Planar maps: bijections and applications

Éric Fusy (CNRS/LIX)

AEC summer school, Hagenberg, 2018

Overview of the course

- Planar graphs and planar maps
- structural aspects
- enumerative aspects

- distances in random maps

- geometric representations

Structural aspects of planar graphs and maps

Planar graphs

A graph is called planar if it can be drawn crossing-free in the plane
K_{4} is planar

non-planar drawing

planar drawing
K_{5} is not planar

(whatever drawing, there is always a crossing)

Planar graphs

A graph is called planar if it can be drawn crossing-free in the plane
K_{4} is planar

non-planar drawing

planar drawing

on the sphere
K_{5} is not planar

(whatever drawing, there is always a crossing)

Rk: planar \leftrightarrow can be drawn crossing-free on the sphere

Planar maps
Def. Planar map = connected multigraph embedded on the sphere (up to continuous deformation)

Rk: a planar graph can have several embeddings on the sphere

Planar maps
Def. Planar map = connected multigraph embedded on the sphere (up to continuous deformation)

Rk: a planar graph can have several embeddings on the sphere

A map is easier to draw in the plane (implicit choice of an outer face f_{0})

Planar maps
Def. Planar map = connected multigraph embedded on the sphere (up to continuous deformation)

Rk: a planar graph can have several embeddings on the sphere a map has vertices, edges, and faces

A map is easier to draw in the plane (implicit choice of an outer face f_{0})

Planar maps
Def. Planar map = connected multigraph embedded on the sphere (up to continuous deformation)

Rk: a planar graph can have several embeddings on the sphere a map has vertices, edges, and faces

A map is easier to draw in the plane (implicit choice of an outer face f_{0})

5 faces (including outer one)
degree of a face
$=$ length of walk around f

Some contexts where maps appear

(and also: ramified coverings, factorizations in the symmetric group, classification of surfaces)

Duality for planar maps

6 vertices, 9 edges, 5 faces

a planar map

the dual map

5 vertices, 9 edges, 6 faces preserves \#(edges), exchanges \#(vertices) and \#(faces)

The Euler relation

Let $M=(V, E, F)$ be a planar map. Then

$$
|E|=|V|+|F|-2
$$

$$
|V|=6,|E|=9,|F|=5
$$

The Euler relation
Let $M=(V, E, F)$ be a planar map. Then

$$
|E|=|V|+|F|-2
$$

$$
|V|=6,|E|=9,|F|=5
$$

Proof using spanning trees

$$
|E|=(|V|-1)+(|F|-1)
$$

Kuratowski's theorem for planar graphs
The Euler relation implies (exercise!) that K_{5} and $K_{3,3}$ are not planar

Kuratowski's theorem for planar graphs
The Euler relation implies (exercise!) that K_{5} and $K_{3,3}$ are not planar

Hence any subdivision of K_{5} or $K_{3,3}$ is not planar either

a subdivision of K_{5}

Kuratowski's theorem for planar graphs
The Euler relation implies (exercise!) that K_{5} and $K_{3,3}$ are not planar

Hence any subdivision of K_{5} or $K_{3,3}$ is not planar either

a subdivision of K_{5}

Kuratowski: any non-planar graph contains a subdivision of K_{5} or $K_{3,3}$

Kuratowski's theorem for planar graphs
The Euler relation implies (exercise!) that K_{5} and $K_{3,3}$ are not planar

Hence any subdivision of K_{5} or $K_{3,3}$ is not planar either

a subdivision of K_{5}

Kuratowski: any non-planar graph contains a subdivision of K_{5} or $K_{3,3}$

Kuratowski's theorem for planar graphs
The Euler relation implies (exercise!) that K_{5} and $K_{3,3}$ are not planar

Hence any subdivision of K_{5} or $K_{3,3}$ is not planar either

a subdivision of K_{5}

Kuratowski: any non-planar graph contains a subdivision of K_{5} or $K_{3,3}$

Kuratowski's theorem for planar graphs
The Euler relation implies (exercise!) that K_{5} and $K_{3,3}$ are not planar

Hence any subdivision of K_{5} or $K_{3,3}$ is not planar either

a subdivision of K_{5}

Kuratowski: any non-planar graph contains a subdivision of K_{5} or $K_{3,3}$

contains
subdivision
of K_{5}

k-connectivity in graphs

For $k \geq 2$ a graph G is called k-connected if G is connected and remains connected when deleting any $(k-1)$-subset of vertices

k-connectivity in graphs

For $k \geq 2$ a graph G is called k-connected if G is connected and remains connected when deleting any $(k-1)$-subset of vertices

