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1 Motivation
In classical mathematics education (schools and universities alike) emphasis is given to
two particular activities: calculating (transforming a given representation of an object
to another simpler one) and solving (finding objects that satisfy given properties). The
third major aspect of mathematics [2], proving (reasoning why a property holds for
an infinite class of objects), is widely neglected. Moreover, since students typically
work in mathematical frameworks previously established by others, the fundamental
aspect of modeling (finding properties that adequately characterize a problem domain)
is mainly left out of consideration.

This is the more disturbing since calculating and solving are exactly those aspects
that are nowadays handled best by computers, while modeling and reasoning remain
human key qualifications in modern professions: the first task of every non-trivial
project is to write a specification that describes the desired outcome as precisely as
possible; next, this specification is validated by some sort of critical analysis; after the
specification has been implemented, the result is verified with respect to the specifica-
tion. If these activities are formalized, a specification becomes a mathematical theory,
validation means proving consequences of this theory, and verification means proving
that the result satisfies the properties demanded by the theory.

One (not the only) example of this kind is software development: the formal speci-
fication of a computer program describes a binary relation between the program’s input
state and its output state; this specification can be validated by checking whether the
formula holds on desired input/output examples (as a consequence, the specification
is not void) and does not hold on undesired ones (as a consequence, the specification
is not trivial). Finally, (a model of) the program can be verified by deriving from its
source code formal conditions that, if proved as true, ensure that any state transition
that can be performed by the program is indeed allowed by the specification.

Program specifications can serve as a rich source of examples: writing, validating,
and analyzing specifications, as well as proving that they are met by implementations,
is of application-independent general value. In particular, just by using well-known

∗Submission for Session ConvMathAssist

1



objects with generally well-understood mathematical theories (natural numbers and fi-
nite sequences suffice), one can already construct interesting specifications of intuitive
problems and can derive from simple programs corresponding verification conditions.
Moreover, even basic problem specifications require the full expressiveness of the lan-
guage of predicate logic; if the object theory is simple, any problems and errors when
formulating and arguing about properties arise from true logical errors.

Actually, to get proficient with the practical use of the language of predicate logic
is one of the most important goals of such a training because it is a prerequisite for the
precise formulation of properties and relationships. This language is hardly taught in
school and only rudimentary in university education; as a consequence, even master
students of mathematics and computer science make fundamental mistakes when ex-
pressing intuitive statements in a formal way. Since language shapes thought, this is
not only a superficial blemish but represents a fundamental problem which constantly
hampers thinking/communicating/arguing about complex facts and relationships.

2 Tool Support
So, if one accepts the need for training in the language of logic as an important and
integral part of mathematics education, which kind of computational tools related to
logic can help to achieve these goals?

Visualization/animation tools [8] may help to grasp the interpretation of logic for-
mulas over graphically illustrated domains of objects; however, they give little aid to
understand the general principles of formal reasoning. Proof checkers [10] allow to
verify the correctness of proofs; however, they are of little help in the construction of
such proofs (which furthermore have to be elaborated in a tedious level of detail). Au-
tomated theorem provers [3] attempt to automatically construct proofs of given prop-
erties. However, if proof attempts fails, typically the only chance for the user is to
re-adjust the general proving strategy and restart the prover. While the user may thus
be trained in devising general proving heuristics respectively adjusting them to con-
crete proofs, this relies on the fact that the user has already fundamental proving skills.
On the other side, if the proof succeeds, the only way that a student may learn from
this result is by studying the individual steps of the automatically constructed proof.
This is a passive act of consumption rather than an active act of construction, which
diminishes its educational effects.

Interactive proving assistants [4, 5, 7] support the user in the construction of a
proof by displaying a proof in a structured form and presenting in every proving situ-
ation those inference rules that are currently applicable. The main task of the user to
select appropriate rules and provide critical additional information (in particular terms
by which universally quantified assumptions respectively existentially quantified goals
shall be instantiated) respectively select/construct appropriate lemmas which introduce
new information (and which have to be validated in separate proofs); the tool then takes
care of the correct application of the rule such that final proofs are guaranteed to be cor-
rect. By the active contribution of a human user with intuitive insight, proofs of bigger
complexity can be handled than by purely automatic provers; furthermore, using such
a tool demands active participation, which may greatly enhance the educational effect.
On the negative side, the practical effectiveness of such tools depends to a good deal
on the adequacy of the user interface with respect to proof presentation/navigation and
on the concrete mode of interaction. Furthermore, depending on granularity of infer-
ence steps provided by the system, proofs may become tedious; especially dealing with
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Figure 1: The RISC ProofNavigator in Action

arithmetic properties may become a nuisance, if they are reduced to basic reasoning in
arithmetic theories.

