Planar maps: bijections and applications

Éric Fusy (CNRS/LIX)

AEC summer school, Hagenberg, 2018

Rooted maps

A map is rooted by marking and orienting an edge

the face on the right of the root is taken as the outer face

Rooted maps are combinatorially easier than maps (no symmetry issue, root gives starting point for recursive decomposition)

The 2 rooted maps with one edge

The 9 rooted maps

 with two edges

$0-0-0$

Counting rooted maps
Let a_{n} be the number of rooted maps with n edges

n	1	2	3	4	5	6	7
a_{n}	2	9	54	378	2916	24057	208494

Counting rooted maps
Let a_{n} be the number of rooted maps with n edges

n	1	2	3	4	5	6	7
a_{n}	2	9	54	378	2916	24057	208494

Theorem: (Tutte'63) $\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}$

Counting rooted maps

Let a_{n} be the number of rooted maps with n edges

n	1	2	3	4	5	6	7
a_{n}	2	9	54	378	2916	24057	208494

Theorem: (Tutte'63)

$$
\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}
$$

Not an isolated case:

- Triangulations ($2 n$ faces)

Simple: $\frac{1}{n(2 n-1)}\binom{4 n-2}{n-1}$

- Quadrangulations (n faces)

General: $\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}$
Simple: $\frac{2}{n(n+1)}\binom{3 n}{n-1}$

Counting rooted maps

Let a_{n} be the number of rooted maps with n edges

n	1	2	3	4	5	6	7
a_{n}	2	9	54	378	2916	24057	208494

Theorem: (Tutte'63)

Not an isolated case:

- Triangulations ($2 n$ faces)

- Quadrangulations (n faces)

General: $\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n} \quad$ Simple: $\frac{2}{n(n+1)}\binom{3 n}{n-1}$

Bijective aspects of planar maps

Motivations for bijections

- efficient manipulation of maps (random generation algo.)
- key ingredient to study distances (diameter,...) in random maps - typical distances of order $n^{1 / 4}\left(\neq n^{1 / 2}\right.$ in random trees)
- random map M with n edges $=$ random discrete metric space (M, d)

Theo: [Le Gall, Miermont'13]

($M, \frac{1}{n^{1 / 4}} d$) converges to a continuum random metric space called the Brownian map
large tree

(analog for maps of the Continuous Random Tree)

Pointed quadrangulations, geodesic labelling Pointed quadrangulation $=$ quadrangulation with a marked vertex v_{0} Geodesic labelling with respect to $v_{0}: \ell(v)=\operatorname{dist}\left(v_{0}, v\right)$

Rk: two types of faces

Well-labelled trees

Well-labelled tree $=$ plane tree where

- each vertex v has a label $\ell(v) \in \mathbb{Z}$
- each edge $e=\{u, v\}$ satisfies $|\ell(u)-\ell(v)| \leq 1$

The Schaeffer bijection [Schaeffer'99], also [Cori-Vauquelin'81]

Pointed quadrangulation \Rightarrow well-labelled tree with min-label $=1$ n faces n edges

Local rule in each face:

Proof that it gives a tree

n faces

$n+2$ vertices

Proof that it gives a tree

n faces
$n+2$ vertices

n edges
$n+1$ vertices

Proof that it gives a tree

n faces
$n+2$ vertices

n edges
$n+1$ vertices
(0)

Assume that
T has a cycle C

Proof that it gives a tree

n faces
$n+2$ vertices

n edges
$n+1$ vertices
(0)

Assume that
T has a cycle C

Proof that it gives a tree

n faces
$n+2$ vertices

n edges
$n+1$ vertices
(0)

Assume that
T has a cycle C

Proof that it gives a tree

n faces
$n+2$ vertices

n edges
$n+1$ vertices

Assume that
T has a cycle C

Proof that it gives a tree

n faces
$n+2$ vertices

n edges
$n+1$ vertices

Assume that
T has a cycle C

Rightmost geodesic paths situation at a corner of the tree

Rightmost geodesic paths
situation at a corner of the tree

Rightmost geodesic paths
situation at a corner of the tree

Rightmost geodesic paths
situation at a corner of the tree

Rightmost geodesic paths situation at a corner of the tree

Rightmost geodesic paths situation at a corner of the tree

Rightmost geodesic paths

The inverse construction [Schaeffer'99], also [Cori-Vauquelin'81]
From a well-labelled tree to a pointed quadrangulation

