Planar maps: bijections and applications

Éric Fusy (CNRS/LIX)

AEC summer school, Hagenberg, 2018

Universality phenomena for maps

For 'any' standard family $\mathcal{M}=\cup_{n} \mathcal{M}_{n}$ of rooted maps
(p-angulations, loopless, 2-connected, 3-connected, etc.)

- $m_{n}=\operatorname{Card}\left(\mathcal{M}_{n}\right)$ satisfies $m_{n} \sim c \gamma^{n} n^{-5 / 2}$ for some constants c, γ

Universality phenomena for maps

For 'any' standard family $\mathcal{M}=\cup_{n} \mathcal{M}_{n}$ of rooted maps
(p-angulations, loopless, 2-connected, 3-connected, etc.)

- $m_{n}=\operatorname{Card}\left(\mathcal{M}_{n}\right)$ satisfies $m_{n} \sim c \gamma^{n} n^{-5 / 2}$ for some constants c, γ
- scaling limit point of view:
for M_{n} a random map in \mathcal{M}_{n} and v_{1}, v_{2} two random vertices in M_{n} let $X_{n}=\operatorname{distance}\left(v_{1}, v_{2}\right)$
Then $\frac{X_{n}}{n^{1 / 4}} \rightarrow$ universal proba. dist. $\quad \& \quad\left(M_{n}, \frac{d}{n^{1 / 4}}\right) \rightarrow$ Brownian map

Universality phenomena for maps

For 'any' standard family $\mathcal{M}=\cup_{n} \mathcal{M}_{n}$ of rooted maps
(p-angulations, loopless, 2-connected, 3-connected, etc.)

- $m_{n}=\operatorname{Card}\left(\mathcal{M}_{n}\right)$ satisfies $m_{n} \sim c \gamma^{n} n^{-5 / 2}$ for some constants c, γ
- scaling limit point of view:
for M_{n} a random map in \mathcal{M}_{n} and v_{1}, v_{2} two random vertices in M_{n} let $X_{n}=\operatorname{distance}\left(v_{1}, v_{2}\right)$
Then $\frac{X_{n}}{n^{1 / 4}} \rightarrow$ universal proba. dist. $\quad \& \quad\left(M_{n}, \frac{d}{n^{1 / 4}}\right) \rightarrow$ Brownian map
- local limit point of view

$$
\begin{aligned}
& \text { let } Y_{n}^{(r)}=\#\left(\text { vertices at distance } \leq r \text { from root-vertex in } M_{n}\right) \\
& \text { let } B^{(r)}:=\lim _{n \rightarrow \infty} \mathbb{E}\left(Y_{n}^{(r)}\right) \quad \text { Then } B^{(r)} \sim \kappa \cdot r^{4} \quad \text { as } r \rightarrow \infty
\end{aligned}
$$

Structured planar map $=$ pair (M, X), with M a rooted map and X a combinatorial structure on M
We can consider some natural families $\mathcal{S}=\cup_{n} \mathcal{S}_{n}$ of structured maps

spanning tree

bipolar orientation

Watabiki predictions

If a model of maps gives asymptotic behaviours of the form $\kappa \gamma^{n} n^{-\alpha}$ then the central charge of the model is $c=-\frac{(3 \alpha-5)(2 \alpha-5)}{\alpha-1}$ prediction: $B^{(r)} \sim$ constant $\times r^{\beta}$ with $\beta=2 \frac{\sqrt{25-c}+\sqrt{49-c}}{\sqrt{25-c}+\sqrt{1-c}}$

	α	c	β	$1 / \beta$
no structure	$5 / 2$	0	4	0.25
spanning tree	3	-2	$\frac{3+\sqrt{17}}{2}$	≈ 0.28
Bipolar ori.	4	-7	$\frac{4+2 \sqrt{7}}{3}$	≈ 0.32
Schnyder wood	5	$-\frac{25}{2}$	$\frac{5+\sqrt{41}}{4}$	≈ 0.35

upper/lower bounds for β (consistent with prediction) [Gwynne, Holden, Sun'17]

