The Assembly Language Level

The Assembly Language Level

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University

Wolfgang.Schreiner@risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner

RISC-Linz




The Assembly Language Level

Assembly Language Level

Implemented by translation rather than by interpretation.

e Source: assembly language.
— The source program is a sequence of text statements.
e Target: machine language.

— Each statement of the source program is translated to exactly one machine instruction.

— Object file is generated.
e [ranslator: assembler

— Translates symbolic instruction names to numerical instruction codes.
— Translates register names to register numbers.

— Translates symbolic variable names to numerical memory locations.

Programmer still has access to all features of the target machine.

Wolfgang Schreiner




The Assembly Language Level

Assembly Language Use

Why would one want to program in assembly language?

e Performance.

— Assembly language programmer can write faster code than high-level language programmer.
* Perhaps 3 times faster.

— Example: time-critical numerical operations, graphics operations, embedded applications, ...
e Hardware Access.

— Assembly language programmer has complete access to hardware.

— Device controllers, OS interrupt handlers, ...

An assembler is typically also the back-end of a compiler.

Wolfgang Schreiner




The Assembly Language Level

Assembly Language Statement
Compute N =1 + J.

Label Opcode Operands Comments
FORMULA: MOV EAX,I ; register EAX = |

ADD EAX,J » register EAX = |4

MOV N,EAX » N=I+J
| DW 3 ; reserve 4 bytes initialized to 3
J DW 4 ; reserve 4 bytes initialized to 4
N DW 0 : reserve 4 bytes initialized to 0

Machine instructions plus declaratives for memory reservation.

Wolfgang Schreiner




The Assembly Language Level

Pseudoinstructions

Assembler directives that control the operation of the assembler.

e Example: Microsoft MASM directives.

— SEGMENT, ENDS: start/end a segment (text, data, etc).
— ALIGN: control alignment of next instruction or data.
— EQU: give a symbolic name to an expression.

— DW: allocate storage for one or more 32 bit words.

— IF, ELSE, ENDIF: conditional assembly.

WORDSIZE EQU 16
IF WORDSIZE GT 16
WSIZE: DW 32

ELSE
WSIZE: DW 16
ENDIF

Wolfgang Schreiner




The Assembly Language Level

Macros

e A macro is a named piece of text.

— Macro definition gives name to piece of text.
— A macro call inserts the name of the text.

— A macro may have parameters for customization.

SWAP MACRO P1,P2 ; P1 and P2 are interchanged

MOV EAX,P1 ; EAX := P1

MOV EBX,P2 ; EBX := P2

MOV P2,EAX ; P2 := EAX

MOV P1,EBX ; P1 := EBX

ENDM

SWAP P,Q

SWAP R,S

Macros allow to avoid the overhead of procedure calls.

Wolfgang Schreiner




The Assembly Language Level

The Assembly Process

Many assemblers process the program in two passes.

e [wo-pass assemblers.

— Forward references have to be resolved.

JMP LABEL

LABEL ...
e Pass One: collect symbol information.
— Definition of symbols (labels) are read and stored in table.
e Pass Two: resolve symbols.

— Each statment is read, assembled, and output.

First pass may create intermediate form of program in memory.

Wolfgang Schreiner




The Assembly Language Level

Pass One

Build symbol table that contains values of all symbols.

Label Opcode Operands Comments Length Position
MARIA: MOV EAXI EAX=I 5 100
MOV EBX,J EBX=J 6 105
ROBERTA: MOV ECX K ECX=K 6 111
IMUL EAX,EAX EAX=I*| 2 117
IMUL EBX,EBX EBX=J*J 3 119
IMUL ECX,ECX ECX=K*K 3 122
MARILYN: ADD EAX,EBX EAX=I*4-J*]J 2 125
ADD EAX.ECX EAX=I*I4+-J*J+K*K 2 127

Symbol Value Other Information
MARIA 100
ROBERTA 111
MARILYN 125

Wolfgang Schreiner




The Assembly Language Level

Pass Two

Generates the object file and prints an assembly listing.

e Errors reported by assembler:

— Symbol has been used but not defined.

— Symbol has been defined more than once.

— Name in opcode field is not a legal opcode.

— Opcode is supplied with too few or too many operands.

— lllegal register use (e.g. a branch to a register).
e Also produces certain information needed for the linker.

— Links up procedures from different object files into a single executable file.

Only low level errors are detected.

Wolfgang Schreiner




The Assembly Language Level

Linking and Loading

Most programs consist of multiple object files.

e High-level language program consists of multiple modules.

— Compiler generates assembly language file from each module.
— Assembler generates object module from each assembly language file.

— Object modules must be linked together.
e Linker (linking loader).

— Generates executable binary program from object files.

Source Object

procedure 1 module 1
. Executable
Source Object . ;
»| Translator > > Linker > binary

procedure 2 module 2 program

Source Object
procedure 3 module 3

Wolfgang Schreiner




The Assembly Language Level

Structure of an Object Module

e Entry point table

— List of symbols defined in module.
— Can be referenced by other modules.

— Name plus address.
e External reference table

— List of symbols referenced by the module.
— Are defined in other modules.

— Name plus machine instructions that use this symbol.
e Relocation dictionary

— List of addresses in program that need to be relocated.

End of module

Relocation
dictionary

Machine instructions
and constants

External reference table

Entry point table

Identification

Most linkers use two passes of table building and module relocation.

Wolfgang Schreiner

10




The Assembly Language Level

Address Spaces

e Each object module has
its own address space.

— Starts at address 0.

N

00

300

200

100

500

400

300

200

100

Object module A

CALL B

MOVE P TO X

BRANCH TO 200

Object module C

CALL D

MOVER TO X

BRANCH TO 200

600

500

400

300

200

100

300

200

100

Object module B

CALL C

MOVE Q TO X

BRANCH TO 300

Object module D

MOVE S TO X

BRANCH TO 200

Wolfgang Schreiner

11




The Assembly Language Level

Linking Process

1. Construct table of modules.

e Length of each module.

2. Assign start address to modules.

e Modules are placed in sequence.
3. Find all memory instructions.

e Add module address to each address.

4. Find procedure call instructions.

e Insert procedure address.

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

MOVE STO X

BRANCH TO 200

CALLD

MOVERTO X

BRANCH TO 200

CALLC

MOVE Q TO X

BRANCH TO 300

CALL B

MOVE P TO X

BRANCH TO 200

Object
module
D

Object
module

Object
module
B

Object
module
A

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

MOVESTO X

BRANCH TO 1800

CALL 1600

MOVE RTO X

BRANCH TO 1300

CALL 1100

MOVE QTO X

BRANCH TO 800

CALL 500

MOVE P TO X

BRANCH TO 300

Object
module
D

Object
module
C

Object
module
B

Object
module

Wolfgang Schreiner

12




The Assembly Language Level

. o . User process 1 User process 2
Dynamic Linking
Linking may occur during execution. -
\\ Header /

e Supported by modern OS. ]

— MS windows: DLL (Dynamic Link Library). B

— Unix: shared library. C
e Module may be used by multiple processes. °

— Implicit linking: program is statically linked with an import library which refers to the DLL;
when OS loads program, it checks for missing DLLs and loads them.

— Explicit linking: user program makes explicit calls at runtime to bind to a DLL and to get the
addresses of the procedures it needs.

Dynamic linking reduces the sizes of program files.

Wolfgang Schreiner 13