- not 2-connected $\Leftrightarrow \exists$ separating vertex

k-connectivity in graphs

For $k \geq 2$ a graph G is called k-connected if G is connected and remains connected when deleting any $(k-1)$-subset of vertices

- not 2-connected $\Leftrightarrow \exists$ separating vertex

- not 3-connected $\Leftrightarrow \exists$ separating vertex-pair

Whitney's theorem

A 3-connected planar graph has exactly two embeddings on the sphere, which are mirror of each other

Whitney's theorem

A 3-connected planar graph has exactly two embeddings on the sphere, which are mirror of each other

- Other nice feature of 3-connected planar graphs

Steinitz'1916: a planar graph is 3-connected iff it can be obtained as the graph of a 3D polytope

Local operations to change the embedding
Besides taking the mirror image, one can also:
flip at separating vertex (if graph not 2-connected)

flip at separating pair of vertices (if graph not 3-connected)

Decomposition into 2-c and 3-c components

- Decomposition of connected into 2-connected components

Decomposition into 2-c and 3-c components

- Decomposition of connected into 2-connected components

- Decomposition of 2-connected into 3-connected components
[Tutte'66]

Decomposition into 2-c and 3-c components

- Decomposition of connected into 2-connected components

- Decomposition of 2-connected into 3-connected components

\Rightarrow captures all the embeddings of a planar graph
- Decomposition of connected into 2-connected components

- Decomposition of 2-connected into 3-connected components

\Rightarrow captures all the embeddings of a planar graph
also key tool for the (exact \& asymptotic) enumeration of planar graphs, from enumeration of (3-connected) planar maps [Bender-Gao-Wormald'02, Giménez-Noy'09]

Combinatorial aspects of planar maps

Rooted maps

A map is rooted by marking and orienting an edge

the face on the right of the root is taken as the outer face

Rooted maps are combinatorially easier than maps (no symmetry issue, root gives starting point for recursive decomposition)

Rooted maps

A map is rooted by marking and orienting an edge

the face on the right of the root is taken as the outer face

Rooted maps are combinatorially easier than maps (no symmetry issue, root gives starting point for recursive decomposition)

The 2 rooted maps with one edge

The 9 rooted maps

 with two edges

$0-0-0$

Counting rooted maps
Let a_{n} be the number of rooted maps with n edges

n	1	2	3	4	5	6	7
a_{n}	2	9	54	378	2916	24057	208494

Counting rooted maps
Let a_{n} be the number of rooted maps with n edges

n	1	2	3	4	5	6	7
a_{n}	2	9	54	378	2916	24057	208494

Theorem: (Tutte'63) $\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}$

Counting rooted maps

Let a_{n} be the number of rooted maps with n edges

n	1	2	3	4	5	6	7
a_{n}	2	9	54	378	2916	24057	208494

Theorem: (Tutte'63)

$$
\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}
$$

Not an isolated case:

- Triangulations ($2 n$ faces)

Simple: $\frac{1}{n(2 n-1)}\binom{4 n-2}{n-1}$

- Quadrangulations (n faces)

General: $\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}$
Simple: $\frac{2}{n(n+1)}\binom{3 n}{n-1}$

Counting rooted maps

Let a_{n} be the number of rooted maps with n edges

n	1	2	3	4	5	6	7
a_{n}	2	9	54	378	2916	24057	208494

Theorem: (Tutte'63)

Not an isolated case:

- Triangulations ($2 n$ faces)

- Quadrangulations (n faces)

General: $\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n} \quad$ Simple: $\frac{2}{n(n+1)}\binom{3 n}{n-1}$

Bijection maps \leftrightarrow quadrangulations

n edges
i vertices
j faces

n faces
i white vertices
j black vertices

Bijection maps \leftrightarrow quadrangulations

n edges
i vertices
j faces

n faces
i white vertices
j black vertices

Consequence:

\#(rooted maps with n edges) $=$ \#(rooted quadrangulations with n faces)

Bijection maps \leftrightarrow quadrangulations

n edges
i vertices
j faces

n faces
i white vertices
j black vertices

Consequence:

