On Proving Assistants in the Classroom (and Elsewhere)

Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.uni-linz.ac.at

1. The Role of Reasoning

2. The RISC ProofNavigator

3. Experience and Conclusions

Mathematics Education

Various kinds of mathematical activities.

- Calculating
 - Transforming a given representation of an object to a simpler one.

$$(x+y)^2 \rightsquigarrow x^2 + 2xy + y^2$$

- Solving
 - Finding objects that satisfy given properties.

$$x^2 - 5x + 6 = 0 \rightsquigarrow x = 2 \lor x = 3$$

- Proving
 - Reasoning whether a property holds for an infinite class of objects.

$$\forall x \in \mathbb{R} : x > 0 \Rightarrow \exists y \in \mathbb{R} : x = y^2 \rightsquigarrow \text{true}$$

- Modeling
 - Finding properties that adequately characterize a problem domain.

Traditionally, mathematics education has focused on the first two items. http://www.risc.uni-linz.ac.at

Real Life Today

- Calculating and Solving
 - Essential competence of computers.
- Modeling and Reasoning
 - Essential competence of humans.
- Typical Project Phases
 - Write a specification that describes desired results.

Formally: develop a mathematical theory.

Validate the specification by a critical analysis.

Formally: prove theorems in the theory.

Verify the project results with respect to the specification.

Formally: prove that objects satisfy theorems.

Modeling and reasoning (rather than calculating and solving) are necessary key qualifications for modern professions.

Example: Software Development

■ Write a software specification.

Formally: A relation between a program's input and its output.

$$R(x,y) : \Leftrightarrow I(x) \Rightarrow O(x,y)$$

■ Validate the specification by a critical analysis.

Formally: Prove that the relation holds for some desired outputs and does not hold for some undesired ones.

$$R(a, b_0), \neg R(a, b_1)$$

■ Verify the project results with respect to the specification.

Formally: prove that, for every input, the output computed by the program satisfies the relation.

$$\forall x : R(x, F(x))$$

Program specifications can serve as a rich source of examples for mathematical modeling and reasoning.

Example: A Program Specification

Given an array a with elements from T, a position p in a, and a length l, return the array b derived from a by removing $a[p], \ldots, a[p+l]$.

- Input: $a \in T^*$, $p \in \mathbb{N}$, $l \in \mathbb{N}$
- Input condition:

$$p + l \leq length(a)$$

- Output: $b \in T^*$
- Output condition:

```
let n = \text{length}(a) in

length(b) = n - l \land (\forall i \in \mathbb{N} : i
```

Mathematical theory:

$$T^* := \bigcup_{i \in \mathbb{N}} T^i, T^i := \mathbb{N}_i \to T, \mathbb{N}_i := \{ n \in \mathbb{N} : n < i \}$$

length : $T^* \to \mathbb{N}$, length(a) = **such** $i \in \mathbb{N} : a \in T^i$

The Language of Predicate Logic

For modeling and reasoning, one needs a precise language.

- The language of predicate logic
 - Atomic propositions, connectives, quantifiers.
- Indispensable tool for understanding statements.
 - Precise description of complex properties and relationships.
 - Framework for thinking, communicating, arguing.
- Hardly taught in school, only rudimentary at universities.
 - Hampers communication a lot.

One important goal of mathematical education is (should be) to train the practical use of this language.

Tool Support

- Visualization/animation tools
 - Help to grasp formula interpretations, not to understand reasoning.
- Proof checkers
 - Help to verify correctness of proofs, not to construct such proofs.
- Automated theorem provers
 - Attempt to automatically construct proofs by automatic strategy.
 - If fails, proof may be restarted with a modified strategy.
 - If successful, proof may be studied
 - A passive act of consumption, not an active act of construction.
- Interactive proving assistants
 - Combination of user interactions and automatic methods.
 - Visualization of a (partial) proof in a structured form.
 - User selects appropriate strategy that is executed by assistant.
 - User may inject critical insight: instantiate existential goals or universal assumptions, apply lemmas, etc.
 - Low-level reasoning steps may be completely automated.
 - SMT (satisfiability modulo theory solvers):

Proving Assistants

Target: (education in) computer-supported program verification.

- Personal evaluation of several proving assistants (2004/2005).
 - For classroom use as well as for real verifications.
 - Test cases derived from verifications of sequential programs and concurrent systems (from small proofs to rather large ones).
- Frequently more difficult to use than expected.
 - Steep learning curve.
 - Poor usability respectively "look and feel".
- Frequently less helpful than expected.
 - Too little focus on solving simple tasks (become complicated).
 - Too much focus on solving complex tasks (tend to fail).
- Personal favorite: PVS.
 - Practical success was achieved with limited efforts.
 - Also larger verifications became manageable.

