
Mathematical Invention:
How Much Can Be Automated?

Bruno Buchberger

 RISC

Contents

Crash into Groebner Bases

Automated Invention by Automated Observation plus Automated Proof

Automated Invention by Extracting Algorithms from Automated Proofs

Automated Invention by Formula Schemes

Automated Invention by Analyzing Failing Automated Proofs

The Automated Invention of the Groebner Bases Algorithm

2 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Groebner Bases

Input

F = 9x y2 − 2 x z + 3 x2 + z − y + 2,

z x + 2 x y + x + z + 1,

x2 y + z + y − 1=;
GroebnerBasis@FD
9−659 − 816 z + 2692 z2 − 2652 z3 − 5022 z4 − 2248 z5 − 468 z6 − 44 z7 + z8,

−483 149 651 + 1414 811 712 y + 3202 658 389 z − 3143 902 747 z2 − 3943 389 703 z3 − 1505 657 905 z4 −

286 983 089 z5 − 21 721 697 z6 + 515 939 z7, 137 904 771 + 707 405 856 x − 481 941 395 z −

1722 559 419 z2 − 1183 994 965 z3 − 338 037 939 z4 − 52 491 205 z5 − 2450 869 z6 + 66 413 z7=

Theorem: F solvable iff Groebner basis of F ∫ {1}.

Groebner Bases Algorithm (Buchberger 1965): Form S-polynomials

 z (x y2 − 2 x z + 3 x2 + z − y + 2) - y2 (z x + 2 x y + x + z + 1), ...

Proof: difficult; problem was open for over 60 years!

Two essentials: invention of S-polynomials

 verification of correctness

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 3

Automated Geo Proofs by Groebner Bases (Buchberger, Kutzler, Kapur, Robu et al. 1986 - ...)

Reduction of the Problem to Gröbner bases computation:

 Geo Theorem ö (by coordinatization)

 "
x,y, ...

(poly1(x,y,...) = 0 fl ... fl poly(x,y,...) = 0) ö

 Ÿ $
x,y, ...

 (poly1(x,y,...) = 0 fl ... fl poly(x,y,...) ∫ 0) ö

 Ÿ $
x,y, ...,a

(poly1(x,y,...)=0 fl ... fl a . poly(x,y,...) - 1 = 0).

The latter question can be decided by the Gröbner basis method!

The method is implemented in the Theorema System (Buchberger et al, 1996 - ...).

An alternative to Wu's method for automated geo proving.

4 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Example: Pappus Theorem

A

A1

B

B1

C

C1

P Q
S

Automated Proof in the Theorema system:

To transform the geometric problem into algebraic form we have to choose first an orthogonal coordinate system.

Let's have the origin in point A, and the points 8B, C< on the y-axis
Using this coordinate system we have the following points:

88A, 0, 0<, 8B, 0, u1<, 8A1, u2, u3<, 8B1, u4, u5<,
8C, 0, u6<, 8C1, u7, x1<, 8P, x2, x3<, 8Q, x4, x5<, 8S, x6, x7<<

The algebraic form of the assertion is:

(1)

∀
x1,x2,x3,x4,x5,x6,x7

Hu3 u4 + −u2 u5 + −u3 u7 + u5 u7 + u2 x1 + −u4 x1 � 0Ï

u5 x2 + −u4 x3 � 0Ï −u1 u2 + u1 x2 + −u3 x2 + u2 x3 � 0Ï x1 x4 + −u7 x5 � 0Ï
−u2 u6 + −u3 x4 + u6 x4 + u2 x5 � 0Ï u1 u7 + −u1 x6 + x1 x6 + −u7 x7 � 0Ï
−u4 u6 + −u5 x6 + u6 x6 + u4 x7 � 0 ⇒ x3 x4 + −x2 x5 + −x3 x6 + x5 x6 + x2 x7 + −x4 x7 � 0L

This problem is equivalent to:

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 5

(2)

¬ ∃
x1,x2,x3,x4,x5,x6,x7

Hu3 u4 + −u2 u5 + −u3 u7 + u5 u7 + u2 x1 + −u4 x1 � 0Ï

u5 x2 + −u4 x3 � 0Ï −u1 u2 + u1 x2 + −u3 x2 + u2 x3 � 0Ï
x1 x4 + −u7 x5 � 0Ï −u2 u6 + −u3 x4 + u6 x4 + u2 x5 � 0Ï
u1 u7 + −u1 x6 + x1 x6 + −u7 x7 � 0Ï −u4 u6 + −u5 x6 + u6 x6 + u4 x7 � 0Ï

x3 x4 + −x2 x5 + −x3 x6 + x5 x6 + x2 x7 + −x4 x7 ≠ 0L

To remove the last inequality, we use the Rabinowitsch trick: Let v0 be a new variable. Then the problem

becomes:

(3)

¬ ∃

x1,x2,x3,x4,x5,x6,x7,v0
Hu3 u4 + −u2 u5 + −u3 u7 + u5 u7 + u2 x1 + −u4 x1 � 0Ï

u5 x2 + −u4 x3 � 0Ï −u1 u2 + u1 x2 + −u3 x2 + u2 x3 � 0Ï
x1 x4 + −u7 x5 � 0Ï −u2 u6 + −u3 x4 + u6 x4 + u2 x5 � 0Ï
u1 u7 + −u1 x6 + x1 x6 + −u7 x7 � 0Ï −u4 u6 + −u5 x6 + u6 x6 + u4 x7 � 0Ï

1 + −v0 Hx3 x4 + −x2 x5 + −x3 x6 + x5 x6 + x2 x7 + −x4 x7L � 0L

This statement is true iff the corresponding Gröbner basis is {1}.

The Gröbner bases is 81<.
Hence, the statement and the original assertion is true.

Statistics:

Time needed to compute the Gröbner bases: 0.42 Seconds.

6 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Example: The Correctness of Origami Constructions (Ida, Buchberger, Robu et al. 2003,

2004):

Starting from a square A, B, C, D, find a sequence of origami steps such that, finally, we arrive at an equilateral

triangle.

Let E and F be the midpoint of DC and AB, respectively.

A B

CD E

FA B

CD E

F

1

Then we fix the point A and fold so that point D will lie on line EF. (This is a legal origami operation.)

A B

CE

FA B

CE

F

G

A

D

A

D

G

3

Now we can do the analogous step with corner C, fixing B and bringing C onto the current position of D.

Then the triangle ADB is an equilateral triangle with edge length AB. We could add a few easy origami operations that

would result in hiding the areas that extend over the triangle ADB but we do not show these easy steps because we

would like now to pose a simple proving problem:

An Origami Proof Problem: Prove that, for all squares ABCD, GD = 2 ED.

The Translation into a Prove Problem on Equalities:

First, note that AB = BC = CD = DA, since we start from a square. Hence, whenever the length of one of these four

edges occurs, we replace it by AB.

Now observe that

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 7

DF
2
= AD

2
− AF

2
= AB

2
− IAB ê 2M2 = 3 ê 4 AB

2
.

A B

CE

FA B

CE

F

G

A

D

A

D

G

3

and

GD
2
= GE

2
+ ED

2
= IDC ê 2 − GDM2 + IEF − DFM2 = IAB ê 2 − GDM2 + IAB − DFM2.

A B

CE

FA B

CE

F

G

A

D

A

D

G

3

We want to decide whether, under these assumptions,

GD = 2 ED = 2 IEF - DFM = 2 IAB - DFM.

For abbreviation, let's write

a = AB, b = GD, f = DF.

Then, what we want to prove is that

∀
a≠0,f,b

f2 = 3 ê 4 a2
b2 = Ha ê 2 − bL2 + Ha − fL2 ⇒ Hb = 2 Ha − fLL

The Transformation to a Groebner Basis Construction Problem:

This is equivalent to

¬ ∃
a,f,b

a ≠ 0

f2 = 3 ê 4 a2
b2 = Ha ê 2 − bL2 + Ha − fL2
b ≠ 2 Ha − fL

,

which is equivalent to

8 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

¬ ∃
a,f,b,ξ,η

a η = 1

f2 = 3 ê 4 a2
b2 = Ha ê 2 − bL2 + Ha − fL2
Hb − 2 Ha − fLL ξ = 1

,

This question can be decided by computing the (reduced) Gröbner basis

J =

GroebnerBasisA9a η − 1, f2 − 3 ê 4 a2, b2 − Ha ê 2 − bL2 − Ha − fL2, Hb − 2 Ha − fLL ξ − 1=, 8ξ, η, b, f, a<E
81<

and to check whether or not this Gröbner basis is equal to {1}. Since this is the case, we know that the restricted

version of the theorem is true.

