Planar maps: bijections and applications

Éric Fusy (CNRS/LIX)

AEC summer school, Hagenberg, 2018

Universality phenomena for maps

For 'any' standard family $\mathcal{M} = \bigcup_n \mathcal{M}_n$ of rooted maps (*p*-angulations, loopless, 2-connected, 3-connected, etc.)

• $m_n = \operatorname{Card}(\mathcal{M}_n)$ satisfies $m_n \sim c \gamma^n n^{-5/2}$ for some constants c, γ

Universality phenomena for maps

For 'any' standard family $\mathcal{M} = \bigcup_n \mathcal{M}_n$ of rooted maps (*p*-angulations, loopless, 2-connected, 3-connected, etc.)

• $m_n = \operatorname{Card}(\mathcal{M}_n)$ satisfies $m_n \sim c \gamma^n n^{-5/2}$ for some constants c, γ

 scaling limit point of view: for M_n a random map in M_n and v₁, v₂ two random vertices in M_n let X_n = distance(v₁, v₂)

Then $\frac{X_n}{n^{1/4}} \rightarrow \text{universal proba. dist.} \& (M_n, \frac{d}{n^{1/4}}) \rightarrow \text{Brownian map}$

Universality phenomena for maps

For 'any' standard family $\mathcal{M} = \bigcup_n \mathcal{M}_n$ of rooted maps (*p*-angulations, loopless, 2-connected, 3-connected, etc.)

• $m_n = \operatorname{Card}(\mathcal{M}_n)$ satisfies $m_n \sim c \gamma^n n^{-5/2}$ for some constants c, γ

 scaling limit point of view: for M_n a random map in M_n and v₁, v₂ two random vertices in M_n let X_n = distance(v₁, v₂)

Then $\frac{X_n}{n^{1/4}} \rightarrow$ universal probation dist. & $(M_n, \frac{d}{n^{1/4}}) \rightarrow$ Brownian map

• local limit point of view let $Y_n^{(r)} = #$ (vertices at distance $\leq r$ from root-vertex in M_n) let $B^{(r)} := \lim_{n \to \infty} \mathbb{E}(Y_n^{(r)})$ Then $B^{(r)} \sim \kappa \cdot r^4$ as $r \to \infty$

Looking for other universality classes

We can consider some natural families $\mathcal{S} = \cup_n \mathcal{S}_n$ of structured maps

eulerian orientation

Watabiki predictions

[Watabiki'93]

If a model of maps gives asymptotic behaviours of the form $\kappa \gamma^n n^{-\alpha}$ then the central charge of the model is $c=-\frac{(3\alpha-5)(2\alpha-5)}{\alpha-1}$ prediction: $B^{(r)} \sim \text{constant} \times r^{\beta}$ with $\beta = 2 \frac{\sqrt{25 - c} + \sqrt{49 - c}}{\sqrt{25 - c} + \sqrt{1 - c}}$ $\begin{array}{c|c|c|c} \alpha & c & \beta & 1/\beta \end{array}$ $5/2 \mid 0 \mid 4 \mid 0.25$ no structure $\frac{3+\sqrt{17}}{2} \mid \approx 0.28$ |-2|3 spanning tree $\left| -7 \right| \frac{4+2\sqrt{7}}{2} \right| \approx 0.32$ 4 Bipolar ori. Schnyder wood $5 \quad \left| -\frac{25}{2} \right| \quad \frac{5+\sqrt{41}}{4} \quad \left| \approx 0.35 \right|$

upper/lower bounds for β (consistent with prediction) [Gwynne, Holden, Sun'17]

Plan for today

review of bijective links (and discuss some connections/applications)

structured maps

Iattice walks in quadrant
(or in a 2d cone)

explains asymptotic behaviour, cf [Denisov-Wachtel'2015]

S step-set with covariance matrix = Id_2

Then $a_n \sim \kappa \gamma^n n^{-p-1}$, with $p = \frac{\pi}{\theta}$

 $\theta = \pi/2$ for spanning trees, $\pi/3$ for bipolar orientations, $\pi/4$ for Schnyder woods

Tree-rooted maps

(map + spanning tree)

contour encoding of the tree T:

 $a \underline{a} a \underline{a} a a a a \underline{a} \underline{a} \underline{a}$

Dyck word

contour encoding of the tree T:

Dyck word

enriched contour encoding: $a b b \underline{a} a \underline{b} b \underline{a} a a \underline{a} \underline{b} \underline{b} \underline{b} \underline{a} \underline{a} \underline{b} \underline{b} \underline{b} \underline{a} \underline{a} \underline{b} \underline{b} \underline{b} \underline{a} \underline{a} \underline{b} \underline{b} \underline{a} \underline{a} \underline{b} \underline{b} \underline{a} \underline{a} \underline{b} \underline{a} \underline{b} \underline{a}$ shuffle of two Dyck words

contour encoding of the tree T:

enriched contour encoding:

 $a b b \underline{a} a \underline{b} b \underline{a} a a \underline{a} \underline{b} \underline{b} b \underline{a} a a \underline{b} \underline{b} b \underline{a} \underline{a} \underline{b} \underline{b} a$

shuffle of two Dyck words

Rk: red word is the contour word for the dual spanning tree

contour encoding of the tree T:

enriched contour encoding:

 $a b b \underline{a} a \underline{b} b \underline{a} a a \underline{a} \underline{b} \underline{b} b \underline{a} a a \underline{b} \underline{b} b \underline{a} \underline{a} \underline{b} \underline{b}$

shuffle of two Dyck words

Rk: red word is the contour word for the dual spanning tree

 \Rightarrow excursion in quadrant, with steps

contour encoding of the tree T:

enriched contour encoding:

 $a b b \underline{a} a \underline{b} b \underline{a} a a \underline{a} \underline{b} \underline{b} b \underline{a} a$

shuffle of two Dyck words

Rk: red word is the contour word for the dual spanning tree

 $t_n = \#$ tree-rooted maps with n edges satisfies

$$t_n = \sum_{k=0}^n \binom{2n}{2k} \operatorname{Cat}_k \operatorname{Cat}_{n-k}$$

contour encoding of the tree T:

 $a \underline{a} a \underline{a} a a a \underline{a} \underline{a} \underline{a} \underline{a}$ Dyck word

enriched contour encoding:

 $a b b \underline{a} a \underline{b} b \underline{a} a a \underline{a} \underline{b} \underline{b} b \underline{a} a a \underline{b} \underline{b} b \underline{a} \underline{a} \underline{b} \underline{b}$

shuffle of two Dyck words

Rk: red word is the contour word for the dual spanning tree

 $t_n = \#$ tree-rooted maps with n edges satisfies

$$t_n = \sum_{k=0}^n \binom{2n}{2k} \operatorname{Cat}_k \operatorname{Cat}_{n-k} = \operatorname{Cat}_n \operatorname{Cat}_{n+1} \quad \operatorname{cf} \binom{s+t}{n} = \sum_{k=0}^n \binom{s}{k} \binom{t}{n-k}$$

contour encoding of the tree T:

enriched contour encoding:

 $a b b \underline{a} a \underline{b} b \underline{a} a a \underline{a} \underline{b} \underline{b} b \underline{a} \underline{a} a a \underline{b} \underline{b} b \underline{a} \underline{a} \underline{b} \underline{b}$

shuffle of two Dyck words

Rk: red word is the contour word for the dual spanning tree

 $t_n = \#$ tree-rooted maps with n edges satisfies

$$t_n = \sum_{k=0}^n \binom{2n}{2k} \operatorname{Cat}_k \operatorname{Cat}_{n-k} = \operatorname{Cat}_n \operatorname{Cat}_{n+1} \quad \operatorname{cf} \binom{s+t}{n} = \sum_{k=0}^n \binom{s}{k} \binom{t}{n-k}$$

Hence $t_n \sim \frac{4}{\pi} 16^n n^{-3}$ with n^{-3} 'universal' for tree-rooted maps (cf exercise)

Direct proof that $t_n = \operatorname{Cat}_n \operatorname{Cat}_{n+1}$ • First step:

[Bernardi'07]

tree-rooted map

oriented rooted map (root-accessible & no ccw cycle)

Direct proof that $t_n = \operatorname{Cat}_n \operatorname{Cat}_{n+1}$

[Bernardi'07]

• First step:

tree-rooted map

• Second step:

local rule

oriented rooted map (root-accessible & no ccw cycle)

blue tree has n+1 edges red tree has n edges

Direct proof that $t_n = \operatorname{Cat}_n \operatorname{Cat}_{n+1}$

[Bernardi'07]

