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Rooted maps
A map is rooted by marking and orienting an edge

a rooted map

Rooted maps are combinatorially easier than maps

(no symmetry issue, root gives starting point for recursive decomposition)

the face on the right

of the root is taken
as the outer face

The 2 rooted maps with one edge

The 9 rooted maps
with two edges
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Bijective aspects of planar maps



Motivations for bijections
• efficient manipulation of maps (random generation algo.)

• key ingredient to study distances (diameter,...) in random maps

- typical distances of order n1/4 (6= n1/2 in random trees)

- random map M with n edges = random discrete metric space (M,d)

Theo: [Le Gall, Miermont’13]

(M, 1
n1/4 d) converges to a continuum random metric space

called the Brownian map

(analog for maps of the Continuous Random Tree)

large tree large map



Pointed quadrangulations, geodesic labelling
Pointed quadrangulation = quadrangulation with a marked vertex v0

Geodesic labelling with respect to v0: `(v) = dist(v0, v)

Rk: two types of faces
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Well-labelled trees
Well-labelled tree = plane tree where

- each vertex v has a label `(v) ∈ Z
- each edge e = {u, v} satisfies |`(u)− `(v)| ≤ 1
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The Schaeffer bijection

0

1

1

2
2

1

2

1

0

1

1

2
2

1

2

1

1

1

2

3

2
1

2

1

Pointed quadrangulation ⇒ well-labelled tree with min-label=1
n faces n edges
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Local rule in each face:
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[Schaeffer’99], also [Cori-Vauquelin’81]
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Proof that it gives a tree
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Proof that it gives a tree
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Rightmost geodesic paths
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The inverse construction
From a well-labelled tree to a pointed quadrangulation

[Schaeffer’99], also [Cori-Vauquelin’81]
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The Schaeffer bijection
From a well-labelled tree to a pointed quadrangulation
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The Schaeffer bijection
From a well-labelled tree to a pointed quadrangulation

[Schaeffer’99], also [Cori-Vauquelin’81]
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to the next corner of label i−1
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and connect legs of label 1 to it
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The effect of marking an edge
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Bijective proof of counting formula
Let qn = #(rooted quadrangulations with n faces)

We want to show (bijectively) that qn =
2 · 3n

(n+ 2)(n+ 1)

(2n

n

)
zn

Rk: qn × (n+ 2) = # rooted quadrangulations with n faces
+ marked vertex

Hence if bn := # quadrangulations with n faces
+ marked edge + marked vertex

then bn =
n+ 2

2
qn

Hence proving formula for qn amounts to proving bn = 3nCatn



Bijective proof of counting formula
Schaeffer’s bijection ⇒ bn = #(rooted well-labelled trees with n edges)
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Bijective proof of counting formula
Schaeffer’s bijection ⇒ bn = #(rooted well-labelled trees with n edges)
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The BDG bijection for pointed bipartite maps
[Bouttier, Di Francesco, Guitter’04]



Label vertices by distance
from the marked vertex
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[Bouttier, Di Francesco, Guitter’04]



Construction of a
labeled mobile

(i) Add a black vertex
in each face
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[Bouttier, Di Francesco, Guitter’04]



Construction of a
labeled mobile

(i) Add a black vertex
in each face

(ii) Each map-edge
gives a mobile-edge
using the local rule
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The BDG bijection for pointed bipartite maps
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remove the map-edges and the
marked vertex 0

Conditions:
(i) ∃ vertex of label 1

(ii)
i

j

j ≤ i+1

The BDG bijection for pointed bipartite maps
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Theorem: The mapping is a bijection.
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labeled mobile

face of degree 2i black vertex of degree i

The BDG bijection for pointed bipartite maps



Rewriting labelled mobiles as trees with arrows
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(i) ∃ vertex of label 1
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Condition:

δ+1
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each black vertex has as many
buds as neighbors

⇔



Tutte’s slicings formula (1962):

Let B[n1, n2, . . . , nk] be the number of rooted bipartite maps

with ni faces of degree 2i for i ∈ [1..k]. Then

where e = #edges =
∑

i ini and v = #vertices = e− k + 2

B[n1, . . . , nk] = 2
e!

v!

k∏
i=1

1

ni!