Plan for today

review of bijective links (and discuss some connections/applications)
structured maps \longleftrightarrow lattice walks in quadrant (or in a 2d cone)
explains asymptotic behaviour, cf [Denisov-Wachtel'2015]

with covariance matrix $=\mathrm{Id}_{2}$

Then $a_{n} \sim \kappa \gamma^{n} n^{-p-1}$, with $p=\frac{\pi}{\theta}$
$\theta=\pi / 2$ for spanning trees, $\pi / 3$ for bipolar orientations, $\pi / 4$ for Schnyder woods

Tree-rooted maps
 (map + spanning tree)

Contour encoding of a tree-rooted map

Contour encoding of a tree-rooted map [Mullin'67]

contour encoding of the tree T :

$$
a \underline{a} a \underline{a} a a \operatorname{a} \underline{a} \underline{a} \underline{a}
$$

Contour encoding of a tree-rooted map [Mullin'67]

contour encoding of the tree T :

$$
\begin{gathered}
a \underline{a} a \underline{a} a a \operatorname{a} a \underline{a} \underline{a} \underline{a} \\
\text { Dyck word }
\end{gathered}
$$

enriched contour encoding:
$a b b \underline{a} a \underline{b} b \underline{a} a a a \underline{b} \underline{b} b \underline{a} \underline{a} \underline{b} \underline{a}$ shuffle of two Dyck words

Contour encoding of a tree-rooted map [Mullin'67]

contour encoding of the tree T :

$$
a \underline{a} a \underline{a} a a \operatorname{arck} \text { word } \underline{a} \underline{a} \underline{a}
$$

enriched contour encoding:
$a b b \underline{a} a \underline{b} b \underline{a} a a a \underline{b} \underline{b} b \underline{a} \underline{a} \underline{b} \underline{a}$ shuffle of two Dyck words
$\mathbf{R k}$: red word is the contour word for the dual spanning tree
contour encoding of the tree T :

$$
\begin{gathered}
a \underline{a} a \underline{a} a a a \underline{a} \underline{a} \underline{a} \\
\text { Dyck word }
\end{gathered}
$$

enriched contour encoding:
$a b b \underline{a} a \underline{b} b \underline{a} a a a \underline{b} \underline{b} b \underline{a} \underline{a} \underline{b} \underline{a}$ shuffle of two Dyck words
$\mathbf{R k}$: red word is the contour word for the dual spanning tree
\Rightarrow excursion in quadrant, with steps

contour encoding of the tree T :

$$
\begin{gathered}
a \underline{a} a \underline{a} a a a \underline{a} \underline{a} \underline{a} \\
\text { Dyck word }
\end{gathered}
$$

enriched contour encoding:
$a b b \underline{a} a \underline{b} b \underline{a} a a a \underline{b} \underline{b} b \underline{a} \underline{a} \underline{b} \underline{a}$ shuffle of two Dyck words
$\mathbf{R k}$: red word is the contour word for the dual spanning tree
$t_{n}=\#$ tree-rooted maps with n edges satisfies

$t_{n}=\sum_{k=0}^{n}\binom{2 n}{2 k} \operatorname{Cat}_{k} \operatorname{Cat}_{n-k}$
contour encoding of the tree T :

$$
a \underline{a} a \underline{a} a a \operatorname{ara} \underline{a} \underline{a} \underline{a}
$$

enriched contour encoding:
$a b b \underline{a} a \underline{b} b \underline{a} a a a \underline{b} \underline{b} b \underline{a} \underline{a} \underline{b} \underline{a}$ shuffle of two Dyck words