Evaluation yielded some insights on key aspects of proving assistants.

Key Aspects of Proving Assistants

- Convenient navigation in proof trees.
 - User gets easily lost in large proofs.
- Aggressive simplification and pretty presentation of proof states.
 - User quickly loses intuition about interpretation of proof situation.
- Automation in dealing with arithmetic.
 - Subtype relationship between integers and reals is helpful.
- Proof construction by combination of
 - Semi-automatic proof decomposition,
 - \forall -introduction, \exists -elimination, \land -introduction, etc.
 - Critical steps performed by user,
 - ▼-elimination, ∃-introduction, case distinction, etc.
 - (Semi-)decision procedures for ground theories.
 - Uninterpreted function symbols, linear arithmetic, etc.
- Proof stability under changes of predicate definitions.
 - If formula positions change, references to positions break.

1. The Role of Reasoning

2. The RISC ProofNavigator

3. Experience and Conclusions

The RISC ProofNavigator

http://www.risc.uni-linz.ac.at/research/formal/software/ProofNavigator

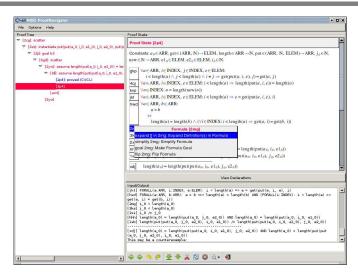
- A proof assistant developed at RISC.
 - Employs the SMT solver CVC Lite (CVCL).
 - Targeted for education in program reasoning.
- Focus on practical aspects of proving.

Rather than on theoretical elegance.

- Low-level reasoning completely delegated to SMT solver.
 - Equalities, uninterpreted functions, linear arithmetic, . . .
- High-level work made as comfortable as possible.
 - Mainly application of pre-selected proof decomposition strategies.
- Graphical user interface with convenient interaction possibilities.
- Component of a program exploration environment.

The RISC ProgramExplorer (under development).

The user deals with the predicate-logic structure of a proof only; equality/inequality reasoning is performed fully automatically.



Using the Software

- Develop a theory.
 - Text file with declarations of types, constants, functions, predicates.
 - Axioms (propositions assumed true) and formulas (to be proved).
- Load the theory.
 - File is read; declarations are parsed and type-checked.
 - Type-checking conditions are generated and proved.
- Prove the formulas in the theory.
 - Human-guided top-down elaboration of proof tree.
 - Steps are recorded for later replay of proof.
 - Proof status is recorded as "open" or "completed".
- Modify theory and repeat above steps.
 - Software maintains dependencies of declarations and proofs.
 - Proofs whose dependencies have changed are tagged as "untrusted".

Exercise in the mathematical aspects of modeling and reasoning.

Proving a Formula

- Proof of formula F is represented as a tree.
 - Each tree node denotes a proof state (goal).
 - Logical sequent:

$$A_1,A_2,\ldots \vdash B_1,B_2,\ldots.$$

Interpretation:

$$(A_1 \wedge A_2 \wedge \ldots) \Rightarrow (B_1 \vee B_2 \vee \ldots)$$

Initially single node Axioms $\vdash F$.

- Constants: $x_0 \in S_0, \ldots$
- $[L_1]$ A_1

$$\begin{bmatrix} L_n \end{bmatrix} \qquad A_n$$

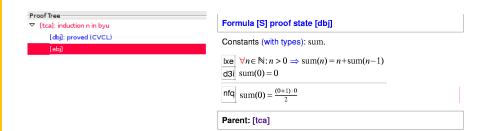
$$\begin{bmatrix} L_{n+1} \end{bmatrix} \qquad B_1$$

 B_{m}

 $[L_{n+m}]$

- The tree must be expanded to completion.
 - Every leaf must denote an obviously valid formula.
 - \blacksquare Some A_i is false or some B_i is true.
- A proof step consists of the application of a proving rule to a goal.
 - Either the goal is recognized as true.
 - Or the goal becomes the parent of a number of children (subgoals).

The conjunction of the subgoals implies the parent goal.



Closed goals are indicated in blue; goals that are open (or have open subgoals) are indicated in red. The red bar denotes the "current" goal.

A Completed Proof Tree

-Proof Tree ▽ [tca]: induction n in byu [dbj]: proved (CVCL) ▽ [ebj]: instantiate n_0+1 in lxe [k5f]: proved (CVCL)

The visual representation of the complete proof structure; by clicking on a node, the corresponding proof state is displayed.