• First step:

tree-rooted map

• Second step:

local rule

oriented rooted map (root-accessible & no ccw cycle)

blue tree has n + 1 edges red tree has n edges

(the bijection Φ used previously this week is closely related to 2nd step)

Schnyder woods

Schnyder woods on triangulations [Schnyder'89]

Schnyder wood = choice of a direction and color (red, green, or blue) for each inner edge, such that:

yields a **spanning tree** in each color

Equivalence with 3-orientations

can propagate the colors (uniquely) from any 3-orientation

Schnyder wood ↔

3-orientation

outdegree 3 at inner vertices outdegree 0 at outer vertices

Bijective encoding of Schnyder woods

[Bernardi, Bonichon'09]

Schnyder woods on n+3 vertices non-intersecting pairs of Dyck paths of lengths 2n

Enumerative formula, asymptotics

Let $s_n = \text{total number of Schnyder woods over triangulations with } n + 3$ vertices

• Exact formula: $s_n = \operatorname{Cat}_n \operatorname{Cat}_{n+2} - \operatorname{Cat}_{n+1} \operatorname{Cat}_{n+1} = \frac{6(2n)!(2n+2)!}{n!(n+1)!(n+2)!(n+3)!}$ • Asymptotic formula: $s_n \sim \frac{24}{\pi} 16^n n^{-5}$ length 2n n^{-5} cf bijection non-crossing pair steps 🚽 Dyck paths lengths 2nexcursion in 1/8-plane

The Tamari lattice

The Tamari lattice \mathcal{L}_n is the partial order on Dyck paths of length 2n for the covering relation

(amounts to right rotation in corresponding binary trees)

the Tamari lattice for n = 4

The Tamari lattice

The Tamari lattice \mathcal{L}_n is the partial order on Dyck paths of length 2n for the covering relation

(amounts to right rotation in corresponding binary trees)

the Tamari lattice for n = 4 it has 68 intervals

Interval in $\mathcal{T}_n = \text{pair } (t, t')$ such that $t \leq t'$

The Tamari lattice

The Tamari lattice \mathcal{L}_n is the partial order on Dyck paths of length 2n for the covering relation

(amounts to right rotation in corresponding binary trees)

the Tamari lattice for n = 4it has 68 intervals

Interval in $\mathcal{T}_n = \text{pair } (t, t')$ such that $t \leq t'$ **Theorem** [Chapoton'06]: there are $\frac{2}{n(n+1)} \binom{4n+1}{n-1}$ intervals in \mathcal{L}_n **Rk:** This is also the number of simple triangulations with n + 3 vertices

Rk: if $t \leq t'$ in \mathcal{L}_n , then t is below t'

Rk: if $t \leq t'$ in \mathcal{L}_n , then t is below t' the converse is not true !

Rk: if $t \leq t'$ in \mathcal{L}_n , then t is below t' the converse is not true !

Q: How to characterize pairs

forming an interval in \mathcal{L}_n ?

Rk: if $t \leq t'$ in \mathcal{L}_n , then t is below t' the converse is not true !

Q: How to characterize pairs

forming an interval in \mathcal{L}_n ?

Length-vector L_D of D:

Lem: $D \leq D'$ in \mathcal{L}_n iff $L_D \leq L_{D'}$

Specializing the bijection for Schnyder woods [Bernardi, Bonichon'09]

Property: A triangulation has a unique Schnyder wood with no cw cycle **Property:** A non-crossing pair of Dyck paths is an interval in \mathcal{L}_n iff the corresponding Schnyder wood has no cw cycle

has a cw cycle

length-vectors

4 1 2 1

3 1 1

no cw cycle

Specializing the bijection for Schnyder woods [Bernardi, Bonichon'09]

Property: A triangulation has a unique Schnyder wood with no cw cycle **Property:** A non-crossing pair of Dyck paths is an interval in \mathcal{L}_n iff the corresponding Schnyder wood has no cw cycle

Bipolar orientations

Definition

Let M be a planar map with two marked outer vertices S, NBipolar orientation of M = acyclic orientation of Mwith S the unique source

and N the unique sink

Enumeration by edges

The number b_n of bipolar orientations with n-1 edges is

$$b_n = \frac{2}{n^2(n+1)} \sum_{k=0}^{n-1} \binom{n+1}{r-1} \binom{n+1}{r} \binom{n+1}{r+1} = \text{Baxter numbers}$$

+ Gessel-Viennot lemma

 b_n also counts many other classes (pattern-avoiding permutations, square tilings, etc.)