The inverse construction [Schaeffer'99], also [Cori-Vauquelin'81]

From a well-labelled tree to a pointed quadrangulation

1) insert a "leg" at each corner

The Schaeffer bijection [Schaeffer'99], also [Cori-Vauquelin'81]

From a well-labelled tree to a pointed quadrangulation

1) insert a "leg" at each corner
2) connect each leg of label $i \geq 2$ to the next corner of label $i-1$ in ccw order around the tree
3) create a new vertex v_{0} outside and connect legs of label 1 to it
4) erase the tree-edges

The Schaeffer bijection [Schaeffer'99], also [Cori-Vauquelin'81]

From a well-labelled tree to a pointed quadrangulation

1) insert a "leg" at each corner
2) connect each leg of label $i \geq 2$ to the next corner of label $i-1$ in ccw order around the tree
3) create a new vertex v_{0} outside and connect legs of label 1 to it
4) erase the tree-edges
recover the original pointed quadrangulation

The effect of marking an edge

Local rule in each face:

Bijective proof of counting formula

Let $q_{n}=\#$ (rooted quadrangulations with n faces)
We want to show (bijectively) that $q_{n}=\frac{2 \cdot 3^{n}}{(n+2)(n+1)}\binom{2 n}{n} z^{n}$

$\mathbf{R k}: q_{n} \times(n+2)=\#$ rooted quadrangulations with n faces + marked vertex

Hence if $b_{n}:=$ \# quadrangulations with n faces + marked edge + marked vertex

$$
\text { then } b_{n}=\frac{n+2}{2} q_{n}
$$

Hence proving formula for q_{n} amounts to proving $b_{n}=3^{n} \mathrm{Cat}_{n}$

Bijective proof of counting formula

Schaeffer's bijection $\Rightarrow b_{n}=\#$ (rooted well-labelled trees with n edges)

Bijective proof of counting formula

 Schaeffer's bijection $\Rightarrow b_{n}=\#$ (rooted well-labelled trees with n edges)

$$
b_{n}=3^{n} \operatorname{Cat}_{n}=3^{n} \frac{(2 n)!}{n!(n+1)!}
$$

The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guitter'04]

The BDG bijection for pointed bipartite maps

 [Bouttier, Di Francesco, Guitter'04]

Label vertices by distance from the marked vertex

The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guitter'04]

Construction of a labeled mobile
(i) Add a black vertex
in each face

The BDG bijection for pointed bipartite maps
[Bouttier, Di Francesco, Guitter'04]

Construction of a labeled mobile
(i) Add a black vertex in each face
(ii) Each map-edge gives a mobile-edge using the local rule

The BDG bijection for pointed bipartite maps

 [Bouttier, Di Francesco, Guitter'04]$$
\begin{aligned}
& \text { remove the map-edges and the } \\
& \text { marked vertex (0) }
\end{aligned}
$$

The BDG bijection for pointed bipartite maps

 [Bouttier, Di Francesco, Guitter'04]

Theorem: The mapping is a bijection.
face of degree $2 i \longleftrightarrow$ black vertex of degree i

Conditions:
(i) \exists vertex of label 1
(ii)
(j) $\delta=i-j \geq-1$ i^{5}

Condition:
each black vertex has as many buds as neighbors

Tutte's slicings formula (1962):

Let $B\left[n_{1}, n_{2}, \ldots, n_{k}\right]$ be the number of rooted bipartite maps with n_{i} faces of degree $2 i$ for $i \in[1 . . k]$. Then

$$
B\left[n_{1}, \ldots, n_{k}\right]=2 \frac{e!}{v!} \prod_{i=1}^{k} \frac{1}{n_{i}!}\binom{2 i-1}{i-1}^{n_{i}}
$$

where $e=\#$ edges $=\sum_{i} i n_{i}$ and $v=\#$ vertices $=e-k+2$
('contains' formula for rooted quadrangulations, $n_{2}=n, n_{i}=0$ for $i \neq 2$)