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 9

Construction of a Regular Heptagon (Proved with Groebner Bases Method by T. Ida, 2004)

D C

BA

Fig. 1

BA

F E

Fig. 2

D C

BA

F E

Fig. 3

AI

F

DH

G

Fig. 4

C

E

B

D H

A

F J

I

Fig. 5

BA I

D

M

H C

LK

Fig. 6

E

BA

F J

CD H

M

Fig. 7

E

BA

F J

C

D

H

M

Fig. 8

EJ

C

D

H A
FM

G
I

B

Fig. 9

EJ

C

BA

F L
K

D H

M

Fig. 10

E

C

B

H DI

AR

F

M

LP

O

N

Fig. 11

EJ

C

B

H

Q

A

F

D

Fig. 12

EJ

C

B

Q D

A

F

PS

HIG
NM

Fig. 13

EJ

C

B

Q

I
L
K

H

T

RF O

A

D

Fig. 14

EJ

B

Q

T

F

A

DS PNHK CIG

Fig. 15

EJ

B

Q

T

F

A

COD

Fig. 16

EJ

B

F

A

D C

N R

O

T
GL KI

Fig. 17

EJ

B

QF

A

KH
T

COD

Fig. 18

10 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

E

B

K

CO

D

T
F

AHQJ

Fig. 19

E

B

NG K

CO

JQF

A

H
T

D

Fig. 20

E

B

N

C

J

D
F

A

Q

OG

Fig. 21

E

B

K
N

C

J
G

O

QF

A

D

Fig. 22

J

O

QF

A

D C US

KP

HB
L

E N
M

Fig. 23

J

O

QF

A

D

EI

B

CU

Fig. 24

O

QF

D CU
B

E

A J

I

Fig. 25

O

QF

D
H
CU

J

A

EI

B

Fig. 26

F

D U

A

B
E

J

C

H

Fig. 27

G

F

D U

A

H
C

J E

B

Fig. 28

F

D

A
B

E

J

C H

G
U

Fig. 29

F

I

D

A

G U
H
C

J E

B

Fig. 30

J E

CU
K

D

I

F

G

Fig. 31

S

A M

J

O
B

F

I

D G U
H
C

E

Fig. 32

C
U

S

A M

J

O
B

F

I

D G
H

E

Fig. 33

UC

S

A M

J

O
B

F

I

D G
H

E

Fig. 34

D

UC

S

A M

J

O
B

F

I

G
H

E

Fig. 35

A

F
D

UC

S

M

J

O
B

I

G
H

E

Fig. 36

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 11

A

F
D

UC

S

M

J

O
B

I

G
H

E

Fig. 37

BA

F
D

UC

S

M

J

O

I

G
H

E

Fig. 38

S

M
O

I

G
H

E

Fig. 39

12 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Contents

A Technicality: the Groebner Bases Algorithm (A Method for Automated Proofs in Geometry)

Automated Invention by Automated Observation plus Automated Proof

Automated Invention by Extracting Algorithms from Automated Proofs

Automated Invention by Formula Schemes

Automated Invention by Analyzing Failing Automated Proofs

The Automated Invention of the Groebner Bases Algorithm

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 13

The Creativity Spiral

Computational Results

I�VE�TI�G

Conjecture

PROVI�G

Theorem

PROGRAMMI�G

Algorithm

COMPUTI�G

Invent by observing many examples.

Near-at hand automation of invention: automate the generation of examples.

Dynamic Geometry: Automate Geo Observation.

14 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Automated Invention of Geo Theorems (Chou, DM Wang, Robu, ...)

1. Systematically (automatically) generate geo "configuations. Example of a configuration:

A

A1

B

B1

C

C1

P Q
S

2. For each configuration: observe for "many" parameter values what happens with the conclusion in the configura-

tion (dramatically facilitated by dynamic geometry software). This may lead to a "conjecture".

3. Automatically prove / disprove the conjecture. (By Wu's method, Groebner bases method, area method, coordi-

nate free methods, ...)

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 15

Automated Invention of Side Conditions for Geo Theorems (Wu, Kapur, Winkler, ...)

1. Often, geo theorems are not true "for all" instances of a configuration but only for the "non-degenerate" cases.

2. In Wu's method and Groebner bases method, it is possible to find "non-degenerate conditions" (under which the

theorems become true) automatically. (In Groebner bases method: by analyzing the polynomial reduction process.)

16 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Contents

A Technicality: the Groebner Bases Algorithm (A Method for Automated Proofs in Geometry)

Automated Invention by Automated Observation plus Automated Proof

Automated Invention by Extracting Algorithms from Automated Proofs

Automated Invention by Formula Schemes

Automated Invention by Analyzing Failing Automated Proofs

The Automated Invention of the Groebner Bases Algorithm

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 17

Example: The Theorema PCS ("Prove Compute Simplify") Prover (Buchberger et al. 2000 ...)

An automated proving method for "alternating quantifiers" (e.g. elementary analysis)

Initialization

Example:

DefinitionB"limit:", any@f, aD,
limit@f, aD� ∀

ε

ε>0

∃
N

∀
n

n≥N

†f@nD − a§  εF

Proposition@"limit of sum", any@f, a, g, bD,
Hlimit@f, aD Ï limit@g, bDL ⇒ limit@f + g, a + bDD

Definition@"+:", any@f, g, xD,
Hf + gL@xD = f@xD + g@xDD

Lemma@"»+»", any@x, y, a, b, δ, εD,
H†Hx + yL − Ha + bL§  Hδ + εLL � H†x − a§  δÏ †y − b§  εLD

Lemma@"max", any@m, M1, M2D,
m ≥ max@M1, M2D ⇒ Hm ≥ M1Ï m ≥ M2LD

TheoryB"limit",
Definition@"limit:"D
Definition@"+:"D
Lemma@"»+»"D
Lemma@"max"D

F

Prove@Proposition@"limit of sum"D, using → Theory@"limit"D, by → PCSD
	 ProofObject 	

Note that this automatically generated proof contains an automatically generated algorithm! (See last line of the proof

the expression for the index bound N***.)

18 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Automatically Generated Proof with Algorithm Included

Prove:

(Proposition (limit of sum)) ∀
f,a,g,b

Hlimit@f, aD Ï limit@g, bD ⇒ limit@f + g, a + bDL,

under the assumptions:

(Definition (limit:)) ∀
f,a

limit@f, aD
 ∀
ε

ε>0

∃
N

∀
n

n≥N

H†f@nD − a§ < εL ,

(Definition (+:)) ∀
f,g,x

HHf + gL@xD = f@xD + g@xDL,

(Lemma (|+|)) ∀
x,y,a,b,δ,ε

H†x + y − Ha + bL§ < δ + ε  H†x − a§ < δ Ï †y − b§ < εLL,

(Lemma (max)) ∀
m,M1,M2

Hm ≥ max@M1, M2D ⇒ m ≥ M1Ï m ≥ M2L.

We assume

(1) limit@f0, a0D Ï limit@g0, b0D,

and show

(2) limit@f0 + g0, a0 + b0D.

Formula (1.1), by (Definition (limit:)), implies:

(3) ∀
ε

ε>0

∃
N

∀
n

n≥N

H†f0@nD − a0§ < εL.

By (3), we can take an appropriate Skolem function such that

(4) ∀
ε

ε>0

∀
n

n≥N0@εD

H†f0@nD − a0§ < εL,

Formula (1.2), by (Definition (limit:)), implies:

(5) ∀
ε

ε>0

∃
N

∀
n

n≥N

H†g0@nD − b0§ < εL.

By (5), we can take an appropriate Skolem function such that

(6) ∀
ε

ε>0

∀
n

n≥N1@εD

H†g0@nD − b0§ < εL,

Formula (2), using (Definition (limit:)), is implied by:

(7) ∀
ε

ε>0

∃
N

∀
n

n≥N

H†Hf0 + g0L@nD − Ha0 + b0L§ < εL.

We assume

(8) ε0 > 0,

and show

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 19

(9) ∃
N

∀
n

n≥N

H†Hf0 + g0L@nD − Ha0 + b0L§ < ε0L.

We have to find N"∗∗∗" such that

(10) ∀
n
In ≥ N"∗∗∗" ⇒ †Hf0 + g0L@nD − Ha0 + b0L§ < ε0M.

Formula (10), using (Definition (+:)), is implied by:

(11) ∀
n
In ≥ N"∗∗∗" ⇒ †f0@nD + g0@nD − Ha0 + b0L§ < ε0M.

Formula (11), using (Lemma (|+|)), is implied by:

(12) ∃
δ,ε

δ+ε=ε0

∀
n
In ≥ N"∗∗∗" ⇒ †f0@nD − a0§ < δ Ï †g0@nD − b0§ < εM.

We have to find δ"∗", ε"∗∗", and N"∗∗∗" such that

(13) Iδ"∗" + ε"∗∗" = ε0MÌ ∀
n
In ≥ N"∗∗∗" ⇒ †f0@nD − a0§ < δ"∗" Ï †g0@nD − b0§ < ε"∗∗"M.

Formula (13), using (6), is implied by:

Iδ"∗" + ε"∗∗" = ε0MÌ ∀
n
In ≥ N"∗∗∗" ⇒ ε"∗∗" > 0Ï n ≥ N1Aε"∗∗"E Ï †f0@nD − a0§ < δ"∗"M,

which, using (4), is implied by:

Iδ"∗" + ε"∗∗" = ε0MÌ ∀
n
In ≥ N"∗∗∗" ⇒ δ"∗" > 0Ï ε"∗∗" > 0Ï n ≥ N0Aδ"∗"E Ï n ≥ N1Aε"∗∗"EM,

which, using (Lemma (max)), is implied by:

(14) Iδ"∗" + ε"∗∗" = ε0MÌ ∀
n
In ≥ N"∗∗∗" ⇒ δ"∗" > 0Ï ε"∗∗" > 0Ï n ≥ maxAN0Aδ"∗"E, N1Aε"∗∗"EEM.

Formula (14) is implied by

(15) Iδ"∗" + ε"∗∗" = ε0MÌ δ"∗" > 0Ì ε"∗∗" > 0Ì ∀
n
In ≥ N"∗∗∗" ⇒ n ≥ maxAN0Aδ"∗"E, N1Aε"∗∗"EEM.

