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Overview of the course
e Planar graphs and planar maps

- structural aspects

- enumerative aspects

e distances in random maps




Structural aspects of planar graphs and maps
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Planar maps

Def. Planar map = connected multigraph embedded on the sphere
(up to continuous deformation)

b &

Rk: a planar graph can have several embeddings on the sphere
a map has vertices, edges, and faces

A map is easier to draw in the plane (implicit choice of an outer face fj)

5 faces (including outer one)

degree of a face
= length of walk around f




Some contexts where maps appear

Probability and physics
(random lattices, random surfaces)

geographic maps
(topological info.)

graph drawing

meshes (CAO)
(combinatorial incidences)

(and also: ramified coverings, factorizations in the symmetric group, classification of surfaces)



Duality for planar maps
6 vertices, 9 edges, 5 faces

the dual map

a planar map

5 vertices, 9 edges, 6 faces

preserves #(edges), exchanges #(vertices) and #(faces)



The Euler relation
Let M = (V, E, F) be a planar map. Then

Bl =|V]+|F| -2
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The Euler relation
Let M = (V, E, F) be a planar map. Then

E|=|V|+|F|] -2 Proof using spanning trees
El=(V]=1)+(F]-1)

VI =6,|E]=9,|F|=5
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Kuratowski’'s theorem for planar graphs
The Euler relation implies (exercise!) that K5 and K33 are not planar

Hence any subdivision of K5 or K3 3 is not planar either

@ a subdivision of K5

Kuratowski: any non-planar graph contains a subdivision of K5 or K3 3

contains
subdivision
of K5
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k-connectivity in graphs
For £ > 2 a graph G is called k-connected if G is connected
and remains connected when deleting any (k — 1)-subset of vertices

e not 2-connected < d separating vertex

P - <

e not 3-connected < d separating vertex-pair

@
-6



Whitney's theorem

A 3-connected planar graph has exactly two embeddings on the sphere,
which are mirror of each other




Whitney's theorem

A 3-connected planar graph has exactly two embeddings on the sphere,
which are mirror of each other

W W

e Other nice feature of 3-connected planar graphs

Steinitz’1916: a planar graph is
3-connected iff it can be obtained |
as the graph of a 3D polytope
|
T

~—




Local operations to change the embedding

Besides taking the mirror image, one can also:

flip at separating vertex (if graph not 2-connected)
o o
° é% ;j o
%

flip at separating pair of vertices (if graph not 3-connected)

W




Decomposition into 2-c and 3-c components
e Decomposition of connected into 2-connected components [Harary'69]
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Decomposition into 2-c and 3-c components
e Decomposition of connected into 2-connected components [Harary'69]
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e Decomposition of 2-connected into 3-connected components  [Tutte'66]

<
% DN

= captures all the embeddings of a planar graph

also key tool for the (exact & asymptotic) enumeration of planar graphs,
from enumeration of (3-connected) planar maps [Bender-Gao-Wormald'02, Giménez-Noy'09)]



Combinatorial aspects of planar maps



Rooted maps

A map is rooted by marking and orienting an edge

the face on the right

a rooted map of the root is taken

as the outer face

Rooted maps are combinatorially easier than maps
(no symmetry issue, root gives starting point for recursive decomposition)



Rooted maps

A map is rooted by marking and orienting an edge

the face on the right

a rooted map of the root is taken

as the outer face

Rooted maps are combinatorially easier than maps
(no symmetry issue, root gives starting point for recursive decomposition)

The 2 rooted maps with one edge CO O—a-O

The 9 rooted maps QG @ C@ O
with two edges
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Counting rooted maps
Let a,, be the number of rooted maps with n edges

n|{l|2| 3| 4 5 0 Y4
an 219154 | 3782916 | 24057 | 208494

Theorem: (Tutte'63) Chd il <2n>
m+1)(n+2)\ n

Not an isolated case:

e Triangulations (2n faces)
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e Quadrangulations (n faces)
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Counting rooted maps
Let a,, be the number of rooted maps with n edges

ni|l(2|3]| 4

5

6

-

2916

24057

208494

Theorem: (Tutte'63)

Not an isolated case:

e Triangulations (2n faces)

27?,

Loopless:

(Sn
(n+1)(2n+1) \n

)

!
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Bijection maps < quadrangulations

n edges
v 08 n faces
1 vertices : : :
: 1 white vertices
9 faces . .
7 black vertices
edge
Oo—O
Consequence:

#(rooted maps with n edges) = #(rooted quadrangulations with n faces)

. . _ 2-3" 2n
It remains to see why this common number is
(n+1)(n+2)