(
2i− 1

i− 1

)ni

Enumerative consequence

(‘contains’ formula for rooted quadrangulations, n2 = n, ni = 0 for i 6= 2)
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Definition of blossoming mobiles
• Blossoming mobile= bipartite tree (black/white vertices)

where each corner at a black vertex carries i ≥ 0 buds
excess = number of edges - number of buds

a blossoming mobile of excess −2



Definition of blossoming mobiles
• Blossoming mobile= bipartite tree (black/white vertices)

where each corner at a black vertex carries i ≥ 0 buds
excess = number of edges - number of buds

• A blossoming mobile is called balanced
iff each black vertex has as many buds as
neighbors

Rk: implies that the excess is 0

a blossoming mobile of excess −2



Summary of the reformulation

⇒ ⇒

Condition:

Local
rule

Theorem: The mapping is a bijection between pointed bipartite maps and
balanced blossoming mobiles

face of degree 2i black vertex of degree 2i

Each black vertex has as
many buds as neighbors



Summary of the reformulation

⇒ ⇒

Condition:

Local
rule

Theorem: The mapping is a bijection between pointed bipartite maps and
balanced blossoming mobiles

face of degree 2i black vertex of degree 2i

Each black vertex has as
many buds as neighbors

(other bijection by Schaeffer’97 in the dual setting of eulerian maps)



Extension for pointed orientations with no ccw cycle
• More generally, we obtain a blossoming mobile (of excess 0)

- the marked vertex v0 is a “source” (no incoming edge)
- every vertex is accessible from v0 by a directed path
- there is no ccw cycle (with v0 ∈ outer face)

Local
rule

v0 v0

if we start from a vertex-pointed orientation such that :



Extension for pointed orientations with no ccw cycle
• More generally, we obtain a blossoming mobile (of excess 0)

- the marked vertex v0 is a “source” (no incoming edge)
- every vertex is accessible from v0 by a directed path
- there is no ccw cycle (with v0 ∈ outer face)

Local
rule

Theorem : Let O0 be this family of orientations, then the correspondence
is a bijection with mobiles of excess 0

v0 v0

if we start from a vertex-pointed orientation such that :



Proof that it gives a tree
Start from an oriented map M ∈ O0 and apply the local rule

Let G be the graph of red edges and their incident vertices
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Proof that it gives a tree
Start from an oriented map M ∈ O0 and apply the local rule

Let G be the graph of red edges and their incident vertices
G has |VM | − 1, white vertices, |FM | black vertices, et |EM | edges

Euler relation: |EM | = |VM |+ |FM | − 2

⇒ G has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle :

prisoner ccw cycle
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e2v0
⇒ contradiction



a

b

c

a

bc

Example for d = 3

⇒

For d > 0, we take the d-gonal
source as the outer face

Extension for mobiles of excess ≤ 0
More generally the “source” can be a d-gon, for any d ≥ 0



a

b

c

a

bc

Example for d = 3

⇒

Let O be the family of these orientations, still with the conditions

For d > 0, we take the d-gonal
source as the outer face

Extension for mobiles of excess ≤ 0
More generally the “source” can be a d-gon, for any d ≥ 0

- the d-gonal source has no ingoing edge
- accessibility of every vertex from the source
- no ccw cycle



Extension for mobiles of excess ≤ 0

⇒ ⇒

Local
rules

cf [Bernardi’07], [Bernardi-Chapuy’10]

Theorem [Bernardi-F’10]: Φ is a bijection between O and blossom-
ing mobiles of ≤ 0 excess. Moreover,

degree of external face ←→ −excess
degree of internal faces ←→ degree of black vertices
indegree of internal vertices ←→ degree of white vertices



Extension for mobiles of excess ≤ 0

⇒ ⇒

⇒ ⇒

• Inverse mapping (tree → cactus → closure operations)



Scheme for a general bijective strategy
(1) Map family C identifies with a subfamily OC of O with conditions on:
• Face degrees
• Vertex indegrees
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Scheme for a general bijective strategy
(1) Map family C identifies with a subfamily OC of O with conditions on:
• Face degrees
• Vertex indegrees

Example: C = Family of simple triangulations

• Face-degree = 3
• Vertex-indegree = 3

C ' subfamily OC of O with

(2) Specialize the ‘meta bijection’ Φ to the subfamily OC

degree of internal faces ←→ degree of black vertices
indegree of internal vertices ←→ degree of white vertices



