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Overview of the course
• Planar graphs and planar maps

• distances in random maps

- structural aspects

- enumerative aspects
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• geometric representations



Structural aspects of planar graphs and maps



Planar graphs

K4 is planar

K5 is not planar

crossing

A graph is called planar if it can be drawn crossing-free in the plane

(whatever drawing, there
is always a crossing)
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Planar graphs

K4 is planar

K5 is not planar

crossing

A graph is called planar if it can be drawn crossing-free in the plane

Rk: planar ↔ can be drawn crossing-free on the sphere
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Planar maps

=

Def. Planar map = connected multigraph embedded on the sphere
(up to continuous deformation)

6=

Rk: a planar graph can have several embeddings on the sphere
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Planar maps

=

Def. Planar map = connected multigraph embedded on the sphere

A map is easier to draw in the plane (implicit choice of an outer face f0)

⇒

(up to continuous deformation)

6=

Rk: a planar graph can have several embeddings on the sphere

f0
f0

a map has vertices, edges, and faces

degree of a face
= length of walk around f
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5 faces (including outer one)



geographic maps
(topological info.)

Probability and physics
(random lattices, random surfaces)

Some contexts where maps appear

meshes (CAO)
(combinatorial incidences)

(and also: ramified coverings, factorizations in the symmetric group, classification of surfaces)

graph drawing



Duality for planar maps
6 vertices, 9 edges, 5 faces

5 vertices, 9 edges, 6 faces

a planar map

the dual map

preserves #(edges), exchanges #(vertices) and #(faces)



The Euler relation
Let M = (V,E, F ) be a planar map. Then

|E| = |V |+ |F | − 2

|V | = 6, |E| = 9, |F | = 5



The Euler relation
Let M = (V,E, F ) be a planar map. Then

|E| = |V |+ |F | − 2

|E| = (|V | − 1) + (|F | − 1)

Proof using spanning trees

|V | = 6, |E| = 9, |F | = 5
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The Euler relation implies (exercise!) that K5 and K3,3 are not planar

K5 K3,3
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Kuratowski’s theorem for planar graphs
The Euler relation implies (exercise!) that K5 and K3,3 are not planar

K5 K3,3

Hence any subdivision of K5 or K3,3 is not planar either

a subdivision of K5

Kuratowski: any non-planar graph contains a subdivision of K5 or K3,3

subdivision
of K5

contains



k-connectivity in graphs
For k ≥ 2 a graph G is called k-connected if G is connected
and remains connected when deleting any (k − 1)-subset of vertices



k-connectivity in graphs

v ⇒

For k ≥ 2 a graph G is called k-connected if G is connected
and remains connected when deleting any (k − 1)-subset of vertices

• not 2-connected ⇔ ∃ separating vertex



k-connectivity in graphs

v

⇒

⇒

For k ≥ 2 a graph G is called k-connected if G is connected
and remains connected when deleting any (k − 1)-subset of vertices

• not 2-connected ⇔ ∃ separating vertex

• not 3-connected⇔ ∃ separating vertex-pair



Whitney’s theorem
A 3-connected planar graph has exactly two embeddings on the sphere,

which are mirror of each other



Whitney’s theorem
A 3-connected planar graph has exactly two embeddings on the sphere,

Steinitz’1916: a planar graph is
3-connected iff it can be obtained
as the graph of a 3D polytope

• Other nice feature of 3-connected planar graphs

which are mirror of each other



Local operations to change the embedding

flip at separating vertex (if graph not 2-connected)

flip at separating pair of vertices (if graph not 3-connected)

→

→

Besides taking the mirror image, one can also:



Decomposition into 2-c and 3-c components
• Decomposition of connected into 2-connected components [Harary’69]
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Decomposition into 2-c and 3-c components
• Decomposition of connected into 2-connected components

• Decomposition of 2-connected into 3-connected components

T

C
P

C
T

T
C

T

[Harary’69]

[Tutte’66]

⇒ captures all the embeddings of a planar graph

also key tool for the (exact & asymptotic) enumeration of planar graphs,
from enumeration of (3-connected) planar maps [Bender-Gao-Wormald’02, Giménez-Noy’09]



Combinatorial aspects of planar maps



Rooted maps
A map is rooted by marking and orienting an edge

a rooted map

Rooted maps are combinatorially easier than maps

(no symmetry issue, root gives starting point for recursive decomposition)

the face on the right

of the root is taken
as the outer face



Rooted maps
A map is rooted by marking and orienting an edge

a rooted map

Rooted maps are combinatorially easier than maps

(no symmetry issue, root gives starting point for recursive decomposition)

the face on the right

of the root is taken
as the outer face

The 2 rooted maps with one edge

The 9 rooted maps
with two edges
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Bijection maps ↔ quadrangulations
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Bijection maps ↔ quadrangulations

face

edge

n edges
i vertices
j faces

n faces
i white vertices
j black vertices

Consequence:
#(rooted maps with n edges) = #(rooted quadrangulations with n faces)