Partially solving it, formula (15) is implied by

(16) Iδ"∗" + ε"∗∗" = ε0M Ï δ"∗" > 0Ï ε"∗∗" > 0Ï IN"∗∗∗" = maxAN0Aδ"∗"E, N1Aε"∗∗"EEM.

Now,

Iδ"∗" + ε"∗∗" = ε0M Ï δ"∗" > 0Ï ε"∗∗" > 0

can be solved for δ"∗" and ε"∗∗" by a call to Collins cad–method yielding a sample solution

δ"∗" ←
ε0

2
,

ε"∗∗" ←
ε0

2
.

Furthermore, we can immediately solve

N"∗∗∗" = maxAN0Aδ"∗"E, N1Aε"∗∗"EE

for N"∗∗∗" by taking

N"∗∗∗" ← maxAN0A ε0

2
E, N1A ε0

2
EE.

Hence formula (16) is solved, and we are done.

20 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

á

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 21

Contents

A Technicality: the Groebner Bases Algorithm (A Method for Automated Proofs in Geometry)

Automated Invention by Automated Observation plus Automated Proof

Automated Invention by Extracting Algorithms from Automated Proofs

Automated Invention by Formula Schemes

Automated Invention by Analyzing Failing Automated Proofs

The Automated Invention of the Groebner Bases Algorithm

22 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

How Can a Theorem Like lim[f≈g] = lim[f] + lim[g] be invented?

By applying "formulae schemes". (Buchberger 2002 ...).

A formula:

L@P@f, gDD = p@L@fD, L@gDD
A quantified formula:

∀
f.g

HL@P@f, gDD = p@L@fD, L@gDDL.

A scheme:

∀
L,P,p

is–homomorphic@L, P, pD�

∀
f.g

HL@P@f, gDD = p@L@fD, L@gDDL .

For new operations like lim, invent axioms, definitions, propositions, problems, algorithms by applying schemes: For

example,

is–homomorphicAlim, ⊕, +E.
Application of a scheme = the (higher order) predicate logic operation of substituting concrete operations for the

operation variables in the scheme.

Observation: there are not so many schemes!

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 23

Examples of Schemes:

Can be used for inventing axioms, propositions, problems, algorithms:

∀
p,r

right–unit@p, rD�

∀
x,y

Hp@x, rD = xL

∀
p,s

left–successor–recursion@p, sD�

∀
x,y

Hp@s@xD,D = s@p@x, yDDL

∀
+,s

right–successor–recursion@p, sD�

∀
x,y

Hp@x, s@yDD = s@p@x, yDDL

24 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Examples of Schemes:

Can be used for inventing axioms, propositions, problems, algorithms:

∀
I,P,A

explicit–problem@I, P, AD�

∀
X

I@xD
HP@x, A@xDDL

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 25

Examples of Schemes:

Can be used for inventing axioms, propositions, problems, algorithms:

Divide–and–Conquer@A, S, M, L, RD�

∀
x
KA@xD = : SSSS@xD  is–trivial–tuple@xD

MMMM@A@LLLL@xDD, A@RRRR@xDDD  otherwise
O

26 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Examples of Schemes:

Can be used for inventing axioms, propositions, problems, algorithms:

∀
A,lc,df

critical–pair–completion@A, lc, dfD �

∀
F,g1,g2,p

A@FD = A@F, pairs@FDD
A@F, X\D = F

A@F, XXg1, g2\, p\D =

whereBf = lc@g1, g2D,
h1 = trd@rd@f, g1D, FD,
h2 = trd@rd@f, g2D, FD,
A@F, Xp\D  h1 = h2

ABF [df@h1, h2D, Xp\ ^ [XFk, df@h1, h2D\
k=1,…,†F§

_F  otherwise
F

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 27

Example: Invent Bottom-up by "Formulae Schemes"

Initialization

Inductive Definition of Addition:

Application of scheme right–unit to '+' and ' 0' and application of scheme right–successor–recursion to '+' and '+'

yields:

DefinitionB"addition", any@m, nD,
m + 0 = m " +0:"

m + n+ = Hm + nL+ " + .:"
F

28 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Invent a First Theorem:

Application of scheme right–unit to '+' and ' 0' yields:

Proposition@"left zero", any@m, nD,
0 + n = n "0+"D

Now we can use our automated Theorema induction prover:

Prove@Proposition@"left zero"D,
using → XDefinition@"addition"D\,
by → NNEqIndProver,

ProverOptions → 8TermOrder → LeftToRight<,
transformBy → ProofSimplifier, TransformerOptions → 8branches → 8Proved<<D;

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 29

Invent a Second Theorem:

Application of scheme left–successor–recursion to '+' and '+' yields:

Proposition@"left induction", any@m, nD,
m+ + n = Hm + nL+ ". +"D

Prove@Proposition@"left induction"D,
using → XDefinition@"addition"D\,
by → NNEqIndProver,

ProverOptions → 8TermOrder → LeftToRight<,
transformBy → ProofSimplifier, TransformerOptions → 8branches → 8Proved<<D;

Invent a Third Theorem:

Proposition@"commutativity of addition", any@m, nD,
m + n = n + m " + = "D

Prove@Proposition@"commutativity of addition"D,
using →

XDefinition@"addition"D, Proposition@"left zero"D, Proposition@"left induction"D\,
by → NNEqIndProver,

ProverOptions → 8TermOrder → LeftToRight<,
transformBy → ProofSimplifier, TransformerOptions → 8branches → 8Proved<<D;

30 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

An Experiment (Craciun 2008):

Using a library of formulae schemes, he (automatically) built up the inductive theory of natural numbers until the prime

factorization theorem.

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 31

Contents

A Technicality: the Groebner Bases Algorithm (A Method for Automated Proofs in Geometry)

Automated Invention by Automated Observation plus Automated Proof

Automated Invention by Extracting Algorithms from Automated Proofs

Automated Invention by Formula Schemes

Automated Invention by Analyzing Failing Automated Proofs

The Automated Invention of the Groebner Bases Algorithm

32 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

What Happens if we Go from the Axioms for + Straight to Commutativity?

Commutativity

Proposition@"commutativity of addition", any@m, nD,
m + n = n + m " + = "D

Prove@Proposition@"commutativity of addition"D,
using → XDefinition@"addition"D\,
by → NNEqIndProver,

ProverOptions → 8TermOrder → LeftToRight<,
transformBy → ProofSimplifier, TransformerOptions → 8branches → 8Proved, Failed<<D;

Analyze the Reason for the Failing Proof

Guess Conjectures that Would Make the Proof Possible

Prove@Proposition@"commutativity of addition"D,
using →

XDefinition@"addition"D, Proposition@"left zero"D, Proposition@"left induction"D\,
by → NNEqIndProver,

ProverOptions → 8TermOrder → LeftToRight<,
transformBy → ProofSimplifier, TransformerOptions → 8branches → 8Proved<<D;

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 33

Automation of Failure Analysis and Guessing Conjectures (Buchberger 1998, 2000, 2004, ...)

Prove@Proposition@"commutativity of addition"D,
using → Definition@"addition"D, by → Cascade@NNEqIndProver, ConjectureGeneratorD,

ProverOptions → 8TermOrder → LeftToRight<D;

34 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

The Algorithm Invention ("Synthesis") Problem

Given a problem specification P (in predicate logic), find an algorithm A such that

∀
x
P@x, A@xDD.

Examples of specifications P:

P@x, yD � is–sorted–version@x, yD

P@x, yD � is–integral–of@x, yD

P@x, yD � is–Gröbner–basis@x, yD
....

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 35

Algorithm Synthesis by "Lazy Thinking" (the "Cascade") (BB 2002)

"Lazy Thinking" Method for Algorithm Synthesis =

 My Advice to "Humans" (or "Computers") How to Invent Algorithms.

Given: A problem (specification) P. Find: An algorithm A for P.

Overall Strategy of Lazy Thinking: (Automatically) reduce problem P to a couple of (hopefully simpler) problems Q,

R, ...

36 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

 Two Key Ideas of Lazy Thinking for Algorithm Synthesis

Given: A problem (specification) P. Find: An algorithm A for P.

® Consider known fundamental ideas of how to structure algorithms in terms of subalgorithms ("algorithm

schemes A").

Try one scheme A after the other.

® For the chosen scheme A, try to prove "
x

P[x, A[x]]: From the failing proof construct specifications for the

subalgorithms B occurring in A.

Example of an Algorithm Scheme: Divide and Conquer

∀
x
KA@xD = : SSSS@xD  is–trivial–tuple@xD

MMMM@A@LLLL@xDD, A@RRRR@xDDD  otherwise
O

A is unknown algorithm.

S, M, L, R are unknown subalgorithms.

The only thing known is how the unknown algorithm sorted is composed from the unknown algorithms S, M, L, R.

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 37

Literature

There is a rich literature on algorithm synthesis methods, see survey

[Basin et al. 2004] D. Basin, Y. Deville, P. Flener, A. Hamfelt, J. F. Nilsson. Synthesis of Programs in Computational

Logic. In: M. Bruynooghe, K. K. Lau (eds.), Program Development in Computational Logic, Lecture Notes in Computer

Science, Vol. 3049, Springer, 2004, pp. 30-65.

My method is in the class of "scheme-based" methods. Closest (but essentially different):

[Lau et al. 1999] K. K. Lau, M. Ornaghi, S. Tärnlund. Steadfast logic programs. Journal of Logic Program-

ming, 38/3, 1999, pp. 259-294.

And the work of A. Bundy and his group (U of Edinburgh) on the automated invention of induction schemes.