Taking all of these trade-offs into account, we believe that interactive proving as-
sistants have the most prospective for use in educational scenarios where the goal is
to train the practical use of the language of logic with respect to formal modeling and
reasoning; however, success does not come for free but great care has to be taken to
diminish the problematic aspects.

3 The RISC ProofNavigator
Since 2004, we have taught every year at the Johannes Kepler University Linz a manda-
tory course on “Formal Methods in Software Development” for master students of com-
puter mathematics and (since 2007) software engineering; originally, we introduced in
this course students to the proving assistant PVS [4]. Based on our experience, we
subsequently developed the RISC ProofNavigator [6] as a tool that we consider more
suitable for (among others) educational scenarios; this software is since 2007 also used
in a similar course at the Upper Austria University of Applied Sciences in Hagenberg.
A screenshot of the RISC ProofNavigator is depicted in Figure 1. In the following, we
quickly outline its use; a more comprehensive description can be found in [7].

The RISC ProofNavigator is based on a typed higher order variant of predicate
logic; it reads from a text file a sequence of definitions (of types, functions, predicates,
and formulas) in a plain text format; these are pretty-printed in a screen area in the
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classical mathematical format. For each formula, the current status of its (possibly
previously constructed) proof is displayed. The user may select a completed proof for
display/replay or an open/incomplete proof for further processing.

A proof is depicted as a tree of proof situations (“states”) which are either marked as
red (the situation respectively some sub-situation is still open) or blue (the situation is
closed, i.e. the corresponding proof is completed). The user can freely navigate among
(especially open) situations by mouse clicks or by a pressing a buttons at the bottom
of the window; the currently selected situation is depicted in a pretty-printed format
in the “Proof State” area and in the linear format in the “Input/Output” area. Proof
commands may be applied to the current situation by pressing a button at the bottom,
by selection from a menu linked to a formula label, or by selection from a general
menu. If the command requires additional information, it is displayed in the input line
with placeholders that can be filled by the user. By application of the command, the
proof tree is expanded at the current situation with some/all subnodes possibly closed.
If all nodes are closed, the proof is completed and the tree turns blue. A proof (be it
complete or incomplete) may be saved on file for later replay.

In the design of the frontend, much attention was paid to those details that are im-
portant for practical use (but often neglected): first, proofs are displayed as trees rather
than as unorganized lists of open proof situations; this allows the user to keep much
easier track of the overall state of the proof. Formulas are pretty-printed in a classical
format with nice mathematical fonts; large formulas are appropriately formatted and
indented across multiple lines such that their logical structure is visually preserved. In
proof states, both the pretty-printed as the linear textual presentation is presented; the
linear presentation is the one used for user input (e.g. when providing witness terms).
While linear text input seems initially more cumbersome than some form of WYSI-
WYG input, it is after some initial training actually much easier and faster to use. If a
new proof situation is generated, the difference to its parent situation is depicted by red
bars on the right side of the proof state area; this allows to quickly grasp the effect of
the applied proof command.

As for user interaction, the six most often applicable commands can be triggered by
pressing buttons with intuitive icons; if a command depends on a particular assumption
or goal, it can be selected from the menu that pops up by moving the mouse cursor
over the label of the corresponding formula. Only in rare situations a command may
be needed that can be selected from a general menu (in total, there are less than 30
commands); in any case, the user may always type the name of the command rather
than looking it up in a menu. Since formula labels are automatically generated by
hashing the text of a formula, previously recorded applications of proof commands
may generally remain applicable, even if the user changes details in the definitions
of entities; this allows repeated iterations of modeling and reasoning steps without
completely invalidating all previously constructed proofs.

4 Proving in the RISC ProofNavigator
A major design decision for a proof assistant concerns the granularity of proof steps,
how to simplify proof situations, and how to deal with arithmetic. As a core compo-
nent of the RISC ProofNavigator, we employ the software CVCL (Cooperating Validity
Checker Lite [1]). CVCL is a representative of the class of SMT (Satisfiability Modulo
Theories [9]) solvers which has emerged in the last decade. SMT solvers have rev-
olutionized the area of program verification since they implement efficient and fully
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automatic decision procedures for certain combinations of logical theories including
uninterpreted functions with equality (i.e. term reasoning) and linear arithmetic over
the integers. In other words, CVCL is able to decide propositional logic formulas in-
volving axiomatized functions/predicates, integers with addition and subtraction, as
well as equalities and inequalities; it may also transform such formulas to a simpler
(not necessarily canonical) form.