It remains to see why this common number is
2 · 3n

(n+ 1)(n+ 2)

(
2n

n

)



Counting methods
• Generating functions

recurrence from root-edge deletion ⇒ equations with catalytic variable
[Tutte’63, Bender&Canfield’86, Bousquet-Mélou&Jehanne’06, Eynard’09]

• Matrix integrals
maps = contributions to certain (gaussian) matrix integrals
[t’Hooft’74, Brézin et al’78, Di Francesco et al’95]

• Bijections
planar maps ↔ “decorated” trees
[Cori-Vauquelin’81, Arquès’86, Schaeffer’97,Poulalhon-Schaeffer’03,

Bouttier-Di Francesco-Guitter’04, Albenque-Poulalhon’15]
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Counting rooted maps with one face

Let cn be the number of rooted plane trees with n edges

Let C(z) =
∑

n≥0 cnz
n be the associated generating function

C(z) = 1 + z + 2z2 + 5z3 + 14z4 + · · ·

A rooted map with one face is
called a rooted plane tree

Decomposition at the root:

=

no edge

+

at least one edge

recurrence: c0 = 1 and cn =
n−1∑
k=0

ckcn−1−k for n ≥ 1

GF equation: C(z) = 1 + z · C(z)2 solved as C(z) = 1−
√
1−4z
2z

Taylor expansion: C(z) =
∑

n≥0
(2n)!

n!(n+1)! ⇒ cn = (2n)!
n!(n+1)!

Catalan
numbers



Adaptation to rooted maps
Let mn be the number of rooted maps with n edges

Let M(z) =
∑

n≥0 mnz
n be the associated generating function

= 1 + 2z + 9z2 + 54z3 + 378z4 + 2916z5 + · · ·



Adaptation to rooted maps
Let mn be the number of rooted maps with n edges

Let M(z) =
∑

n≥0 mnz
n be the associated generating function

= 1 + 2z + 9z2 + 54z3 + 378z4 + 2916z5 + · · ·

Decomposition by deleting the root:

=

no edge

+

at least one edge
disconnecting non-disconnecting



Adaptation to rooted maps
Let mn be the number of rooted maps with n edges

Let M(z) =
∑

n≥0 mnz
n be the associated generating function

= 1 + 2z + 9z2 + 54z3 + 378z4 + 2916z5 + · · ·

Decomposition by deleting the root:

=

no edge

+

at least one edge
disconnecting non-disconnecting

M(z) = 1 + zM(z)2 + ?

?



Adding a secondary variable
Let mn,k be the number of rooted maps with n edges and outer degree k

Let M(z, u) =
∑

n,k≥0 mn,kz
nuk be the associated generating function
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nuk be the associated generating function
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at least one edge
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M(z, u) = 1 + zu2 ·M(z, u)2 + A(z, u)

doable
using u
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Adding a secondary variable
Let mn,k be the number of rooted maps with n edges and outer degree k

Let M(z, u) =
∑
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nuk be the associated generating function
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)
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∑

n,k≥0 mn,kz
nuk be the associated generating function

= 1 + z(u+ u2) + z2(2u+ 2u2 + 3u3 + 2u4) + · · ·

Decomposition by deleting the root:

=

no edge

+

at least one edge
disconnecting non-disconnecting
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of the form P (M(z, u),M(z, 1), z, u) = 0
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Let mn,k be the number of rooted maps with n edges and outer degree k

M(z, u) = 1 + zu2 ·M(z, u)2 + zu
uM(z, u)−M(z, 1)

u− 1

Let M(z, u) =
∑

n,k≥0 mn,kz
nuk be the associated generating function

Functional equation obtained:

One equation, two unknown: M(z, u) and M(z, 1)

But a unique solution (2 unknown are correlated)
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Adding a secondary variable
Let mn,k be the number of rooted maps with n edges and outer degree k

M(z, u) = 1 + zu2 ·M(z, u)2 + zu
uM(z, u)−M(z, 1)

u− 1

Let M(z, u) =
∑

n,k≥0 mn,kz
nuk be the associated generating function

Functional equation obtained:

One equation, two unknown: M(z, u) and M(z, 1)

But a unique solution (2 unknown are correlated)

Equation ⇒ M(z, u) = 1+z(u+u2) + z2(2u+ 2u2+ 3u3+2u4) + · · ·

Guessing/checking or explicit solution methods:
[Brown, Tutte’65, Bousquet-Mélou-Jehanne’06, Eynard’10]

of the form P (M(z, u),M(z, 1), z, u) = 0

⇒M(z, 1) =
1

54z2
(−1 + 18z + (1− 12z)3/2) =

∑
n≥0

2 · 3n

(n+ 2)(n+ 1)

(2n
n

)
zn