38 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Example: Synthesis of Merge-Sort [BB et al. 2003]

Problem: Synthesize algorithm "sorted" such that

∀
x
is–sorted–version@x, sorted@xDD.

 ("Correctness Theorem")

Knowledge on the Problem:

∀
x,y

Kis–sorted–version@x, yD �
is–sorted@yD
is–permuted–version@x, yDO

is–sorted@X\D
∀
x
is–sorted@Xx\D

∀
x,y,z

is–sorted@Xx, y, z\D �
x ≥ y

is–sorted@Xy, z\D
etc. (approx. 20 formulae, see notebook of proofs in the Appendix.)

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 39

An Algorithm Scheme: Divide and Conquer

∀
x
KA@xD = : SSSS@xD  is–trivial–tuple@xD

MMMM@A@LLLL@xDD, A@RRRR@xDDD  otherwise
O

A is unknown algorithm. In our case: 'sorted'.

S, M, L, R are unknown subalgorithms.

The only thing known is how the unknown algorithm sorted is composed from the unknown algorithms S, M, L, R.

We now start an (automated) induction prover for proving the correctness theorem.

This proof will fail! Why?

We now analyze the failing proof: see notebooks with failing proofs.

40 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Automated Invention of Sufficient Specifications for the Subalgorithms

A simple (but amazingly powerful) rule (m ... an unknown subalgorithm):

Collect temporary assumptions T[x0, ... A [...], ...]

and temporary goals G[x0, ...m [A [...]]]

and produces specification

∀
X, ..., Y, ...

ITAX, ... Y, ...E � GAX, ... m AYE E M.

Details: see papers [Buchberger 2003] and example below.

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 41

The Result of Applying Lazy Thinking in the Sorting Example

Lazy Thinking, automatically (in approx. 1 minute on a laptop using the Theorema system), finds the following specifi-

cations for the sub-algorithms that provenly guarantee the correctness of the above algorithm (scheme):

∀
x
His–trivial–tuple@xD ⇒ SSSS@xD = xL

∀
y,z

K is–sorted@yD
is–sorted@zD ⇒

is–sorted@MMMM@y, zDD
MMMM@y, zD ≈ Hy ^ zL O

∀
x
HLLLL@xD ^ RRRR@xD ≈ xL

Note: the specifications generated are not only sufficient but natural !

What do we have now: A problem reduction !

42 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Details: The Proofs Generated During the Automated Synthesis of the Merge-Sort Algorithm

First Proof Attempt

Prove:

(Theorem (correctness of sort)) ∀
is–tuple@XD

is–sorted–version@X, sorted@XDD,

under the assumptions:

(Definition (is sorted): 1)is–sorted@X\D,
(Definition (is sorted): 2)∀

x
is–sorted@Xx\D,

(Definition (is sorted): 3) ∀
x,y,z

His–sorted@Xx, y, z\D
 x ≥ y Ï is–sorted@Xy, z\DL,

(Definition (is permuted version): 1)X\ ≈ X\,
(Definition (is permuted version): 2) ∀

y,y

HX\ M Xy, y\L,

(Definition (is permuted version): 3) ∀
x,x,y

HXy\ ≈ Xx, x\
 x ∈ Xy\ Ï dfo@x, Xy\D ≈ Xx\L,

(Definition (is sorted version))

∀
X,Y

is–tuple@XD

His–sorted–version@X, YD
 is–tuple@YD Ï X ≈ Y Ï is–sorted@YDL,

(Proposition (is tuple tuple))∀
x

is–tuple@Xx\D,

(Definition (prepend): \) ∀
x,y

Hx \ Xy\ = Xx, y\L,

(Proposition (singleton tuple is singleton tuple))∀
x
is–singleton–tuple@Xx\D,

(Definition (is trivial tuple))

∀
is–tuple@XD

His–trivial–tuple@XD
 is–empty–tuple@XD  is–singleton–tuple@XDL,

(Definition (is element): 1)∀
x
Hx ∉ X\L,

(Definition (is element): 2) ∀
x,y,y

Hx ∈ Xy, y\
 Hx = yL  x ∈ Xy\L,

(Definition (deletion of the first occurrence): 1)∀
a
Hdfo@a, X\D = X\L,

(Definition (deletion of the first occurrence): 2)

∀
a,x,x

Hdfo@a, Xx, x\D = ∞Xx\  x = a, x \ dfo@a, Xx\D  otherwise¥L,

(Definition (is longer than): 1)∀
y

HX\ î Xy\L,

(Definition (is longer than): 2) ∀
x,x

HXx, x\ ê X\L,

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 43

(Definition (is longer than): 3) ∀
x,x,y,y

HXx, x\ ê Xy, y\
 Xx\ ê Xy\L,

(Proposition (trivial tuples are sorted)) ∀
x

is–trivial–tuple@Xx\D

is–sorted@Xx\D,

(Proposition (only trivial tuple permuted version of itself)) ∀
x,Y

is–trivial–tuple@Xx\D

HHY = Xx\L ⇒ Y ≈ Xx\L,

(Proposition (reflexivity of permuted version))∀
x

HXx\ ≈ Xx\L,

(Algorithm (sorted)) ∀
is–tuple@XD

Hsorted@XD = ∞special@XD  is–trivial–tuple@XD,

merged@sorted@left–split@XDD, sorted@right–split@XDDD  otherwise¥L

,

(Lemma (closure of special)) ∀
X

is–tuple@XDÏis–trivial–tuple@XD

is–tuple@special@XDD,

(Lemma (splits are tuples): 1) ∀
X

is–tuple@XDÏ¬is–trivial–tuple@XD

is–tuple@left–split@XDD,

(Lemma (splits are tuples): 2) ∀
X

is–tuple@XDÏ¬is–trivial–tuple@XD

is–tuple@right–split@XDD,

(Lemma (splits are shorter): 1) ∀
is–tuple@XD

¬is–trivial–tuple@XD

HX ê left–split@XDL,

(Lemma (splits are shorter): 2) ∀
is–tuple@XD

¬is–trivial–tuple@XD

HX ê right–split@XDL,

(Lemma (closure of merge)) ∀
is–tuple@XD
is–tuple@YD

is–tuple@merged@X, YDD.

We try to prove (Theorem (correctness of sort)) by well–founded induction on X .

Well–founded induction:

Assume:

(1)is–tupleAXX0\E.

Well–Founded Induction Hypothesis:

(2) ∀
is–tuple@x1D

IXX0\ ê x1 ⇒ is–sorted–version@x1, sorted@x1DDM

We have to show:

(3)is–sorted–versionAXX0\, sortedAXX0\EE.

We try to prove (3) by case distinction using (Algorithm (sorted)). However, the proof fails in at least one of the cases.

Case 1:

(4)is–trivial–tupleAXX0\E.

Hence, we have to prove

(5)is–sorted–versionAXX0\, specialAXX0\EE.

Formula (4), by (Proposition (only trivial tuple permuted version of itself)), implies:

44 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

(10)∀
Y
IIY = XX0\M ⇒ Y ≈ XX0\M.

Formula (1), by HLemma HClosure of SpecialLL, implies:

(12)is–tupleAspecialAXX0\EE.

By (1),Formula (5), using (Definition (is sorted version)), is implied by:

(13)is–tupleAspecialAXX0\EE Ï specialAXX0\E ≈ XX0\ Ï is–sortedAspecialAXX0\EE.

Not all the conjunctive parts of (13)can be proved.

Proof of (13.1) is–tupleAspecialAXX0\EE:

Formula (13.1) is true because it is identical to (12).

Proof of (13.2) specialAXX0\E ≈ XX0\:

Formula (13.3), using (10), is implied by:

(14)specialAXX0\E = XX0\.

The proof of (14)fails. (The prover "QR" was unable to transform the proof situation.)

Proof of (13.4) is–sortedAspecialAXX0\EE:

Pending proof of (13.4).

Case 2:

(6)¬ is–trivial–tupleAXX0\E.

Hence, we have to prove

(8)is–sorted–versionAXX0\, mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE.

Pending proof of (8).

á

Second Proof Attempt (with Specifications of Subalgorithms Extractd from First Proof Attempt)

Prove:

(Theorem (correctness of sort)) ∀
is–tuple@XD

is–sorted–version@X, sorted@XDD,

under the assumptions:

(Definition (is sorted): 1)is–sorted@X\D,
(Definition (is sorted): 2)∀

x
is–sorted@Xx\D,

(Definition (is sorted): 3) ∀
x,y,z

His–sorted@Xx, y, z\D
 x ≥ y Ï is–sorted@Xy, z\DL,

(Definition (is permuted version): 1)X\ ≈ X\,
(Definition (is permuted version): 2) ∀

y,y

HX\ M Xy, y\L,

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 45

(Definition (is permuted version): 3) ∀
x,x,y

HXy\ ≈ Xx, x\
 x ∈ Xy\ Ï dfo@x, Xy\D ≈ Xx\L,

(Definition (is sorted version))

∀
X,Y

is–tuple@XD

His–sorted–version@X, YD
 is–tuple@YD Ï X ≈ Y Ï is–sorted@YDL,

(Proposition (is tuple tuple))∀
x

is–tuple@Xx\D,

(Definition (prepend): \) ∀
x,y

Hx \ Xy\ = Xx, y\L,

(Proposition (singleton tuple is singleton tuple))∀
x
is–singleton–tuple@Xx\D,

(Definition (is trivial tuple))

