdot y \longrightarrow_{(2)} 1 \cdot y \longrightarrow_{(1)} y$
both results are irreducible, they are congruent modulo $={ }_{E}$, but they have no common successor

So again the goal is to transform the RRS $R$ into an equivalent $\hat{R}$

$$
\longleftrightarrow_{R}^{*}=\longleftrightarrow_{\hat{R}}^{*}
$$

which has the Church-Rosser property
As in the previous cases (Gauss elimination, Euclidean algorithm, Gröbner bases) we investigate "smallest" situations in which a term can be reduced in essentially 2 different ways

- we look at terms which can be reduced w.r.t. two different rules $r_{i}: s_{i} \longrightarrow t_{i}, r_{j}: s_{j} \longrightarrow t_{j}$
- this means that there is a most general unifier (substitution) $\sigma$ s.t.

$$
\sigma\left(s_{j}\right)=\sigma\left(s_{i}\right)_{\mid p}
$$

for some position $p$
if

$$
\sigma\left(s_{i}\right)_{\mid p}=\sigma\left(s_{j}\right)
$$

then

$$
\begin{aligned}
\sigma\left(s_{i}\right) & =u \\
\quad \downarrow & \downarrow \\
\sigma\left(t_{i}\right) & \sigma\left(s_{i}\right)\left[p \leftarrow \sigma\left(t_{j}\right)\right]
\end{aligned}
$$

these reduction results are obviously equal modulo $={ }_{E}$; so are normal forms $v_{1}, v_{2}$ to which they can be reduced. If $v_{1} \neq v_{2}$, then we try to orient them into a new rule which will not violate the termination property
if this process terminates and yields a set of rules $\hat{R}$ then

$$
\bullet \longleftrightarrow_{R}^{*}==_{E}=\longleftrightarrow_{\hat{R}}^{*}
$$

- $\longrightarrow_{\hat{R}}$ is both Noetherian and CR

So we can decide the equatily modulo $E$ by reduction w.r.t. $\hat{R}$
in the end we can interreduce the elements in $\hat{R}$ and so get a minimal set of rewrite rules for $={ }_{E}$
for the example of group theory this means that because of
$x^{-1} \cdot(x \cdot y) \longleftarrow_{(3)}\left(x^{-1} \cdot x\right) \cdot y \longrightarrow_{(2)} 1 \cdot y \longrightarrow_{(1)} y$
we add the new rule

$$
\text { (4) } x^{-1} \cdot(x \cdot y) \longrightarrow y
$$

for the case of group theory this process (Knuth-Bendix) actually terminates and yields the following minimal rewrite rule system:
(1) $1 \cdot x \longrightarrow x$,
(2) $x^{-1} \cdot x \longrightarrow 1$,
(3) $(x \cdot y) \cdot z \longrightarrow x \cdot(y \cdot z)$,
(4) $x^{-1} \cdot(x \cdot y) \longrightarrow y$,
(5) $x \cdot 1 \longrightarrow x$,
(6) $1^{-1} \longrightarrow 1$,
(7) $\left(x^{-1}\right)^{-1} \longrightarrow x$,
(8) $x \cdot x^{-1} \longrightarrow 1$,
(9) $x \cdot\left(x^{-1} \cdot y\right) \longrightarrow y$,
(10) $(x \cdot y)^{-1} \longrightarrow y^{-1} \cdot x^{-1}$.

## 5. Related and modified algorithms

Characteristic sets (algebraic, differential) conditional term rewriting