As a consequence, the core of the RISC ProofNavigator does not at all deal with
reasoning on terms and numbers but focuses on the logical structure of a proof; by
default, after every application of a proof command, the resulting proof situation is
forwarded to the SMT solver which may be able to close it. If not, every formula is
presented to the solver for simplification in the context of the current proof situation;
from this e.g. in a proof situation with two assumptions of form A and A ⇒ B, the
second formula is immediately simplified to B (i.e. the rule “modus ponens” is auto-
matically applied). Since in this way a lot of “low-level reasoning” is fully automated,
proofs become greatly simplified; we consider this as a crucial advantage of our system.
Nevertheless, we found the results sometimes too surprising for class-room scenarios
(“too much simplification in one step”); we therefore have introduced later an option to
selectively switch off the automatic form of simplification; then the user may explicitly
decide to apply simplification to some or all formulas of a proof situation.

Another problem with rewriting represents the presentation of disjunctions and im-
plications: logically, e.g. the three formulas ¬A∨B∨C, A ⇒ B∨C, A∧¬C ⇒ B are
equivalent but represent different human intuitions. Since CVCL has a preference to
replace implications by disjunctions, we have integrated a post-processor to rewrite for-
mulas to a form which we consider more natural (as a guiding principle, we attempt to
minimize the number of negations, so among the three alternatives above, we chose the
second one); however, also this is a less than perfect solution since it also changes the
format of the formulas entered by the user. In general, it is still an open question how
to allow automatic formula simplification but presents a formula such that is intuitive
to the user.

A related problem concerns the presentation of proof situations. Rather than prov-
ing A,¬B ` C (i.e. proving from assumptions A and ¬B goal C), we might prove
A,¬C ` B or A,¬B,¬C ` false where the last represents a “counterexample” proof
showing that the conjunction of assumptions represents a contradiction. While log-
ically all are the same, they represent different human intuitions; in particular, it is
extremely annoying to the user, if a goal ∃x : Ax becomes an assumption ∀x : ¬Ax
(which happens if the system decides to transform the goal into a negated assumption).
We therefore decided never to swap the role of a formula (from goal to assumption or
vice versa) but provide a swap command that allows the user to change his view by
swapping a goal with a particular assumption (thus negating both). Furthermore, while
the underlying logical calculus allows more than one goal (. . . ` A,B means to prove
A or B), all our commands generate only one goal formula (respectively none, if the
proof is a counterexample proof).

As for the proof commands implemented by the core of the RISC ProofNaviga-
tor itself, we decided not to provide individual low-level inference rules rather than
“generic” commands and combinations of such commands. On the lowest level, we
have e.g. a flatten command, which applies that rule that is appropriate when con-
sidering the outermost logical connective of an assumption or goal, provided its result
is a single proof situation (e.g. an assumption A∧B is transformed to two assumptions
A,B); likewise a command split splits a proof situation in two considering the outer-
most logical connective of a formula (e.g. a goal A∧B generates two proof situations,
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one with goal A and one with goal B). Likewise, a command skolem removes the
quantifier from an existential assumption or universal goal by introducing a “Skolem
constant”. However, these low-level commands are only selectable from a generic
menu, because in practice one of the “meta-rule” commands is invoked which applies
a combination of such rules. The most aggressive command is scatter which ap-
plies as many flatten and split steps as possible before depicting the result (a
new subtree); less aggressive is decompose which only applies flatten steps and
thus results in a single new proof situation (no branching occurs).

In order to automate simple proofs depending on the construction of witness terms,
the auto command implements a simple heuristics where a number of automatic in-
stantiations of quantified variables are generated from those subterms that occur in the
current proof situation and that have appropriate type. The resulting proof situation is
passed to the SMT solver which, if we are lucky, closes the situation; otherwise, the
command has no effect (i.e. the generated proof situation is discarded). Many basic
proof situations can be indeed conveniently handled in this way; if one, however, is
interested in the “right” instantiation (which is not directly visible from the many gen-
erated ones), the user has to construct it manually. The autostar command applies
automatic proof situations to all open “sibling” situations (which is successful in many
verifications).