∀
is–tuple@XD

His–trivial–tuple@XD
 is–empty–tuple@XD  is–singleton–tuple@XDL,

(Definition (is element): 1)∀
x
Hx ∉ X\L,

(Definition (is element): 2) ∀
x,y,y

Hx ∈ Xy, y\
 Hx = yL  x ∈ Xy\L,

(Definition (deletion of the first occurrence): 1)∀
a
Hdfo@a, X\D = X\L,

(Definition (deletion of the first occurrence): 2)

∀
a,x,x

Hdfo@a, Xx, x\D = ∞Xx\  x = a, x \ dfo@a, Xx\D  otherwise¥L,

(Definition (is longer than): 1)∀
y

HX\ î Xy\L,

(Definition (is longer than): 2) ∀
x,x

HXx, x\ ê X\L,

(Definition (is longer than): 3) ∀
x,x,y,y

HXx, x\ ê Xy, y\
 Xx\ ê Xy\L,

(Proposition (trivial tuples are sorted)) ∀
x

is–trivial–tuple@Xx\D

is–sorted@Xx\D,

(Proposition (only trivial tuple permuted version of itself)) ∀
x,Y

is–trivial–tuple@Xx\D

HHY = Xx\L ⇒ Y ≈ Xx\L,

(Proposition (reflexivity of permuted version))∀
x

HXx\ ≈ Xx\L,

(Algorithm (sorted)) ∀
is–tuple@XD

Hsorted@XD = ∞special@XD  is–trivial–tuple@XD,

merged@sorted@left–split@XDD, sorted@right–split@XDDD  otherwise¥L

,

(Lemma (closure of special)) ∀
X

is–tuple@XDÏis–trivial–tuple@XD

is–tuple@special@XDD,

(Lemma (splits are tuples): 1) ∀
X

is–tuple@XDÏ¬is–trivial–tuple@XD

is–tuple@left–split@XDD,

(Lemma (splits are tuples): 2) ∀
X

is–tuple@XDÏ¬is–trivial–tuple@XD

is–tuple@right–split@XDD,

46 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

(Lemma (splits are shorter): 1) ∀
is–tuple@XD

¬is–trivial–tuple@XD

HX ê left–split@XDL,

(Lemma (splits are shorter): 2) ∀
is–tuple@XD

¬is–trivial–tuple@XD

HX ê right–split@XDL,

(Lemma (closure of merge)) ∀
is–tuple@XD
is–tuple@YD

is–tuple@merged@X, YDD,

(Lemma (conjecture15): conjecture15) ∀
X1

is–tuple@X1D

His–trivial–tuple@X1D ⇒ Hspecial@X1D = X1LL.

We try to prove (Theorem (correctness of sort)) by applying several proof methods for sequences.

We try to prove (Theorem (correctness of sort)) by well–founded induction on X .

Well–founded induction:

Assume:

(1)is–tupleAXX0\E.

Well–Founded Induction Hypothesis:

(2) ∀
is–tuple@x2D

IXX0\ ê x2 ⇒ is–sorted–version@x2, sorted@x2DDM

We have to show:

(3)is–sorted–versionAXX0\, sortedAXX0\EE.

We try to prove (3) by case distinction using (Algorithm (sorted)). However, the proof fails in at least one of the cases.

Case 1:

(4)is–trivial–tupleAXX0\E.

Hence, we have to prove

(5)is–sorted–versionAXX0\, specialAXX0\EE.

Formula (4), by (Proposition (trivial tuples are sorted)), implies:

(9)is–sortedAXX0\E.

Formula (4), by (Proposition (only trivial tuple permuted version of itself)), implies:

(10)∀
Y
IIY = XX0\M ⇒ Y ≈ XX0\M.

Formula (1) and (4), by (Lemma (closure of special)), implies:

(11)is–tupleAspecialAXX0\EE.

Formula (1) and (4), by (Lemma (conjecture15): conjecture15), implies:

(13)specialAXX0\E = XX0\.

Formula (5), using (13), is implied by:

(21)is–sorted–versionAXX0\, XX0\E.

Formula (21), using (Definition (is sorted version)), is implied by:

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 47

(22)is–tupleAXX0\E Ï XX0\ ≈ XX0\ Ï is–sortedAXX0\E.

We prove the individual conjunctive parts of (22):

Proof of (22.1) is–tupleAXX0\E:

Formula (22.1) is true because it is identical to (1).

Proof of (22.2) XX0\ ≈ XX0\:

Formula (22.2) is true by (10).

Proof of (22.3) is–sortedAXX0\E:

Formula (22.3) is true because it is identical to (9).

Case 2:

(6)¬ is–trivial–tupleAXX0\E.

Hence, we have to prove

(8)is–sorted–versionAXX0\, mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE.

From (6) , by (2), (Lemma (splits are tuples): 1), (Lemma (splits are tuples): 2), (Lemma (splits are shorter): 1), (Lemma (splits

are shorter): 1) and (Lemma (splits are shorter): 2), we obtain:

(23)is–sorted–versionAleft–splitAXX0\E, sortedAleft–splitAXX0\EEE,

(24)is–sorted–versionAright–splitAXX0\E, sortedAright–splitAXX0\EEE,

From (23), by (Definition (is sorted version)), we obtain:

(25)is–tupleAsortedAleft–splitAXX0\EEE Ï
left–splitAXX0\E ≈ sortedAleft–splitAXX0\EE Ï is–sortedAsortedAleft–splitAXX0\EEE

.

From (24), by (Definition (is sorted version)), we obtain:

(26)is–tupleAsortedAright–splitAXX0\EEE Ï
right–splitAXX0\E ≈ sortedAright–splitAXX0\EE Ï is–sortedAsortedAright–splitAXX0\EEE

.

From (1) and (8), using (Definition (is sorted version)), is implied by:

(41)is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE Ï
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE ≈ XX0\ Ï
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE

.

Not all the conjunctive parts of (41)can be proved.

Proof of (41.1) is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

 (41.1), by (Lemma (closure of merge)) is implied by:

(42)is–tupleAsortedAleft–splitAXX0\EEE Ï is–tupleAsortedAright–splitAXX0\EEE.

We prove the individual conjunctive parts of (42):

Proof of (42.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (42.1) is true because it is identical to (25.1).

Proof of (42.2) is–tupleAsortedAright–splitAXX0\EEE:

48 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Formula (42.2) is true because it is identical to (26.1).

Proof of (41.3) mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE ≈ XX0\:

The proof of (41.3)fails. (The prover "QR" was unable to transform the proof situation.)

Proof of (41.4) is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

Pending proof of (41.4).

á

Third Proof Attempt (with Specifications of Subalgorithms Extractd from Second Proof Attempt)

Prove:

(Theorem (correctness of sort)) ∀
is–tuple@XD

is–sorted–version@X, sorted@XDD,

under the assumptions:

(Definition (is sorted): 1)is–sorted@X\D,
(Definition (is sorted): 2)∀

x
is–sorted@Xx\D,

(Definition (is sorted): 3) ∀
x,y,z

His–sorted@Xx, y, z\D
 x ≥ y Ï is–sorted@Xy, z\DL,

(Definition (is permuted version): 1)X\ ≈ X\,
(Definition (is permuted version): 2) ∀

y,y

HX\ M Xy, y\L,

(Definition (is permuted version): 3) ∀
x,x,y

HXy\ ≈ Xx, x\
 x ∈ Xy\ Ï dfo@x, Xy\D ≈ Xx\L,

(Definition (is sorted version))

∀
X,Y

is–tuple@XD

His–sorted–version@X, YD
 is–tuple@YD Ï X ≈ Y Ï is–sorted@YDL,

(Proposition (is tuple tuple))∀
x

is–tuple@Xx\D,

(Definition (prepend): \) ∀
x,y

Hx \ Xy\ = Xx, y\L,

(Proposition (singleton tuple is singleton tuple))∀
x
is–singleton–tuple@Xx\D,

(Definition (is trivial tuple))

∀
is–tuple@XD

His–trivial–tuple@XD
 is–empty–tuple@XD  is–singleton–tuple@XDL,

(Definition (is element): 1)∀
x
Hx ∉ X\L,

(Definition (is element): 2) ∀
x,y,y

Hx ∈ Xy, y\
 Hx = yL  x ∈ Xy\L,

(Definition (deletion of the first occurrence): 1)∀
a
Hdfo@a, X\D = X\L,

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 49

(Definition (deletion of the first occurrence): 2)

∀
a,x,x

Hdfo@a, Xx, x\D = ∞Xx\  x = a, x \ dfo@a, Xx\D  otherwise¥L,

(Definition (is longer than): 1)∀
y

HX\ î Xy\L,

(Definition (is longer than): 2) ∀
x,x

HXx, x\ ê X\L,

(Definition (is longer than): 3) ∀
x,x,y,y

HXx, x\ ê Xy, y\
 Xx\ ê Xy\L,

(Proposition (trivial tuples are sorted)) ∀
x

is–trivial–tuple@Xx\D

is–sorted@Xx\D,

(Proposition (only trivial tuple permuted version of itself)) ∀
x,Y

is–trivial–tuple@Xx\D

HHY = Xx\L ⇒ Y ≈ Xx\L,

(Proposition (reflexivity of permuted version))∀
x

HXx\ ≈ Xx\L,

(Algorithm (sorted)) ∀
is–tuple@XD

Hsorted@XD = ∞special@XD  is–trivial–tuple@XD,

merged@sorted@left–split@XDD, sorted@right–split@XDDD  otherwise¥L

,

(Lemma (closure of special)) ∀
X

is–tuple@XDÏis–trivial–tuple@XD

is–tuple@special@XDD,

(Lemma (splits are tuples): 1) ∀
X

is–tuple@XDÏ¬is–trivial–tuple@XD

is–tuple@left–split@XDD,

(Lemma (splits are tuples): 2) ∀
X

is–tuple@XDÏ¬is–trivial–tuple@XD

is–tuple@right–split@XDD,

(Lemma (splits are shorter): 1) ∀
is–tuple@XD

¬is–trivial–tuple@XD

HX ê left–split@XDL,

(Lemma (splits are shorter): 2) ∀
is–tuple@XD

¬is–trivial–tuple@XD

HX ê right–split@XDL,

(Lemma (closure of merge)) ∀
is–tuple@XD
is–tuple@YD

is–tuple@merged@X, YDD,

(Lemma (conjecture15): conjecture15)

∀
X1

is–tuple@X1D

His–trivial–tuple@X1D Ï is–sorted@X1D ⇒ Hspecial@X1D = X1LL,

(Lemma (conjecture44): conjecture44)

∀
X2,X3,X4

is–tuple@X4D

His–tuple@X2D Ï left–split@X4D ≈ X2Ï is–sorted@X2D Ï is–tuple@X3D Ï

right–split@X4D ≈ X3Ï is–sorted@X3D Ï ¬ is–trivial–tuple@X4D ⇒ merged@X2, X3D ≈ X4L

.