Reformulation of bijection using orientations

(j) $\delta=i-j \geq-1$

$$
\begin{aligned}
& \delta+1 \\
& \text { hudc }
\end{aligned}
$$ buds (

Definition of blossoming mobiles

- Blossoming mobile= bipartite tree (black/white vertices) where each corner at a black vertex carries $i \geq 0$ buds

```
excess = number of edges - number of buds
```


a blossoming mobile of excess -2

Definition of blossoming mobiles

- Blossoming mobile= bipartite tree (black/white vertices) where each corner at a black vertex carries $i \geq 0$ buds

excess $=$ number of edges - number of buds

a blossoming mobile of excess -2

- A blossoming mobile is called balanced iff each black vertex has as many buds as neighbors
$\mathbf{R k}$: implies that the excess is 0

Summary of the reformulation

Condition:
Each black vertex has as many buds as neighbors

Theorem: The mapping is a bijection between pointed bipartite maps and balanced blossoming mobiles
face of degree $2 i \longleftrightarrow$ black vertex of degree $2 i$

Summary of the reformulation

Theorem: The mapping is a bijection between pointed bipartite maps and balanced blossoming mobiles
face of degree $2 i \longleftrightarrow$ black vertex of degree $2 i$
(other bijection by Schaeffer'97 in the dual setting of eulerian maps)

- More generally, we obtain a blossoming mobile (of excess 0) if we start from a vertex-pointed orientation such that :
- the marked vertex v_{0} is a "source" (no incoming edge)
- every vertex is accessible from v_{0} by a directed path
- there is no ccw cycle (with $v_{0} \in$ outer face)

Extension for pointed orientations with no ccw cycle

- More generally, we obtain a blossoming mobile (of excess 0) if we start from a vertex-pointed orientation such that :
- the marked vertex v_{0} is a "source" (no incoming edge)
- every vertex is accessible from v_{0} by a directed path
- there is no ccw cycle (with $v_{0} \in$ outer face)

Theorem : Let \mathcal{O}_{0} be this family of orientations, then the correspondence is a bijection with mobiles of excess 0

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_{0}$ and apply the local rule
Let G be the graph of red edges and their incident vertices
G has $\left|V_{M}\right|-1$, white vertices, $\left|F_{M}\right|$ black vertices, et $\left|E_{M}\right|$ edges
Euler relation: $\left|E_{M}\right|=\left|V_{M}\right|+\left|F_{M}\right|-2$
$\Rightarrow G$ has one more vertices than edges
hence G is a tree iff G is acyclic
Assume G has a cycle :

prisoner ccw cycle
\Rightarrow contradiction

Extension for mobiles of excess ≤ 0
More generally the "source" can be a d-gon, for any $d \geq 0$
Example for $d=3$

Extension for mobiles of excess ≤ 0 More generally the "source" can be a d-gon, for any $d \geq 0$
Example for $d=3$

Let \mathcal{O} be the family of these orientations, still with the conditions

- the d-gonal source has no ingoing edge
- accessibility of every vertex from the source
- no ccw cycle

Extension for mobiles of excess ≤ 0

Local rules

Theorem [Bernardi-F'10]: Φ is a bijection between \mathcal{O} and blossoming mobiles of ≤ 0 excess. Moreover, degree of external face degree of internal faces
\longleftrightarrow-excess indegree of internal vertices \longleftrightarrow degree of white vertices cf [Bernardi'07], [Bernardi-Chapuy'10]

Extension for mobiles of excess ≤ 0

- Inverse mapping (tree \rightarrow cactus \rightarrow closure operations)

Scheme for a general bijective strategy

1) Map family \mathcal{C} identifies with a subfamily \mathcal{O}_{C} of \mathcal{O} with conditions on:

- Face degrees
- Vertex indegrees

Scheme for a general bijective strategy

1) Map family \mathcal{C} identifies with a subfamily \mathcal{O}_{C} of \mathcal{O} with conditions on:

- Face degrees
- Vertex indegrees

Example: $\mathcal{C}=$ Family of simple triangulations

$\mathcal{C} \simeq$ subfamily \mathcal{O}_{C} of \mathcal{O} with

- Face-degree = 3
- Vertex-indegree $=3$

1) Map family \mathcal{C} identifies with a subfamily \mathcal{O}_{C} of \mathcal{O} with conditions on:

- Face degrees
- Vertex indegrees

Example: $\mathcal{C}=$ Family of simple triangulations

$\mathcal{C} \simeq$ subfamily \mathcal{O}_{C} of \mathcal{O} with

- Face-degree $=3$
- Vertex-indegree $=3$
(2) Specialize the 'meta bijection' Φ to the subfamily \mathcal{O}_{C}

degree of internal faces indegree of internal vertices \longleftrightarrow degree of white vertices

α-orientations

Let $G=(V, E)$ be a graph
Let α be a function from V to \mathbb{N}

$$
\begin{aligned}
\alpha: & \mathrm{a} \rightarrow 2 \\
& \mathrm{~b} \rightarrow 1 \\
& \mathrm{c} \rightarrow 2 \\
& \mathrm{~d} \rightarrow 0 \\
& \mathrm{e} \rightarrow 2
\end{aligned}
$$

α-orientations

Let $G=(V, E)$ be a graph
Let α be a function from V to \mathbb{N}

$$
\begin{aligned}
& \hline \alpha: \mathrm{a} \rightarrow 2 \\
& \mathrm{~b} \rightarrow 1 \\
& \mathrm{c} \rightarrow 2 \\
& \mathrm{~d} \rightarrow 0 \\
& \mathrm{e} \rightarrow 2 \\
& \hline
\end{aligned}
$$

Def: An α-orientation is an orientation of G where for each $v \in V$

$$
\text { indegree }(v)=\alpha(v)
$$

α-orientations

Let $G=(V, E)$ be a graph
Let α be a function from V to \mathbb{N}

$\alpha:$	$\mathrm{a} \rightarrow 2$
	$\mathrm{~b} \rightarrow 1$
	$\mathrm{c} \rightarrow 2$
	$\mathrm{~d} \rightarrow 0$
	$\mathrm{e} \rightarrow 2$

Def: An α-orientation is an orientation of G where for each $v \in V$

$$
\text { indegree }(v)=\alpha(v)
$$

α-orientations: criteria for existence

- If an α-orientation exists, then

> (i) $\sum_{v \in V} \alpha(v)=|E|$
> (ii) $\forall S \subseteq V, \quad \sum_{v \in S} \alpha(v) \geq\left|E_{S}\right|$

α-orientations: criteria for existence

- If an α-orientation exists, then

> (i) $\sum_{v \in V} \alpha(v)=|E|$
> (ii) $\forall S \subseteq V, \quad \sum_{v \in S} \alpha(v) \geq\left|E_{S}\right|$

- If the α-orientation is accessible from a vertex $u \in V$ then
(iii) $\sum_{v \in S} \alpha(v)>\left|E_{S}\right|$ whenever $u \notin S$ and $S \neq \emptyset$

α-orientations: criteria for existence

- If an α-orientation exists, then

> (i) $\sum_{v \in V} \alpha(v)=|E|$
> (ii) $\forall S \subseteq V, \quad \sum_{v \in S} \alpha(v) \geq\left|E_{S}\right|$

- If the α-orientation is accessible from a vertex $u \in V$ then
(iii) $\sum_{v \in S} \alpha(v)>\left|E_{S}\right|$ whenever $u \notin S$ and $S \neq \emptyset$

Lemma (folklore): The conditions are necessary and sufficient

α-orientations: criteria for existence

- If an α-orientation exists, then

> (i) $\sum_{v \in V} \alpha(v)=|E|$
> (ii) $\forall S \subseteq V, \quad \sum_{v \in S} \alpha(v) \geq\left|E_{S}\right|$

- If the α-orientation is accessible from a vertex $u \in V$ then
(iii) $\sum_{v \in S} \alpha(v)>\left|E_{S}\right|$ whenever $u \notin S$ and $S \neq \emptyset$

Lemma (folklore): The conditions are necessary and sufficient
\Rightarrow accessibility from $u \in V$ just depends on α (not on which α-orientation)

α-orientations for plane maps

Fundamental lemma: If a plane map admits an α-orientation, then it admits a unique α-orientation without ccw circuit, called minimal

α-orientations for plane maps

Fundamental lemma: If a plane map admits an α-orientation, then it admits a unique α-orientation without ccw circuit, called minimal