Navigation Commands

Various buttons support navigation in a proof tree.

- 👍: prev
 - Go to previous open state in proof tree.
- = 🖒: next
 - Go to next open state in proof tree.
- = 🥎: undo
 - Undo the proof command that was issued in the parent of the current state; this discards the whole proof tree rooted in the parent.
- 🎓: redo
 - Redo the proof command that was previously issued in the current state but later undone; this restores the discarded proof tree.

Single click on a node in the proof tree displays the corresponding state; double click makes this state the current one.

Proving Commands

The most important proving commands can be also triggered by buttons.

- scatter)
 - Recursively applies decomposition rules to the current proof state and to all generated child states; attempts to close the generated states by the application of a validity checker.
- decompose)
 - Like scatter but generates a single child state only (no branching).
- (split)
 - Splits current state into multiple children states by applying rule to current goal formula (or a selected formula).
- [auto)
 - Attempts to close current state by instantiation of quantified formulas.
- _ % (autostar)
 - Attempts to close current state and its siblings by instantiation.

Less frequently used commands can be selected from the menus.

Proving Strategies

- Initially: semi-automatic proof decomposition.
 - expand expands constant, function, and predicate definitions.
 - scatter aggressively decomposes a proof into subproofs.
 - decompose simplifies a proof state without branching.
 - induction for proofs over the natural numbers.
- Later: critical hints given by user.
 - assume and case cut proof states by conditions.
 - instantiate provide specific formula instantiations.
- Finally: simple proof states are closed by SMT solver.
 - auto and autostar may help to close formulas by the heuristic instantiation of quantified formulas.

Appropriate combination of semi-automatic proof decomposition, critical hints given by the user, and the application of an SMT solver is crucial.

Proving Strategies

- Initially: semi-automatic proof decomposition.
 - expand expands constant, function, and predicate definitions.
 - scatter aggressively decomposes a proof into subproofs.
 - decompose simplifies a proof state without branching.
 - induction for proofs over the natural numbers.
- Later: critical hints given by user.
 - assume and case cut proof states by conditions.
 - instantiate provide specific formula instantiations.
- Finally: simple proof states are closed by SMT solver.
 - auto and autostar may help to close formulas by the heuristic instantiation of quantified formulas.

Appropriate combination of semi-automatic proof decomposition, critical hints given by the user, and the application of an SMT solver is crucial.

Example: Verification of Linear Search


```
0: {Input}
1: m := a[0]
2: i := 1
3: {Invariant}
4: while i < n do
        if a[i] < m then
6: m := a[i]
7: i := i + 1
8: {Output}
execution 0 \rightarrow 1 \rightarrow 2 \rightarrow 3
V1 \equiv Input \land m = a[0] \land i = 1 \Rightarrow Inv(m, i)
execution 3 \rightarrow 4(\text{true}) \rightarrow 5(\text{true}) \rightarrow 6 \rightarrow 7 \rightarrow 3
V2a \equiv Inv(m, i) \land i < n \land a[i] < m \land m_0 = a[i] \land i_0 = i + 1 \Rightarrow Inv(m_0, i_0)
execution 3 \rightarrow 4(\text{true}) \rightarrow 5(\text{false}) \rightarrow 7 \rightarrow 3
V2b \equiv Inv(m, i) \land i < n \land a[i] \not< m \land i_0 = i + 1 \Rightarrow Inv(m, i_0)
execution 3 \rightarrow 4(false) \rightarrow 8
V3 \equiv Inv(m, i) \land i \not< n \Rightarrow Output
```

Verification conditions correspond to paths in program.

Verification of Linear Search


```
Input \equiv n > 0 \land a = olda \land n = oldn
Output \equiv a = olda \land n = oldn \land
(\forall i \in \mathbb{N} : i < n \Rightarrow m \leq a[i]) \land
(\exists i \in \mathbb{N} : i < n \land m = a[i])
Invariant(m, i) \equiv
n > 0 \land a = olda \land n = oldn \land
1 \leq i \leq n \land
(\forall j \in \mathbb{N} : j < i \Rightarrow m \leq a[j]) \land
(\exists j \in \mathbb{N} : j < i \land m = a[j])
```