We try to prove (Theorem (correctness of sort)) by well–founded induction on X .

50 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Well–founded induction:

Assume:

(1)is–tupleAXX0\E.

Well–Founded Induction Hypothesis:

(2) ∀
is–tuple@x3D

IXX0\ ê x3 ⇒ is–sorted–version@x3, sorted@x3DDM

We have to show:

(3)is–sorted–versionAXX0\, sortedAXX0\EE.

We try to prove (3) by case distinction using (Algorithm (sorted)). However, the proof fails in at least one of the cases.

Case 1:

(4)is–trivial–tupleAXX0\E.

Hence, we have to prove

(5)is–sorted–versionAXX0\, specialAXX0\EE.

Formula (4), by (Proposition (trivial tuples are sorted)), implies:

(9)is–sortedAXX0\E.

Formula (4), by (Proposition (only trivial tuple permuted version of itself)), implies:

(10)∀
Y
IIY = XX0\M ⇒ Y ≈ XX0\M.

Formula (1) and (4), by (Lemma (closure of special)), implies:

(11)is–tupleAspecialAXX0\EE.

Formula (1) and (4), by (Lemma (conjecture15): conjecture15), implies:

(13)specialAXX0\E = XX0\.

Formula (5), using (13), is implied by:

(21)is–sorted–versionAXX0\, XX0\E.

Formula (21), using (Definition (is sorted version)), is implied by:

(22)is–tupleAXX0\E Ï XX0\ ≈ XX0\ Ï is–sortedAXX0\E.

We prove the individual conjunctive parts of (22):

Proof of (22.1) is–tupleAXX0\E:

Formula (22.1) is true because it is identical to (1).

Proof of (22.2) XX0\ ≈ XX0\:

Formula (22.2) is true by (10).

Proof of (22.3) is–sortedAXX0\E:

Formula (22.3) is true because it is identical to (9).

Case 2:

(6)¬ is–trivial–tupleAXX0\E.

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 51

Hence, we have to prove

(8)is–sorted–versionAXX0\, mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE.

From (6) , by (2), (Lemma (splits are tuples): 1), (Lemma (splits are tuples): 2), (Lemma (splits are shorter): 1), (Lemma (splits

are shorter): 1) and (Lemma (splits are shorter): 2), we obtain:

(23)is–sorted–versionAleft–splitAXX0\E, sortedAleft–splitAXX0\EEE,

(24)is–sorted–versionAright–splitAXX0\E, sortedAright–splitAXX0\EEE,

From (23), by (Definition (is sorted version)), we obtain:

(25)is–tupleAsortedAleft–splitAXX0\EEE Ï
left–splitAXX0\E ≈ sortedAleft–splitAXX0\EE Ï is–sortedAsortedAleft–splitAXX0\EEE

.

From (24), by (Definition (is sorted version)), we obtain:

(26)is–tupleAsortedAright–splitAXX0\EEE Ï
right–splitAXX0\E ≈ sortedAright–splitAXX0\EE Ï is–sortedAsortedAright–splitAXX0\EEE

.

From (1) and (8), using (Definition (is sorted version)), is implied by:

(41)is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE Ï
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE ≈ XX0\ Ï
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE

.

Not all the conjunctive parts of (41)can be proved.

Proof of (41.1) is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

 (41.1), by (Lemma (closure of merge)) is implied by:

(42)is–tupleAsortedAleft–splitAXX0\EEE Ï is–tupleAsortedAright–splitAXX0\EEE.

We prove the individual conjunctive parts of (42):

Proof of (42.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (42.1) is true because it is identical to (25.1).

Proof of (42.2) is–tupleAsortedAright–splitAXX0\EEE:

Formula (42.2) is true because it is identical to (26.1).

Proof of (41.2) mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE ≈ XX0\:

Formula (41.2), using (Lemma (conjecture44): conjecture44), is implied by:

(44)is–tupleAsortedAleft–splitAXX0\EEE Ï left–splitAXX0\E ≈ sortedAleft–splitAXX0\EE Ï
is–sortedAsortedAleft–splitAXX0\EEE Ï is–tupleAsortedAright–splitAXX0\EEE Ï
right–splitAXX0\E ≈ sortedAright–splitAXX0\EE Ï
is–sortedAsortedAright–splitAXX0\EEE Ï ¬ is–trivial–tupleAXX0\E

.

We prove the individual conjunctive parts of (44):

Proof of (44.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (44.1) is true because it is identical to (25.1).

Proof of (44.2) left–splitAXX0\E ≈ sortedAleft–splitAXX0\EE:

52 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Formula (44.2) is true because it is identical to (25.1).

Proof of (44.3) is–sortedAsortedAleft–splitAXX0\EEE:

Formula (44.3) is true because it is identical to (25.3).

Proof of (44.4) is–tupleAsortedAright–splitAXX0\EEE:

Formula (44.4) is true because it is identical to (26.1).

Proof of (44.5) right–splitAXX0\E ≈ sortedAright–splitAXX0\EE:

Formula (44.5) is true because it is identical to (26.2).

Proof of (44.6) is–sortedAsortedAright–splitAXX0\EEE:

Formula (44.6) is true because it is identical to (26.2).

Proof of (44.7) ¬ is–trivial–tupleAXX0\E:

Formula (44.7) is true because it is identical to (6).

Proof of (41.3) is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

The proof of (41.3) fails. (The prover "QR" was unable to transform the proof situation.)

á

Successful Proof (with Specifications of Subalgorithms Extractd from Third Proof Attempt)

Prove:

(Theorem (correctness of sort)) ∀
is–tuple@XD

is–sorted–version@X, sorted@XDD,

under the assumptions:

(Definition (is sorted): 1)is–sorted@X\D,
(Definition (is sorted): 2)∀

x
is–sorted@Xx\D,

(Definition (is sorted): 3) ∀
x,y,z

His–sorted@Xx, y, z\D
 x ≥ y Ï is–sorted@Xy, z\DL,

(Definition (is permuted version): 1)X\ ≈ X\,
(Definition (is permuted version): 2) ∀

y,y

HX\ M Xy, y\L,

(Definition (is permuted version): 3) ∀
x,x,y

HXy\ ≈ Xx, x\
 x ∈ Xy\ Ï dfo@x, Xy\D ≈ Xx\L,

(Definition (is sorted version))

∀
X,Y

is–tuple@XD

His–sorted–version@X, YD
 is–tuple@YD Ï X ≈ Y Ï is–sorted@YDL,

(Proposition (is tuple tuple))∀
x

is–tuple@Xx\D,

(Definition (prepend): \) ∀
x,y

Hx \ Xy\ = Xx, y\L,

(Proposition (singleton tuple is singleton tuple))∀
x
is–singleton–tuple@Xx\D,

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 53

(Definition (is trivial tuple))

∀
is–tuple@XD

His–trivial–tuple@XD
 is–empty–tuple@XD  is–singleton–tuple@XDL,

(Definition (is element): 1)∀
x
Hx ∉ X\L,

(Definition (is element): 2) ∀
x,y,y

Hx ∈ Xy, y\
 Hx = yL  x ∈ Xy\L,

(Definition (deletion of the first occurrence): 1)∀
a
Hdfo@a, X\D = X\L,

(Definition (deletion of the first occurrence): 2)