Rk: red word is the contour word for the dual spanning tree
$t_{n}=\#$ tree-rooted maps with n edges satisfies

$$
t_{n}=\sum_{k=0}^{n}\binom{2 n}{2 k} \operatorname{Cat}_{k} \operatorname{Cat}_{n-k}=\operatorname{Cat}_{n} \operatorname{Cat}_{n+1} \quad \text { cf }\binom{s+t}{n}=\sum_{k=0}^{n}\binom{s}{k}\binom{t}{n-k}
$$

contour encoding of the tree T :

$$
a \underline{a} a \underline{a} a a \operatorname{ara} \underline{a} \underline{a} \underline{a}
$$

enriched contour encoding:
$a b b \underline{a} a \underline{b} b \underline{a} a a a \underline{b} \underline{b} b \underline{a} \underline{a} \underline{b} \underline{a}$ shuffle of two Dyck words
$\mathbf{R k}$: red word is the contour word for the dual spanning tree
$t_{n}=\#$ tree-rooted maps with n edges satisfies

$$
t_{n}=\sum_{k=0}^{n}\binom{2 n}{2 k} \operatorname{Cat}_{k} \operatorname{Cat}_{n-k}=\operatorname{Cat}_{n} \operatorname{Cat}_{n+1} \quad \text { cf }\binom{s+t}{n}=\sum_{k=0}^{n}\binom{s}{k}\binom{t}{n-k}
$$

Hence $t_{n} \sim \frac{4}{\pi} 16^{n} n^{-3}$ with n^{-3} 'universal' for tree-rooted maps (cf exercise)

tree-rooted map

local rule \square

oriented rooted map
(root-accessible \& no ccw cycle)

tree-rooted map

- Second step:

local rule

oriented rooted map
(root-accessible \& no ccw cycle)

blue tree has $n+1$ edges red tree has n edges

tree-rooted map
- Second step:

local rule

oriented rooted map
(root-accessible \& no ccw cycle)

blue tree has $n+1$ edges red tree has n edges
(the bijection Φ used previously this week is closely related to 2nd step)

Schnyder woods

[Schnyder'89]
Schnyder wood = choice of a direction and color (red, green, or blue) for each inner edge, such that:

Local conditions:

at each inner vertex

at the outer vertices

yields a spanning tree in each color
can propagate the colors (uniquely) from any 3-orientation

outdegree 3 at inner vertices outdegree 0 at outer vertices

Schnyder woods on $n+3$ vertices

non-intersecting pairs of Dyck paths of lengths $2 n$

Enumerative formula, asymptotics

Let $s_{n}=$ total number of Schnyder woods over triangulations with $n+3$ vertices

- Exact formula:

$$
s_{n}=\operatorname{Cat}_{n} \operatorname{Cat}_{n+2}-\operatorname{Cat}_{n+1} \operatorname{Cat}_{n+1}=\frac{6(2 n)!(2 n+2)!}{n!(n+1)!(n+2)!(n+3)!}
$$

- Asymptotic formula: $s_{n} \sim \frac{24}{\pi} 16^{n} n^{-5}$
n^{-5} cf bijection

The Tamari lattice

The Tamari lattice \mathcal{L}_{n} is the partial order on Dyck paths of length $2 n$ for the covering relation

(amounts to right rotation in corresponding binary trees)

the Tamari lattice for $n=4$

The Tamari lattice

The Tamari lattice \mathcal{L}_{n} is the partial order on Dyck paths of length $2 n$ for the covering relation

(amounts to right rotation in corresponding binary trees)

the Tamari lattice for $n=4$
it has 68 intervals

Interval in $\mathcal{T}_{n}=$ pair $\left(t, t^{\prime}\right)$ such that $t \leq t^{\prime}$

The Tamari lattice

The Tamari lattice \mathcal{L}_{n} is the partial order on Dyck paths of length $2 n$ for the covering relation

(amounts to right rotation in corresponding binary trees)

the Tamari lattice for $n=4$
it has 68 intervals

Interval in $\mathcal{T}_{n}=$ pair $\left(t, t^{\prime}\right)$ such that $t \leq t^{\prime}$
Theorem [Chapoton'06]: there are $\frac{2}{n(n+1)}\binom{4 n+1}{n-1}$ intervals in \mathcal{L}_{n}
$\mathbf{R k}$: This is also the number of simple triangulations with $n+3$ vertices

Characterization of intervals by length-vectors

Characterization of intervals by length-vectors

γ

$\mathbf{R k}$: if $t \leq t^{\prime}$ in \mathcal{L}_{n}, then t is below t^{\prime}

Characterization of intervals by length-vectors

$\mathbf{R k}$: if $t \leq t^{\prime}$ in \mathcal{L}_{n}, then t is below t^{\prime} the converse is not true!