Counting methods

e Generating functions
recurrence from root-edge deletion = equations with catalytic variable
[Tutte’63, Bender&Canfield’86, Bousquet-Mélou&Jehanne’06, Eynard’09]

e Matrix integrals
maps = contributions to certain (gaussian) matrix integrals
[t’'Hooft’74, Brézin et al’78, Di Francesco et al’95]

e Bijections
planar maps <+ “decorated” trees

[Cori-Vauquelin’81, Arqués’86, Schaeffer’'97,Poulalhon-Schaeffer’03,
Bouttier-Di Francesco-Guitter’'04, Albenque-Poulalhon’15]
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Counting rooted maps with one face

A rooted map with one face is
called a rooted plane tree

Let ¢,, be the number of rooted plane trees with n edg\e-s"/
Let C'(2) = > -~ cn?" be the associated generating function
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n—1
k=0
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GF equation: C(2) =1+ 2-C(2)* solved as C(z) = \éz—




Counting rooted maps with one face

A rooted map with one face is
called a rooted plane tree

Let ¢,, be the number of rooted plane trees with n edgésu—

Let C'(2) = > -~ cn?" be the associated generating function
C(2) =1+2+22%+52%+ 142* + - -

Decomposition at the root:

no edge at least one edge
Ao kA

n—1

recurrence: c¢g =1 and ¢, = Z CiCn—1—k form >1
k=0

GF equation: C(2) =1+4+2-C(2)* solved as C(z) = 1_V21Z_4Z

- _ (2n)! _ _(2n)! Catalan
Taylor expansion: C'(2) =}, <, At = | = Rt DT | numbers
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Adaptation to rooted maps
Let m,, be the number of rooted maps with n edges

Let M(z) =) ~,mnz" be the associated generating function
=1+ 2z + 922 + 5425 + 3782* + 29162° + - - -

Decomposition by deleting the root:

at least one edge
no edge disconnecting non-disconnecting

@ - ee @

|
®e @

M(z) = 1 + M (2)?



Adding a secondary variable
Let 1, be the number of rooted maps with n edges and outer degree £
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Adding a secondary variable
Let 1, be the number of rooted maps with n edges and outer degree £

Let M (z,u) =5 - muz"u" be the associated generating function

=1+ 2(u+u?) + 2% (2u + 2u® + 3u’ + 2u*) + - - -

n=1 n =22

il O |t ) D
mi2=1  Oe0 | m22=2 > OO

m23 = 2 o—>—c<> O_CO o-q-cO

ma.4 = 2 0—O<e0 O—O®O




Adding a secondary variable
Let 1, be the number of rooted maps with n edges and outer degree £

Let M(2,u) =), 1>0 m,,. 2" u" be the associated generating function
=1+ z(u+u?) + 2°(2u + 2u? + 3u’ + 2u?) + - -

Decomposition by deleting the root:
at least one edge

no edge disconnecting non-disconnecting
doable
using u

oo @:

M(z,u) = 1 +  zu* - M(z,u)? A(z,u)
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Let 1, be the number of rooted maps with n edges and outer degree £

Let M(2,u) =), 150 ™Mn, kz’”’uk be the associated generating function

=1+ z(u 2u—|—2u + 3u’ —I—2u
ZU ZU

More generally z"u* — z”“ . (u 4+l uk“)

M _
_ Zmn’k (bt = Y (z,u) 1.M(z, 1)
N u —

w1
u—1
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Adding a secondary variable
Let 1, be the number of rooted maps with n edges and outer degree £

Let M (z,u) =5 - muz"u" be the associated generating function

=1+ 2(u+u?) + 2% (2u + 2u® + 3u’ + 2u*) + - - -

Decomposition by deleting the root:
at least one edge

no edge disconnecting non-disconnecting
doable
usmgu
M(z,u) = 1 + zu® M(z,u)* + Zu- u—l
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Adding a secondary variable
Let m,, ,, be the number of rooted maps with n edges and outer degree &

Let M (z,u) =5 - muz"u" be the associated generating function

Functional equation obtained:

uM(z,u) — M(z,1)
u—1

M(z,u) = 1+ z2u®-M(z,u)® + *u

of the form P(M (z,u), M(z,1),z,u) =0

One equation, two unknown: M (z,u) and M(z,1)
But a unique solution (2 unknown are correlated)
Equation = M (z,u) = 1+z(u+u?) + 2%(2u + 2u+ 3u’+2u*) + - - -

Guessing/checking or explicit solution methods:
[Brown, Tutte'65, Bousquet-Mélou-Jehanne’06, Eynard’10]

(=14 18z + (1 — 122)3/2) = 25" 21
nzZ:O (n+2)(n+1) <n)

= M(z,1) = 12