\#(rooted maps with n edges) = \#(rooted quadrangulations with n faces)
It remains to see why this common number is

$$
\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}
$$

Counting methods

- Generating functions
recurrence from root-edge deletion \Rightarrow equations with catalytic variable [Tutte'63, Bender\&Canfield'86, Bousquet-Mélou\&Jehanne'06, Eynard'09]
- Matrix integrals
maps $=$ contributions to certain (gaussian) matrix integrals
[t'Hooft'74, Brézin et al'78, Di Francesco et al'95]
- Bijections
planar maps \leftrightarrow "decorated" trees
[Cori-Vauquelin'81, Arquès'86, Schaeffer'97,Poulalhon-Schaeffer'03, Bouttier-Di Francesco-Guitter'04, Albenque-Poulalhon'15]

Counting rooted maps with_one face
 A rooted map with one face is called a rooted plane tree

Counting rooted maps with_one face
 A rooted map with one face is called a rooted plane tree

Let c_{n} be the number of rooted plane trees with n edges Let $C(z)=\sum_{n \geq 0} c_{n} z^{n}$ be the associated generating function $C(z)=1+z+2 z^{2}+5 z^{3}+14 z^{4}+\cdots$

Counting rooted maps with_one face

A rooted map with one face is called a rooted plane tree

Let c_{n} be the number of rooted plane trees with n edges Let $C(z)=\sum_{n \geq 0} c_{n} z^{n}$ be the associated generating function $C(z)=1+z+2 z^{2}+5 z^{3}+14 z^{4}+\cdots$

Decomposition at the root:

A rooted map with one face is called a rooted plane tree

Let c_{n} be the number of rooted plane trees with n edges
Let $C(z)=\sum_{n \geq 0} c_{n} z^{n}$ be the associated generating function $C(z)=1+z+2 z^{2}+5 z^{3}+14 z^{4}+\cdots$
Decomposition at the root:

A rooted map with one face is called a rooted plane tree

Let c_{n} be the number of rooted plane trees with n edges
Let $C(z)=\sum_{n \geq 0} c_{n} z^{n}$ be the associated generating function $C(z)=1+z+2 z^{2}+5 z^{3}+14 z^{4}+\cdots$
Decomposition at the root:

GF equation: $C(z)=1+z \cdot C(z)^{2}$

A rooted map with one face is called a rooted plane tree

Let c_{n} be the number of rooted plane trees with n edges
Let $C(z)=\sum_{n \geq 0} c_{n} z^{n}$ be the associated generating function $C(z)=1+z+2 z^{2}+5 z^{3}+14 z^{4}+\cdots$
Decomposition at the root:

recurrence: $\quad c_{0}=1 \quad$ and $\quad c_{n}=\sum_{k=0}^{n-1} c_{k} c_{n-1-k}$ for $n \geq 1$
GF equation: $C(z)=1+z \cdot C(z)^{2}$ solved as $C(z)=\frac{1-\sqrt{1-4 z}}{2 z}$

Counting rooted maps with_one face

A rooted map with one face is called a rooted plane tree

Let c_{n} be the number of rooted plane trees with n edges
Let $C(z)=\sum_{n>0} c_{n} z^{n}$ be the associated generating function $C(z)=1+z+2 z^{2}+5 z^{3}+14 z^{4}+\cdots$

Decomposition at the root:
no edge at least one edge

$$
=
$$

recurrence: $\quad c_{0}=1 \quad$ and $\quad c_{n}=\sum_{k=0}^{n-1} c_{k} c_{n-1-k}$ for $n \geq 1$ GF equation: $C(z)=1+z \cdot C(z)^{2} \quad$ solved as $C(z)=\frac{1-\sqrt{1-4 z}}{2 z}$
Taylor expansion: $C(z)=\sum_{n \geq 0} \frac{(2 n)!}{n!(n+1)!} \Rightarrow c_{n}=\frac{(2 n)!}{n!(n+1)!} \quad \begin{aligned} & \text { Catalan } \\ & \text { numbers }\end{aligned}$

Adaptation to rooted maps
Let m_{n} be the number of rooted maps with n edges
Let $M(z)=\sum_{n \geq 0} m_{n} z^{n}$ be the associated generating function

$$
=1+2 z+9 z^{2}+54 z^{3}+378 z^{4}+2916 z^{5}+\cdots
$$

Adaptation to rooted maps

Let m_{n} be the number of rooted maps with n edges
Let $M(z)=\sum_{n \geq 0} m_{n} z^{n}$ be the associated generating function

$$
=1+2 z+9 z^{2}+54 z^{3}+378 z^{4}+2916 z^{5}+\cdots
$$

Decomposition by deleting the root:
at least one edge

Adaptation to rooted maps

Let m_{n} be the number of rooted maps with n edges
Let $M(z)=\sum_{n \geq 0} m_{n} z^{n}$ be the associated generating function

$$
=1+2 z+9 z^{2}+54 z^{3}+378 z^{4}+2916 z^{5}+\cdots
$$

Decomposition by deleting the root:
at least one edge
 non-disconnecting

$+$
?