Characterization of intervals by length-vectors

$\mathbf{R k}$: if $t \leq t^{\prime}$ in \mathcal{L}_{n}, then t is below t^{\prime} the converse is not true!

Q: How to characterize pairs forming an interval in \mathcal{L}_{n} ?

Characterization of intervals by length-vectors

$\mathbf{R k}$: if $t \leq t^{\prime}$ in \mathcal{L}_{n}, then t is below t^{\prime} the converse is not true!

Q: How to characterize pairs

Length-vector L_{D} of D : forming an interval in \mathcal{L}_{n}

$$
\xrightarrow[\ell_{1}=4]{\substack{2}}
$$

Characterization of intervals by length-vectors

$\mathbf{R k}$: if $t \leq t^{\prime}$ in \mathcal{L}_{n}, then t is below t^{\prime} the converse is not true!

Q: How to characterize pairs
 forming an interval in \mathcal{L}_{n}

Length-vector L_{D} of D :

$$
L_{D}=(4,1,2,1)
$$

Lem: $D \leq D^{\prime}$ in \mathcal{L}_{n} iff $L_{D} \leq L_{D^{\prime}}$

Specializing the bijection for Schnyder woods

Bernardi, Bonichon'09

Property: A triangulation has a unique Schnyder wood with no cw cycle Property: A non-crossing pair of Dyck paths is an interval in \mathcal{L}_{n} iff the corresponding Schnyder wood has no cw cycle
no cw cycle

has a cw cycle

length-vectors 4121

2121

length-vectors 4121

1311
1-1

Specializing the

[Bernardi, Bonichon'09]

Property: A triangulation has a unique Schnyder wood with no cw cycle Property: A non-crossing pair of Dyck paths is an interval in \mathcal{L}_{n} iff the corresponding Schnyder wood has no cw cycle

has a cw cycle

length-vectors 4121

1311

length-vectors 4121

2121 no cw cycle \Rightarrow intervals in \mathcal{L}_{n} are in bijection with simple triangulations with $n+3$ vertices

Bipolar orientations

Definition

Let M be a planar map with two marked outer vertices S, N Bipolar orientation of $M=$ acyclic orientation of M
with S the unique source and N the unique sink

Enumeration by edges

The number b_{n} of bipolar orientations with $n-1$ edges is

$$
b_{n}=\frac{2}{n^{2}(n+1)} \sum_{k=0}^{n-1}\binom{n+1}{r-1}\binom{n+1}{r}\binom{n+1}{r+1}
$$

Baxter numbers
cf bijections
$k+2$ vertices
$n-k$ faces

+ Gessel-Viennot lemma
b_{n} also counts many other classes (pattern-avoiding permutations, square tilings, etc.)

Enumeration by edges

The number b_{n} of bipolar orientations with $n-1$ edges is

$$
b_{n}=\frac{2}{n^{2}(n+1)} \sum_{k=0}^{n-1}\binom{n+1}{r-1}\binom{n+1}{r}\binom{n+1}{r+1}
$$

Baxter numbers
cf bijections
$k+2$ vertices
$n-k$ faces

+ Gessel-Viennot lemma
b_{n} also counts many other classes (pattern-avoiding permutations, square tilings, etc.)
Asymptotics: $b_{n} \sim \frac{2^{5}}{\pi \sqrt{3}} 8^{n} n^{-4}$