Let G = (V,E) be a graph
Let α be a function from V to N
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α-orientations
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• If an α-orientation exists, then

(ii) ∀S ⊆ V,
∑

v∈S α(v) ≥ |ES |
(i)
∑

v∈V α(v) = |E|

SS

α-orientations: criteria for existence
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• If an α-orientation exists, then

(ii) ∀S ⊆ V,
∑

v∈S α(v) ≥ |ES |
(i)
∑

v∈V α(v) = |E|

SS
• If the α-orientation is accessible from a vertex u ∈ V then∑

v∈S

α(v) > |ES | whenever u /∈ S and S 6= ∅

u

Lemma (folklore): The conditions are necessary and sufficient

(iii)
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• If an α-orientation exists, then

(ii) ∀S ⊆ V,
∑

v∈S α(v) ≥ |ES |
(i)
∑

v∈V α(v) = |E|

SS
• If the α-orientation is accessible from a vertex u ∈ V then∑

v∈S

α(v) > |ES | whenever u /∈ S and S 6= ∅

u

Lemma (folklore): The conditions are necessary and sufficient

⇒ accessibility from u ∈ V just depends on α (not on which α-orientation)

(iii)

α-orientations: criteria for existence



Fundamental lemma: If a plane map admits an α-orientation, then
it admits a unique α-orientation without ccw circuit, called minimal

⇒

α-orientations for plane maps
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Fact: A triangulation with n internal vertices has 3n internal edges.

Application to simple triangulations



Natural candidate for indegree function:
α : v 7→ 3 for each internal vertex v.

Fact: A triangulation with n internal vertices has 3n internal edges.

3

3

3

3

call 3-orientation such an α-orientation

0 0

0

Application to simple triangulations



Fact: A triangulation admitting a 3-orientation is simple

⇒

k internal vertices
3k + 1 internal edges

Application to simple triangulations



Easier proof: Any simple planar graph G = (V,E) satisfies

Thm [Schnyder 89]: A simple triangulation admits a 3-orientation.

|E| ≤ 3|V | − 6

hence the existence/accessibility conditions are satisfied.�

(Euler relation)

Application to simple triangulations

(proof by shelling procedure)



Application to simple triangulations
• From the lattice property (taking the min) we have

family F of simple triangulations ↔ subfamily OT of O where:
- faces have degree 3
- inner vertices have indegree 3

• From the bijection Φ specialized to OT , we have
F ↔ mobiles where all vertices have degree 3

[Bernardi, F’10], other bijection in [Poulalhon, Schaeffer’03]



Counting formula for simple triangulations
Let Tn = # rooted simple triangulations with n+ 3 vertices

marked face (outer)
+ marked edge marked bud

cardinality =
(2n+2)

2
Tn

,

pair of quaternary trees, n nodes
⇒ Tn =

2(4n+ 1)!

(n+ 1)!(3n+ 2)!



2-orientation = orientation where each internal vertex has indegree 2

[de Fraysseix, Ossona de Mendez’01]:
A quadrangulation Q admits a 2-orientation iff Q is simple
Every 2-orientation is accessible from the outer contour

Application to simple quadrangulations

(proof by shelling algorithm)

Proof from existence criterion:

for every simple bipartite graph G = (V,E), one has |E| ≤ 2|V | − 4



• Specializing the meta bijection Φ we get

indegrees = 2
face-degrees = 4

every has degree 2
every has degree 4

(' unrooted
ternary tree)

Application to simple quadrangulations



• Specializing the meta bijection Φ we get

indegrees = 2
face-degrees = 4

every has degree 2
every has degree 4

(' unrooted
ternary tree)

Application to simple quadrangulations

• recover a bijection in [Schaeffer’99]

• bijection ⇒ there are 4(3n)!
n!(2n+2)! rooted simple

quadrangulations with n faces



Extension to any girth and face-degrees

Degree of the faces

Girth

1

2

3

4

1 2 3 4 5 6

[FuPoSc08]

[Sc98]

[Sc98,BoDiGu04]

[PoSc02]

7 8

girth=length shortest cycle

Girth = 3

Rk: girth ≤minimal face-degree

Our approach works in any girth d, with control on the face-degrees

Other approach using slice decompositions [Bouttier,Guitter’15]