Enumeration by edges

The number b_n of bipolar orientations with n-1 edges is

$$b_n = \frac{2}{n^2(n+1)} \sum_{k=0}^{n-1} \binom{n+1}{r-1} \binom{n+1}{r} \binom{n+1}{r+1} = \text{Baxter numbers}$$

cf bijections

+ Gessel-Viennot lemma

 b_n also counts many other classes (pattern-avoiding permutations, square tilings, etc.) **Asymptotics:** $b_n \sim \frac{2^5}{\pi\sqrt{3}} 8^n n^{-4}$

Enumeration by edges

The number b_n of bipolar orientations with n-1 edges is

$$b_n = \frac{2}{n^2(n+1)} \sum_{k=0}^{n-1} \binom{n+1}{r-1} \binom{n+1}{r} \binom{n+1}{r+1} = \text{Baxter numbers}$$

cf bijections

+ Gessel-Viennot lemma

 b_n also counts many other classes (pattern-avoiding permutations, square tilings, etc.) **Asymptotics:** $b_n \sim \frac{2^5}{\pi\sqrt{3}} 8^n n^{-4}$

We show a bijection by Kenyon, Miller, Sheffield and Wilson with lattice walks in quadrant (+control on face degrees) explains universality of n^{-4} for bipolar ori. + appli. to lattice walk enumeration

The Kenyon et al. bijection

Consequences of the bijection

• The linear mapping that sends

$$\pi/2$$
 to $\pi/3$

turns the covariance matrix of step-set to ${\rm I}_2$

 \Rightarrow universality of the subexponential order n^{-4} for bipolar orientations

• The linear mapping that sends $\left| \frac{\pi}{2} \right|^{\text{to}} / \frac{\pi}{3}$

turns the covariance matrix of step-set to I_2

 \Rightarrow universality of the subexponential order n^{-4} for bipolar orientations

• Let $Q(t; z_1, z_2, ...)$ be the GF of tandem walks in the quadrant (starting at the origin, free endpoint) with t for the length, z_r for steps of level r

Then $Q(t; z_1, z_2, ...)$ also counts tandem walks in upper half-plane $\{y \ge 0\}$ (starting at 0, ending at $\{y = 0\}$)

Consequences of the bijection

• The linear mapping that sends

$$\frac{1}{\pi/2}$$
 to $\frac{1}{\pi/3}$

turns the covariance matrix of step-set to $\ensuremath{I_2}$

 \Rightarrow universality of the subexponential order n^{-4} for bipolar orientations

• Let $Q(t; z_1, z_2, ...)$ be the GF of tandem walks in the quadrant (starting at the origin, free endpoint)

with t for the length, \boldsymbol{z}_r for steps of level r

Then $Q(t; z_1, z_2, ...)$ also counts tandem walks in upper half-plane $\{y \ge 0\}$ (starting at 0, ending at $\{y = 0\}$)

$$\Rightarrow Y \equiv t Q(t) \text{ is given by } Y = t \cdot (1 + w_0 Y + w_1 Y^2 + w_2 Y^3 + \cdots)$$

where $w_i = z_i + z_{i+1} + z_{i+2} + \cdots$

Consequences of the bijection

• The linear mapping that sends

$$\frac{1}{\pi/2}$$
 to $\frac{1}{\pi/3}$

turns the covariance matrix of step-set to $\ensuremath{I_2}$

 \Rightarrow universality of the subexponential order n^{-4} for bipolar orientations

• Let $Q(t; z_1, z_2, ...)$ be the GF of tandem walks in the quadrant (starting at the origin, free endpoint)

with t for the length, z_r for steps of level r

Then $Q(t; z_1, z_2, ...)$ also counts tandem walks in upper half-plane $\{y \ge 0\}$ (starting at 0, ending at $\{y = 0\}$)

$$\Rightarrow Y \equiv t Q(t) \text{ is given by } Y = t \cdot (1 + w_0 Y + w_1 Y^2 + w_2 Y^3 + \cdots)$$

where $w_i = z_i + z_{i+1} + z_{i+2} + \cdots$

proof using the extended version of the bijection (also possible by kernel method for walks with large steps [Bostan, Bousquet-Mélou, Melczer'18])