Uniqueness proof: if $O_{1} \neq O_{2}$, edges where O_{1} and O_{2} disagree form an eulerian suborientation of $O_{1} \Rightarrow$ contains a circuit (ccw in O_{1} or O_{2})

α-orientations for plane maps

Fundamental lemma: If a plane map admits an α-orientation, then it admits a unique α-orientation without ccw circuit, called minimal

Uniqueness proof: if $O_{1} \neq O_{2}$, edges where O_{1} and O_{2} disagree form an eulerian suborientation of $O_{1} \Rightarrow$ contains a circuit (ccw in O_{1} or O_{2})

Set of α-orientations $=$ distributive lattice [Khueller et al'93], [Propp'93], [O. de Mendez'94], [Felsner'03]

α-orientations for plane maps

Fundamental lemma: If a plane map admits an α-orientation, then it admits a unique α-orientation without ccw circuit, called minimal

Uniqueness proof: if $O_{1} \neq O_{2}$, edges where O_{1} and O_{2} disagree form an eulerian suborientation of $O_{1} \Rightarrow$ contains a circuit (ccw in O_{1} or O_{2})

Set of α-orientations $=$ distributive lattice [Khueller et al'93], [Propp'93], [O. de Mendez'94], [Felsner'03]

Application to simple triangulations

Fact: A triangulation with n internal vertices has $3 n$ internal edges.

Application to simple triangulations

Fact: A triangulation with n internal vertices has $3 n$ internal edges.

Natural candidate for indegree function:
$\alpha: v \mapsto 3$ for each internal vertex v.
call 3-orientation such an α-orientation

Application to simple triangulations

Fact: A triangulation admitting a 3 -orientation is simple

k internal vertices $3 k+1$ internal edges

Application to simple triangulations

Thm [Schnyder 89]: A simple triangulation admits a 3-orientation. (proof by shelling procedure)

Easier proof: Any simple planar graph $G=(V, E)$ satisfies

$$
|E| \leq 3|V|-6 \quad \text { (Euler relation) }
$$

hence the existence/accessibility conditions are satisfied. \square

Application to simple triangulations

- From the lattice property (taking the min) we have family \mathcal{F} of simple triangulations \leftrightarrow subfamily $\mathcal{O}_{\mathcal{T}}$ of \mathcal{O} where:

- faces have degree 3
- inner vertices have indegree 3
- From the bijection Φ specialized to \mathcal{O}_{T}, we have $\mathcal{F} \leftrightarrow$ mobiles where all vertices have degree 3

[Bernardi, F'10], other bijection in [Poulalhon, Schaeffer'03]

Let $T_{n}=\#$ rooted simple triangulations with $n+3$ vertices

marked bud
cardinality $=\frac{(2 n+2)}{2} T_{n}$

$$
\Rightarrow \quad T_{n}=\frac{2(4 n+1)!}{(n+1)!(3 n+2)!}
$$

pair of quaternary trees, n nodes

Application to simple quadrangulations

2-orientation = orientation where each internal vertex has indegree 2 [de Fraysseix, Ossona de Mendez'01]:
A quadrangulation Q admits a 2-orientation iff Q is simple Every 2-orientation is accessible from the outer contour
(proof by shelling algorithm)

Proof from existence criterion:
for every simple bipartite graph $G=(V, E)$, one has $\quad|E| \leq 2|V|-4$

Application to simple quadrangulations

- Specializing the meta bijection Φ we get

indegrees $=2$
face-degrees $=4$

every O has degree 2 every - has degree 4 ($\simeq \underset{\text { unrooted }}{\text { ternary }}$ tree)

Application to simple quadrangulations

- Specializing the meta bijection Φ we get

indegrees $=2$
face-degrees $=4$

- recover a bijection in [Schaeffer'99]
- bijection \Rightarrow there are $\frac{4(3 n)!}{n!(2 n+2)!}$ rooted simple quadrangulations with n faces

every O has degree 2 every - has degree 4 ($\simeq \underset{\text { unrooted }}{\text { ternary }}$ tree)

Extension to any girth and face-degrees

 girth=length shortest cycle Rk: girth \leq minimal face-degree

Our approach works in any girth d, with control on the face-degrees

Other approach using slice decompositions [Bouttier,Guitter'15]