Specification and invariant have to be provided by programmer.


```
a: ARRAY INT OF INT; olda: ARRAY INT OF INT;
n: INT; oldn: INT; m: INT; m_0: INT; i: INT; i_0: INT;
Input: BOOLEAN =
  a = olda AND n = oldn AND n > 0;
Output: BOOLEAN =
  a = olda AND n = oldn AND n > 0 AND
  (FORALL(i: INT): 0 \le i AND i \le n \Longrightarrow m \le a[i]) AND
  (EXISTS(i: INT): 0 \le i AND i \le n AND m = a[i]):
Invariant: (INT, INT) -> BOOLEAN =
 LAMBDA (m: INT. i: INT):
    a = olda AND n = oldn AND n > 0 AND 1 <= i AND i <= n AND
    (FORALL(j: INT): 0 <= j AND j < i => m <= a[j]) AND
    (EXISTS(i: INT): 0 \le i AND i \le i AND m = a[i]):
V1: FORMULA
  Input AND m = a[0] AND i = 1 => Invariant(m, i);
V2 a: FORMULA
  Invariant(m, i) AND i < n AND a[i] < m AND m_0 = a[i] AND i_0 = i+1 =>
   Invariant (m 0. i 0):
V2 b: FORMULA
q Invariant(m, i) AND i < n AND NOT(a[i] < m) AND i_0 = i+1 =>
    Invariant (m, i_0);
V3: FORMULA
  Invariant(m, i) AND NOT(i < n) => Output;
```

The RISC ProofNavigator


```
V1 	☐ [2hg]: expand Input, Invariant

▼ [6ko]: scatter
                                               ▼ [nx5]: scatter
                                                   [4pd]: proved (CVCL)
             [21d]: proved (CVCL)
             [31d]: proved (CVCL)

▼ [5pd]: auto

▼ [41d]: auto

                                                     [udv]: proved (CVCL)
               [neil: proved (CVCL)
V2a 

✓ [2hg]: expand Input, Invariant
                                      V2b; ▼ [hqk]: expand Invariant

▼ [6ko]: scatter
                                                  ▼ [thu]: scatter
             [21d]: proved (CVCL)
                                                      [hfa]: proved (CVCL)
             [31d]: proved (CVCL)
                                                      [ifa]: proved (CVCL)

▼ [41d]: auto

▼ [jfa]: auto
                [nei]: proved (CVCL)
                                                        [b41]: proved (CVCL)

▼ [kfa]: auto
                                                         [i3a]: proved (CVCL)
```

Expanding definitions, decomposing proofs, instantiating quantifiers.

1. The Role of Reasoning

2. The RISC ProofNavigator

3. Experience and Conclusions

Experience

"FM in Software Development" at the JKU Linz and FH Hagenberg.

- Courses for MSc programs.
 - About 16 lecture units dedicated to program verification by proving.
 - Students have BSc and should be already familiar with logic.
 - Not all are: variety of backgrounds demands compromises.
- Quality of proofs has considerably increased.
 - Paper-and-pencil proofs were rarely proofs at all.
 - Difference between a proof attempt and a real proof is perceived.
 - Proof tree turns from red to blue
 - Concrete achievement with corresponding satisfaction.
- Majority becomes enabled to perform moderately complex proofs.
 - Structurally similar to those elaborated in the class room.
 - Some students seem to enjoy the challenge and indeed like to work with the assistant.

Experience

- Tired/bored students switch to "button pressing" mode.
 - Stop to think and perform random actions to get work done (like playing a computer adventure).
 - Proofs with about 100 command applications were submitted (less than a dozen would have sufficed).
 - If a student is not interested in finding out whether something is true or not, using a tool does not change the attitude.
- Initially restrict capabilities of proving assistant.
 - First only allow low-level commands to understand individual reasoning steps.
 - Only later high-level decomposition rules and automatic quantifier instantiation may be used.
- Real challenge is finding out why a proof attempt fails.
 - Is the proof strategy inadequate?
 - Does the program not meet its specification?
 - Does the specification not have the intended meaning?
 - Is the loop invariant to strong or too weak?

Conclusions

The software is limited in various aspects.

- Unexpected structural modifications of formulas by SMT solver.
 - However, automatic simplification of atomic formulas and propositional logic reasoning (modus ponens etc) is very convenient.
- Intermediate individual reasoning steps are not recorded/displayed.
 - Mostly unnecessary, sometimes desired (proof "debugging").
- Automated arithmetic reasoning is restricted to linear arithmetic.
 - a(b+1) = ab + b cannot be proved.
 - Semi-decision procedures (computer algebra) would be helpful.

All in all, the integration of automated rule-based reasoning with interactive human assistance and semi-automatic decision procedures yields a usable tool for use in classroom and elsewhere.