∀
a,x,x

Hdfo@a, Xx, x\D = ∞Xx\  x = a, x \ dfo@a, Xx\D  otherwise¥L,

(Definition (is longer than): 1)∀
y

HX\ î Xy\L,

(Definition (is longer than): 2) ∀
x,x

HXx, x\ ê X\L,

(Definition (is longer than): 3) ∀
x,x,y,y

HXx, x\ ê Xy, y\
 Xx\ ê Xy\L,

(Proposition (trivial tuples are sorted)) ∀
x

is–trivial–tuple@Xx\D

is–sorted@Xx\D,

(Proposition (only trivial tuple permuted version of itself)) ∀
x,Y

is–trivial–tuple@Xx\D

HHY = Xx\L ⇒ Y ≈ Xx\L,

(Proposition (reflexivity of permuted version))∀
x

HXx\ ≈ Xx\L,

(Algorithm (sorted)) ∀
is–tuple@XD

Hsorted@XD = ∞special@XD  is–trivial–tuple@XD,

merged@sorted@left–split@XDD, sorted@right–split@XDDD  otherwise¥L

,

(Lemma (closure of special)) ∀
X

is–tuple@XDÏis–trivial–tuple@XD

is–tuple@special@XDD,

(Lemma (splits are tuples): 1) ∀
X

is–tuple@XDÏ¬is–trivial–tuple@XD

is–tuple@left–split@XDD,

(Lemma (splits are tuples): 2) ∀
X

is–tuple@XDÏ¬is–trivial–tuple@XD

is–tuple@right–split@XDD,

(Lemma (splits are shorter): 1) ∀
is–tuple@XD

¬is–trivial–tuple@XD

HX ê left–split@XDL,

(Lemma (splits are shorter): 2) ∀
is–tuple@XD

¬is–trivial–tuple@XD

HX ê right–split@XDL,

(Lemma (closure of merge)) ∀
is–tuple@XD
is–tuple@YD

is–tuple@merged@X, YDD,

54 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

(Lemma (conjecture15): conjecture15)

∀
X1

is–tuple@X1D

His–trivial–tuple@X1D Ï is–sorted@X1D ⇒ Hspecial@X1D = X1LL,

(Lemma (conjecture44): conjecture44)

∀
X2,X3,X4

is–tuple@X4D

His–tuple@X2D Ï left–split@X4D ≈ X2Ï is–sorted@X2D Ï is–tuple@X3D Ï

right–split@X4D ≈ X3Ï is–sorted@X3D Ï ¬ is–trivial–tuple@X4D ⇒ merged@X2, X3D ≈ X4L

,

(Lemma (conjecture46): conjecture46)

∀
X5,X6,X7

is–tuple@X7D

His–tuple@X5D Ï left–split@X7D ≈ X5 Ï

is–sorted@X5D Ï is–tuple@X6D Ï right–split@X7D ≈ X6 Ï
is–sorted@X6D Ï ¬ is–trivial–tuple@X7D ⇒ is–sorted@merged@X5, X6DDL

.

We prove (Theorem (correctness of sort)) by well–founded induction on X .

Well–founded induction:

Assume:

(1)is–tupleAXX0\E.

Well–Founded Induction Hypothesis:

(2) ∀
is–tuple@x4D

IXX0\ ê x4 ⇒ is–sorted–version@x4, sorted@x4DDM

We have to show:

(3)is–sorted–versionAXX0\, sortedAXX0\EE.

We prove (3) by case distinction using (Algorithm (sorted)).

Case 1:

(4)is–trivial–tupleAXX0\E.

Hence, we have to prove

(5)is–sorted–versionAXX0\, specialAXX0\EE.

Formula (4), by (Proposition (trivial tuples are sorted)), implies:

(9)is–sortedAXX0\E.

Formula (4), by (Proposition (only trivial tuple permuted version of itself)), implies:

(10)∀
Y
IIY = XX0\M ⇒ Y ≈ XX0\M.

Formula (1) and (4), by (Lemma (closure of special)), implies:

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 55

(11)is–tupleAspecialAXX0\EE.

Formula (1) and (4), by (Lemma (conjecture15): conjecture15), implies:

(13)specialAXX0\E = XX0\.

Formula (5), using (13), is implied by:

(21)is–sorted–versionAXX0\, XX0\E.

Formula (21), using (Definition (is sorted version)), is implied by:

(22)is–tupleAXX0\E Ï XX0\ ≈ XX0\ Ï is–sortedAXX0\E.

We prove the individual conjunctive parts of (22):

Proof of (22.1) is–tupleAXX0\E:

Formula (22.1) is true because it is identical to (1).

Proof of (22.2) XX0\ ≈ XX0\:

Formula (22.2) is true by (10).

Proof of (22.3) is–sortedAXX0\E:

Formula (22.3) is true because it is identical to (9).

Case 2:

(6)¬ is–trivial–tupleAXX0\E.

Hence, we have to prove

(8)is–sorted–versionAXX0\, mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE.

From (6) , by (2), (Lemma (splits are tuples): 1), (Lemma (splits are tuples): 2), (Lemma (splits are shorter): 1), (Lemma (splits

are shorter): 1) and (Lemma (splits are shorter): 2), we obtain:

(23)is–sorted–versionAleft–splitAXX0\E, sortedAleft–splitAXX0\EEE,

(24)is–sorted–versionAright–splitAXX0\E, sortedAright–splitAXX0\EEE,

From (23), by (Definition (is sorted version)), we obtain:

(25)is–tupleAsortedAleft–splitAXX0\EEE Ï
left–splitAXX0\E ≈ sortedAleft–splitAXX0\EE Ï is–sortedAsortedAleft–splitAXX0\EEE

.

From (24), by (Definition (is sorted version)), we obtain:

(26)is–tupleAsortedAright–splitAXX0\EEE Ï
right–splitAXX0\E ≈ sortedAright–splitAXX0\EE Ï is–sortedAsortedAright–splitAXX0\EEE

.

From (1) and (8), using (Definition (is sorted version)), is implied by:

(41)is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE Ï
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE ≈ XX0\ Ï
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE

.

We prove the individual conjunctive parts of (41):

Proof of (41.1) is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

56 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

 (41.1), by (Lemma (closure of merge)) is implied by:

(42)is–tupleAsortedAleft–splitAXX0\EEE Ï is–tupleAsortedAright–splitAXX0\EEE.

We prove the individual conjunctive parts of (42):

Proof of (42.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (42.1) is true because it is identical to (25.1).

Proof of (42.2) is–tupleAsortedAright–splitAXX0\EEE:

Formula (42.2) is true because it is identical to (26.1).

Proof of (41.2) mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE ≈ XX0\:

Formula (41.2), using (Lemma (conjecture44): conjecture44), is implied by:

(44)is–tupleAsortedAleft–splitAXX0\EEE Ï left–splitAXX0\E ≈ sortedAleft–splitAXX0\EE Ï
is–sortedAsortedAleft–splitAXX0\EEE Ï is–tupleAsortedAright–splitAXX0\EEE Ï
right–splitAXX0\E ≈ sortedAright–splitAXX0\EE Ï
is–sortedAsortedAright–splitAXX0\EEE Ï ¬ is–trivial–tupleAXX0\E

.

We prove the individual conjunctive parts of (44):

Proof of (44.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (44.1) is true because it is identical to (25.1).

Proof of (44.2) left–splitAXX0\E ≈ sortedAleft–splitAXX0\EE:

Formula (44.2) is true because it is identical to (25.1).

Proof of (44.3) is–sortedAsortedAleft–splitAXX0\EEE:

Formula (44.3) is true because it is identical to (25.3).

Proof of (44.4) is–tupleAsortedAright–splitAXX0\EEE:

Formula (44.4) is true because it is identical to (26.1).

Proof of (44.5) right–splitAXX0\E ≈ sortedAright–splitAXX0\EE:

Formula (44.5) is true because it is identical to (26.2).

Proof of (44.6) is–sortedAsortedAright–splitAXX0\EEE:

Formula (44.6) is true because it is identical to (26.2).

Proof of (44.7) ¬ is–trivial–tupleAXX0\E:

Formula (44.7) is true because it is identical to (6).

Proof of (41.3) is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

Formula (41.3), using (Lemma (conjecture46): conjecture46), is implied by:

(52)is–tupleAsortedAleft–splitAXX0\EEE Ï left–splitAXX0\E ≈ sortedAleft–splitAXX0\EE Ï
is–sortedAsortedAleft–splitAXX0\EEE Ï is–tupleAsortedAright–splitAXX0\EEE Ï
right–splitAXX0\E ≈ sortedAright–splitAXX0\EE Ï
is–sortedAsortedAright–splitAXX0\EEE Ï ¬ is–trivial–tupleAXX0\E

.

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 57

We prove the individual conjunctive parts of (52):

Proof of (52.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (52.1) is true because it is identical to (25.1).

Proof of (52.2) left–splitAXX0\E ≈ sortedAleft–splitAXX0\EE:

Formula (52.2) is true because it is identical to (25..2).

Proof of (52.3) is–sortedAsortedAleft–splitAXX0\EEE:

Formula (52.3) is true because it is identical to (25.3).

Proof of (52.4) is–tupleAsortedAright–splitAXX0\EEE:

Formula (52.4) is true because it is identical to (26.1).

Proof of (52.5) right–splitAXX0\E ≈ sortedAright–splitAXX0\EE:

Formula (52.5) is true because it is identical to (26.2).

Proof of (52.6) is–sortedAsortedAright–splitAXX0\EEE:

Formula (52.6) is true because it is identical to (26.3).

Proof of (52.7) ¬ is–trivial–tupleAXX0\E:

Formula (52.7) is true because it is identical to (6).

á

58 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Example: Synthesis of Insertion-Sort

Synthesize A such that

∀
x
is–sorted–version@x, A@xDD.

Algorithm Scheme: "simple recursion"

A@X\D = cccc

∀
x
A@Xx\D = ssss@Xx\D

∀
x,y

HA@Xx, y\D = iiii@x, A@Xy\DDL

Lazy Thinking, automatically (in approx. 2 minutes on a laptop using the Theorema system), finds the following

specifications for the auxiliary functions

cccc= X\
∀
x
Hssss@Xx\D = Xx\L

∀
x,y

is–sorted@Xy\D ⇒
is–sorted@iiii@x, Xy\DD
iiii@Xx, y\D ≈ Hx \ Xy\L

Contents

A Technicality: the Groebner Bases Algorithm (A Method for Automated Proofs in Geometry)

Automated Invention by Automated Observation plus Automated Proof

Automated Invention by Extracting Algorithms from Automated Proofs

Automated Invention by Formula Schemes

Automated Invention by Analyzing Failing Automated Proofs

The Automated Invention of the Groebner Bases Algorithm

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 59

How Far Can We Go With the "Lazy Thinking" Method ?