Enumeration by edges

The number b_{n} of bipolar orientations with $n-1$ edges is

$$
b_{n}=\frac{2}{n^{2}(n+1)} \sum_{k=0}^{n-1}\binom{n+1}{r-1}\binom{n+1}{r}\binom{n+1}{r+1}
$$

Baxter numbers
cf bijections
$k+2$ vertices
$n-k$ faces

+ Gessel-Viennot lemma
b_{n} also counts many other classes (pattern-avoiding permutations, square tilings, etc.)
Asymptotics: $b_{n} \sim \frac{2^{5}}{\pi \sqrt{3}} 8^{n} n^{-4}$
We show a bijection by Kenyon, Miller, Sheffield and Wilson with lattice walks in quadrant (+control on face degrees)
explains universality of n^{-4} for bipolar ori. + appli. to lattice walk enumeration

The Kenyon et al. bijection
tandem walks

Tandem walks in quadrant $\xrightarrow{\text { bijection }}$ bipolar orientations inside bi-gon (start \& end at 0)

step level $r \longleftrightarrow$ inner face of degree $r+2$
SE step \longleftrightarrow vertex $\notin\{S, N\}$

The Kenyon et al. bijection step set

- The linear mapping that sends $\quad \pi / 2$ to $\angle \pi / 3$
turns the covariance matrix of step-set to I_{2}
\Rightarrow universality of the subexponential order n^{-4} for bipolar orientations
- The linear mapping that sends
turns the covariance matrix of step-set to I_{2}
\Rightarrow universality of the subexponential order n^{-4} for bipolar orientations
- Let $Q\left(t ; z_{1}, z_{2}, \ldots\right)$ be the GF of tandem walks in the quadrant
(starting at the origin, free endpoint) with t for the length, z_{r} for steps of level r

Then $Q\left(t ; z_{1}, z_{2}, \ldots\right)$ also counts tandem walks in upper half-plane $\{y \geq 0\}$ (starting at 0 , ending at $\{y=0\}$)

Consequences of the bijection

- The linear mapping that sends
turns the covariance matrix of step-set to I_{2}
\Rightarrow universality of the subexponential order n^{-4} for bipolar orientations
- Let $Q\left(t ; z_{1}, z_{2}, \ldots\right)$ be the GF of tandem walks in the quadrant (starting at the origin, free endpoint) with t for the length, z_{r} for steps of level r

Then $Q\left(t ; z_{1}, z_{2}, \ldots\right)$ also counts tandem walks in upper half-plane $\{y \geq 0\}$ (starting at 0 , ending at $\{y=0\}$)

$$
\begin{array}{r}
\Rightarrow Y \equiv t Q(t) \text { is given by } \quad Y=t \cdot\left(1+w_{0} Y+w_{1} Y^{2}+w_{2} Y^{3}+\cdots\right) \\
\text { where } w_{i}=z_{i}+z_{i+1}+z_{i+2}+\cdots
\end{array}
$$

Consequences of the bijection

- The linear mapping that sends
turns the covariance matrix of step-set to I_{2}
\Rightarrow universality of the subexponential order n^{-4} for bipolar orientations
- Let $Q\left(t ; z_{1}, z_{2}, \ldots\right)$ be the GF of tandem walks in the quadrant (starting at the origin, free endpoint) with t for the length, z_{r} for steps of level r

Then $Q\left(t ; z_{1}, z_{2}, \ldots\right)$ also counts tandem walks in upper half-plane $\{y \geq 0\}$ (starting at 0 , ending at $\{y=0\}$)

$$
\begin{array}{r}
\Rightarrow Y \equiv t Q(t) \text { is given by } \quad Y=t \cdot\left(1+w_{0} Y+w_{1} Y^{2}+w_{2} Y^{3}+\cdots\right) \\
\text { where } w_{i}=z_{i}+z_{i+1}+z_{i+2}+\cdots
\end{array}
$$

proof using the extended version of the bijection
(also possible by kernel method for walks with large steps [Bostan, Bousquet-Mélou, Melczer'18])