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k>0} m_{n, k} z^{n} u^{k}$ be the associated generating function

$$
=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots
$$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function

$$
=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots
$$

$n=1$		$n=2$		
$m_{1,1}=1$	0	$m_{2,1}=2$	∞	$0<0$
$m_{1,2}=1$	$0-\infty$	$m_{2,2}=2$	∞	0

$$
\begin{array}{ll}
m_{2,3}=2 & 0-0-0-0-0-0-0-0-0-0-0
\end{array}
$$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function

$$
=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots
$$

Decomposition by deleting the root:
at least one edge
no edge
disconnecting

$$
M(z, u)=1+z u^{2} \cdot M(z, u)^{2}+A(z, u)
$$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function

$$
=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots
$$

$z^{7} u^{3}$

$z^{8} u^{3}$

$z^{8} u^{2}$

More generally $z^{n} u^{k} \rightarrow z^{n+1} \cdot\left(u+u^{2}+\cdots+u^{k+1}\right)$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function

$$
=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots
$$

$z^{7} u^{3}$

$z^{8} u^{3}$

$z^{8} u^{2}$

More generally $z^{n} u^{k} \rightarrow z^{n+1} \cdot\left(u+u^{2}+\cdots+u^{k+1}\right)$
$\Rightarrow A(z, u)=\sum_{n, k} m_{n, k} z^{n+1} \cdot \underbrace{\left(u+\cdots+u^{k+1}\right)}$

$$
u \cdot \frac{u^{k+1}-1}{u-1}
$$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function

$$
=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots
$$

$z^{7} u^{3}$

$z^{8} u^{3}$

$z^{8} u^{2}$

More generally $\quad z^{n} u^{k} \rightarrow z^{n+1} \cdot\left(u+u^{2}+\cdots+u^{k+1}\right)$
$\Rightarrow A(z, u)=\sum_{n, k} m_{n, k} z^{n+1} \cdot \underbrace{\left(u+\cdots+u^{k+1}\right)}=z u \frac{u M(z, u)-M(z, 1)}{u-1}$

$$
u \cdot \frac{u^{k+1}-1}{u-1}
$$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k>0} m_{n, k} z^{n} u^{k}$ be the associated generating function

$$
=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots
$$

Decomposition by deleting the root:
at least one edge
no edge disconnecting non-disconnecting

$$
M(z, u)=1+z u^{2} \cdot M(z, u)^{2}+z u \frac{u M(z, u)-M(z, 1)}{u-1}
$$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function
Functional equation obtained:

$$
M(z, u)=1+z u^{2} \cdot M(z, u)^{2}+z u \frac{u M(z, u)-M(z, 1)}{u-1}
$$

of the form $P(M(z, u), M(z, 1), z, u)=0$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function
Functional equation obtained:

$$
M(z, u)=1+z u^{2} \cdot M(z, u)^{2}+z u \frac{u M(z, u)-M(z, 1)}{u-1}
$$

of the form $P(M(z, u), M(z, 1), z, u)=0$
One equation, two unknown: $M(z, u)$ and $M(z, 1)$
But a unique solution (2 unknown are correlated)
Equation $\Rightarrow M(z, u)=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function

Functional equation obtained:

$$
M(z, u)=1+z u^{2} \cdot M(z, u)^{2}+z u \frac{u M(z, u)-M(z, 1)}{u-1}
$$

of the form $P(M(z, u), M(z, 1), z, u)=0$
One equation, two unknown: $M(z, u)$ and $M(z, 1)$
But a unique solution (2 unknown are correlated)
Equation $\Rightarrow M(z, u)=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots$
Guessing/checking or explicit solution methods:
[Brown, Tutte'65, Bousquet-Mélou-Jehanne'06, Eynard'10]
$\Rightarrow M(z, 1)=\frac{1}{54 z^{2}}\left(-1+18 z+(1-12 z)^{3 / 2}\right)=\sum_{n \geq 0} \frac{2 \cdot 3^{n}}{(n+2)(n+1)}\binom{2 n}{n} z^{n}$