While thus some automation was implemented to make the low-level parts of a
proof less painful, this automation was carefully selected such that executing a com-
mand (pressing a button) has a predictable behavior; in particular it terminates after a
couple of seconds (perhaps with no success). No elaborated automated proof search
is attempted since this has unpredictable behavior and is in realistic situations rarely
helpful.

Moreover, it is often the case that users attempt to prove wrong formulas where
no proof is possible at all; in such situations it is important to get intuition why the
proof does not work (is the formula wrong? is the proof strategy inadequate?) and
take appropriate measures. For this purpose, the RISC ProofNavigator provides the
command counterexample which asks the CVCL subsystem for an interpretation
of the constants in the current proof state which may invalidate the goal; the result
is a list of equalities which is displayed to the user and may give some hint on the
problem. However, this is only a small support; in particular, if the software has already
simplified a proof state too much (the proof of a wrong goal may reduce to . . . ` false)
it is necessary to get back to earlier proof situations which yield more insight. More
research is needed on how to give appropriate hints on the underlying reason why a
proof might not work.

5 Experience and Conclusions
We have used the RISC ProofNavigator for three years in university courses on formal
methods (actually only four weeks are dedicated to the basic principles of program
verification and the use of this tool for performing the core proofs). The basic assump-
tion of these courses is that students are already familiar with logic from their bachelor
studies and only need a quick reminder on the basic principles of formal reasoning;
however, this has turned out to be unrealistic, since many students lack this knowledge.
Our following observations thus are based on classes with heterogeneous backgrounds
where appropriate compromises had to be made to overcome the gap between the offi-
cial goals and the factual situation.
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• The use of a proving assistant indeed helps to increase the quality of proofs
(compared to assignments with paper and pencil proofs where the results are
in many cases hardly proofs at all); furthermore students sensually perceive the
difference between a proof sketch and a “real” proof by a proof tree turning
from red to blue (which represents a concrete achievement with a corresponding
satisfaction).

• In the relatively short time available (about 16 teaching units), by developing and
presenting concrete example proofs in the class room (including the explanation
of overall proving strategies and practical on-line demonstration of the software),
the majority of students becomes able to successfully produce structurally “sim-
ilar” proofs; various students actually seem to enjoy the challenge of working
with the proof assistant and guiding it to produce the desired result.

• Nevertheless, there is the persistent danger that a student gets tired or bored
and switches from “thinking mode” to “button pressing mode” where (like in a
computer adventure game) random actions are taken in the hope of producing
a successful result. We have seen proofs with more than a hundred command
applications where less than a dozen would have sufficed; these were apparently
produced in such a mode. Students that lack interest in finding out whether/why
something is true but just want to get the exercise done, also do not get enthusi-
astic just by using a tool.

• Especially in the beginning, it must be strongly recommended to restrict the
use of the proof commands to the “low-level” commands (with no automatic
repeated application of decomposition rules and no automatic quantifier instan-
tiation) to understand the individual reasoning steps. Only later when this basic
understanding is achieved, the higher level commands may be applied.

• The real challenge is not proving something that is correct but finding out what
is wrong with a proposition whose proof attempt fails. Here even bright students
have trouble on finding out whether the problem is “just” an inadequate proof
strategy or whether the statement is indeed not correct (which means in program
verification that the specification may not have the intended meaning, that the
program may not meet the specification, or that a loop invariant may be too
strong or too weak).

With respect to further extensions/redesigns of the software, it might be wise to
reconsider the level to which automated simplification of proof situations by the un-
derlying SMT solver is applied; while desired on the level of atomic formulas and on
certain logical rules (in particular, the automated application of modus ponens and sim-
ilar syllogisms is extremely comfortable), the structural modification of formulas (with
subsequent heuristic rewriting to a more suitable form) is often undesired. Further-
more, for educational purposes (and bug-finding) it might be wise to have a possibility
to display the various intermediate steps in the higher-level proof commands.

As for arithmetic reasoning, linear arithmetic is effectively supported, but the sys-
tem completely fails to deal with any form of non-linear formulas (even simple equal-
ities like a(b + 1) = ab + a cannot be proved); instead lemmas for the use of the mul-
tiplication symbol have to be used and separately proved by induction. Here the use of
semi-decision procedures (based e.g. on the capabilities of computer algebra software)
would be very helpful.

7



In general we believe that, by the integration of automated rule-based provers with
interactive humane assistance and (semi-)automatic decision procedures for basic the-
ories, the effective use of formal logic in practical scenarios can be demonstrated, in
the classroom and elsewhere.
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