
The Assembly Language Level

The Assembly Language Level
Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC-Linz)

Johannes Kepler University

Wolfgang.Schreiner@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC-Linz



The Assembly Language Level

Assembly Language Level

Implemented by translation rather than by interpretation.

• Source: assembly language.
– The source program is a sequence of text statements.

• Target: machine language.
– Each statement of the source program is translated to exactly one machine instruction.

– Object file is generated.

• Translator: assembler
– Translates symbolic instruction names to numerical instruction codes.

– Translates register names to register numbers.

– Translates symbolic variable names to numerical memory locations.

Programmer still has access to all features of the target machine.

Wolfgang Schreiner 1



The Assembly Language Level

Assembly Language Use

Why would one want to program in assembly language?

• Performance.
– Assembly language programmer can write faster code than high-level language programmer.

∗ Perhaps 3 times faster.

– Example: time-critical numerical operations, graphics operations, embedded applications, . . .

• Hardware Access.
– Assembly language programmer has complete access to hardware.

– Device controllers, OS interrupt handlers, . . .

An assembler is typically also the back-end of a compiler.

Wolfgang Schreiner 2



The Assembly Language Level

Assembly Language Statement

Compute N = I + J .

Label Opcode Operands Comments

FORMULA: MOV EAX,I ; register EAX = I

ADD EAX,J ; register EAX = I+J

MOV N,EAX ; N=I+J

I DW 3 ; reserve 4 bytes initialized to 3

J DW 4 ; reserve 4 bytes initialized to 4

N DW 0 ; reserve 4 bytes initialized to 0

Machine instructions plus declaratives for memory reservation.

Wolfgang Schreiner 3



The Assembly Language Level

Pseudoinstructions

Assembler directives that control the operation of the assembler.

• Example: Microsoft MASM directives.
– SEGMENT, ENDS: start/end a segment (text, data, etc).

– ALIGN: control alignment of next instruction or data.

– EQU: give a symbolic name to an expression.

– DW: allocate storage for one or more 32 bit words.

– IF, ELSE, ENDIF: conditional assembly.

WORDSIZE EQU 16

IF WORDSIZE GT 16

WSIZE: DW 32

ELSE

WSIZE: DW 16

ENDIF

Wolfgang Schreiner 4



The Assembly Language Level

Macros

• A macro is a named piece of text.
– Macro definition gives name to piece of text.

– A macro call inserts the name of the text.

– A macro may have parameters for customization.

SWAP MACRO P1,P2 ; P1 and P2 are interchanged

MOV EAX,P1 ; EAX := P1

MOV EBX,P2 ; EBX := P2

MOV P2,EAX ; P2 := EAX

MOV P1,EBX ; P1 := EBX

ENDM

SWAP P,Q

SWAP R,S

Macros allow to avoid the overhead of procedure calls.

Wolfgang Schreiner 5



The Assembly Language Level

The Assembly Process

Many assemblers process the program in two passes.

• Two-pass assemblers.
– Forward references have to be resolved.

JMP LABEL

...

LABEL ...

• Pass One: collect symbol information.
– Definition of symbols (labels) are read and stored in table.

• Pass Two: resolve symbols.
– Each statment is read, assembled, and output.

First pass may create intermediate form of program in memory.

Wolfgang Schreiner 6



The Assembly Language Level

Pass One

Build symbol table that contains values of all symbols.

Label Opcode Operands Comments Length Position

MARIA: MOV EAX,I EAX=I 5 100

MOV EBX,J EBX=J 6 105

ROBERTA: MOV ECX,K ECX=K 6 111

IMUL EAX,EAX EAX=I*I 2 117

IMUL EBX,EBX EBX=J*J 3 119

IMUL ECX,ECX ECX=K*K 3 122

MARILYN: ADD EAX,EBX EAX=I*I+J*J 2 125

ADD EAX,ECX EAX=I*I+J*J+K*K 2 127

Symbol Value Other Information

MARIA 100 . . .

ROBERTA 111 . . .

MARILYN 125 . . .

Wolfgang Schreiner 7



The Assembly Language Level

Pass Two

Generates the object file and prints an assembly listing.

• Errors reported by assembler:
– Symbol has been used but not defined.

– Symbol has been defined more than once.

– Name in opcode field is not a legal opcode.

– Opcode is supplied with too few or too many operands.

– Illegal register use (e.g. a branch to a register).

• Also produces certain information needed for the linker.
– Links up procedures from different object files into a single executable file.

Only low level errors are detected.

Wolfgang Schreiner 8



The Assembly Language Level

Linking and Loading

Most programs consist of multiple object files.

• High-level language program consists of multiple modules.
– Compiler generates assembly language file from each module.

– Assembler generates object module from each assembly language file.

– Object modules must be linked together.

• Linker (linking loader).
– Generates executable binary program from object files.

Translator Linker
Executable


binary

program

Source

procedure 1

Source

procedure 2

Source

procedure 3

Object

module 1

Object

module 2

Object

module 3

Wolfgang Schreiner 9



The Assembly Language Level

Structure of an Object Module

Identification

Entry point table

External reference table

End of module

Machine instructions

and constants

Relocation

dictionary

• Entry point table
– List of symbols defined in module.

– Can be referenced by other modules.

– Name plus address.

• External reference table
– List of symbols referenced by the module.

– Are defined in other modules.

– Name plus machine instructions that use this symbol.

• Relocation dictionary
– List of addresses in program that need to be relocated.

Most linkers use two passes of table building and module relocation.

Wolfgang Schreiner 10



The Assembly Language Level

Address Spaces

• Each object module has
its own address space.
– Starts at address 0.

Object module A

0

100

200

300

400

BRANCH TO 200

MOVE P TO X

CALL B

0

100

200

300

400

500

600

BRANCH TO 300

MOVE Q TO X

CALL C

Object module B

0

100

200

300

400

500
Object module C

BRANCH TO 200

MOVE R TO X

CALL D

0

100

200

300

MOVE S TO X

BRANCH TO 200

Object module D




Wolfgang Schreiner 11



The Assembly Language Level

Linking Process

BRANCH TO 200

MOVE P TO X

CALL B

BRANCH TO 300

MOVE Q TO X

CALL C

BRANCH TO 200

MOVE R TO X

CALL D

MOVE S TO X

BRANCH TO 200

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

Object
module
A

Object
module
B

Object
module
C

Object
module
D

0

BRANCH TO 300

MOVE P TO X

CALL 500

BRANCH TO 800

MOVE Q TO X

CALL 1100

BRANCH TO 1300

MOVE R TO X

CALL 1600

MOVE S TO X

BRANCH TO 1800

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

Object
module
A

Object
module
B

Object
module
C

Object
module
D

0





 


1. Construct table of modules.
• Length of each module.

2. Assign start address to modules.
• Modules are placed in sequence.

3. Find all memory instructions.
• Add module address to each address.

4. Find procedure call instructions.
• Insert procedure address.

Wolfgang Schreiner 12



The Assembly Language Level

Dynamic Linking

Linking may occur during execution.

User process 1 User process 2

DLL

Header

A

B

C

D

• Supported by modern OS.
– MS windows: DLL (Dynamic Link Library).

– Unix: shared library.

•Module may be used by multiple processes.
– Implicit linking: program is statically linked with an import library which refers to the DLL;

when OS loads program, it checks for missing DLLs and loads them.

– Explicit linking: user program makes explicit calls at runtime to bind to a DLL and to get the

addresses of the procedures it needs.

Dynamic linking reduces the sizes of program files.

Wolfgang Schreiner 13