Can we automatically synthesize algorithms for non-trivial problems? What is "non-trivial"?

Example of a non-trivial problem (?): construction of Gröbner bases.

"Non-trivial" part of the invention: The invention of the notion of S-polynomial and the characterization of Gröbner-

bases by finitely many S-polynomial checks.

With the "Lazy Thinking" method, it is possible to

invent the essential idea of BB's Gröbner bases algorithm (1965) fully automatically: See [BB

2005, Craciun 2008]

 the correctness proof is delivered as a side-product.

60 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

The Problem of Constructing Gröbner Bases

Find algorithm Gb such that

∀
is–finite@FD

is–finite@ Gb@FD D
is–Gröbner–basis@ Gb@FDD
ideal@FD = ideal@ Gb@FDD.

is–Gröbner–basis@GD � is–confluent@ →G D.
 →G ... a division step.

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 61

Confluence of Division →G

is–confluent@ → D : � ∀
f1,f2

Hf1 ↔∗ f2 ⇒ f1↓∗f2L

f1
f2

62 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Knowledge on the Concepts Involved

h1 →G h2 ⇒ p . h1 →G p . h2

etc.

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 63

Algorithm Scheme "Critical Pair / Completion"

A@FD = A@F, pairs@FDD
A@F, X\D = F

A@F, XXg1, g2\, p\D =

whereBf = lc@g1, g2D,
h1 = trd@rd@f, g1D, FD,
h2 = trd@rd@f, g2D, FD,
A@F, Xp\D  h1 = h2

ABF [df@h1, h2D, Xp\ ^ [XFk, df@h1, h2D\
k=1,…,†F§

_F  otherwise
F

This scheme can be tried in any domain, in which we have a reduction operation rd that depends on sets F of objects

and a Noetherian relation ÷ which interacts with rd in the following natural way:

∀
f,g

Hf ë rd@f, gDL.

64 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

The Essential Problem

The problem of synthesizing a Gröbner bases algorithm can now be also stated by asking whether starting with the

proof of

∀
F

is–finite@ A@FD D
is–Gröbner–basis@ A@FDD
ideal@FD = ideal@ A@FDD.

using the above scheme for A we can automatically produce the idea that

lc@g1, g2D = lcm@lp@g1D, lp@g2DD
and

df@h1, h2D = h1 −h2

and prove that the idea is correct.

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 65

Now Start the (Automated) Correctness Proof

With current theorem proving technology, in the Theorema system (and other provers), the proof attempt can be done

automatically. (PhD thesis 2008 by my student A. Craciun.)

66 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Details

It should be clear that, if the algorithm terminates, the final result is a finite set (of polynomials) G that has the property

∀
g1,g2∈G

KwhereBf = lc@g1, g2D,

h1 = trd@rd@f, g1D, FD, h2 = trd@rd@f, g2D, FD, Î; h1 = h2

df@h1, h2D ∈ G
FO.

We now try to prove that, if G has this property, then

is–finite@GD,
ideal@FD = ideal@GD,
is–Gröbner–basis@GD,

i.e. is–Church–Rosser@ →G D.
Here, we only deal with the third, most important, property.

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 67

Using Available Knowledge

Using Newman's lemma and some elementary properties it can be shown that it is sufficient to prove

is–Church–Rosser@ →G D � ∀
p

∀
f1,f2

KK; p → f1

p → f2
O ⇒ f1↓∗f2O.

Newman's lemma (1942):

is–Church–Rosser@ → D � ∀
f,f1,f2

KK; f → f1

f → f2
O ⇒ f1↓∗f2O.

Definition of "f1 and f2 have a common successor":

f1↓∗f2 � ∃
g
K; f1 →∗ g

f2 →∗ g
O

68 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

The (Automated) Proof Attempt

Let now the power product p and the polynomials f1, f2 be arbitary but fixed and assume

p →G f1

p →G f2.

We have to find a polyonomial g such that

f1 →G
∗ g,

f2 →G
∗ g.

>From the assumption we know that there exist polynomials g1 and g2 in G such that

lp@g1D p,

f1 = rd@p, g1D,
lp@g2D p,

f2 = rd@p, g2D.
>From the final situation in the algorithm scheme we know that for these g1 and g2

Î; h1 = h2

df@h1, h2D ∈ G,

where

h1 := trd@f1', GD, f1' := rd@lc@g1, g2D, g1D,
h2 := trd@f2', GD, f2' := rd@lc@g1, g2D, g2D.

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 69

Case h1=h2

lc@g1, g2D →g1 rd@lc@g1, g2D, g1D →G
∗ trd@rd@lc@g1, g2D, g1D, GD =

trd@rd@lc@g1, g2D, g2D, GD G
∗ rd@lc@g1, g2D, g2D g2 lc@g1, g2D.

(Note that here we used the requirements rd[lc[g1,g2],g1]lc[g1,g2] and rd[lc[g1,g2],g2]lc[g1,g2].)

Hence, by elementary properties of polynomial reduction,

∀
a,q

I a q lc@g1, g2D →g1 a q rd@lc@g1, g2D, g1D →G
∗ a q trd@rd@lc@g1, g2D, g1D, GD =

a q trd@rd@lc@g1, g2D, g2D, GD G
∗ a q rd@lc@g1, g2D, g2D g2 a q lc@g1, g2D M.

Now we are stuck in the proof.

70 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Now Use the Specification Generation Algorithm

Using the above specification generation rule, we see that we could proceed successfully with the proof if lc[g1,g2]

satisfied the following requirement

∀
p,g1,g2

K; lp@g1D p

lp@g2D p
O ⇒ ∃

a,q
Hp = a q lc@g1, g2D L , Hlc requirementL

With such an lc, we then would have

p →g1 rd@p, g1D = a q rd@lc@g1, g2D, g1D →G
∗ a q trd@rd@lc@g1, g2D, g1D, GD =

a q trd@rd@lc@g1, g2D, g2D, GD G
∗ a q rd@lc@g1, g2D, g2D = rd@p, g2D g2 p

and, hence,

f1 →G
∗ a q trd@rd@lc@g1, g2D, g1D, GD,

f2 →G
∗ a q trd@rd@lc@g1, g2D, g1D, GD,

i.e. we would have found a suitable g.

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 71

Summarize the (Automatically Generated) Specifications of the Subalgorithm lc

Using the above specification generation rule, we see that we could proceed successfully with the proof if lc[g1,g2]

satisfied the following requirement

∀
p,g1,g2

KK; lp@g1D p

lp@g2D p
O ⇒ Hlc@g1, g2D pLO ,

and the requirements:

lp@g1D lc@g1, g2D,
lp@g2D lc@g1, g2D.

Now this problem can be attacked independently of any Gröbner bases theory, ideal theory etc.

72 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

A Suitable lc

lcp@g1, g2D = lcm@lp@g1D, lp@g2DD
is a suitable function that satisfies the above requirements.

Eureka! The crucial function lc (the "critical pair" function) in the critical pair / completion algorithm scheme has been

synthesized automatically!

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 73

Case h1πh2

In this case, df[h1,h2]œG:

In this part of the proof we are basically stuck right at the beginning.

We can try to reduce this case to the first case, which would generate the following requirement

∀
h1,h2

Hh1 ↓8df@h1,h2D<∗h2L Hdf requirementL.

74 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Looking to the Knowledge Base for a Suitable df

(Looking to the knowledge base of elementary properties of polynomial reduction, it is now easy to find a function df

that satifies (df requirement), namely

df@h1, h2D = h1 − h2,

because, in fact,

∀
f,g

If ↓8f−g<∗gM.

Eureka! The function df (the "completion" function) in the critical pair / completion algorithm scheme has been

"automatically" synthesized!)

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 75

Conclusions

Invention and verification are the two important aspects of mathematical exploration.

Both, the automation of invention and verification hinge on the automation of reasoning.

Computational Results

I�VE�TI�G

Conjecture

PROVI�G

Theorem

PROGRAMMI�G

Algorithm

COMPUTI�G

Algorithmic algebra is a basis for the automation of reasoning.

Automated reasoning can produce algebra.

Progress happens in rounds of "self-application" going to higher and higher levels.

Each round is a big challenge.

There is no upper bound to automation and sophistication (Gödel !)

76 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

Computational Results

I�VE�TI�G

Conjecture

PROVI�G

Theorem

PROGRAMMI�G

Algorithm

COMPUTI�G

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 77

References

On my "Thinking, Speaking, Writing" Course

B. Buchberger.

Thinking, Speaking, Writing: A Course on Using Predicate Logic as a Working Language.

Lecture Notes, RISC (Research Institute for Symbolic Computation), Johannes Kepler University, Linz, Austria, 1982

- 2007.

On my "White Box / Black Box Principle" for the Didactics of Using Math Software Systems for Math

Teaching

B. Buchberger

Should Students Learn Integration Rules?

ACM SIGSAM Bulletin Vol.24/1, January 1990, pp. 10-17.

On Gröbner Bases

[Buchberger 1970]

B. Buchberger. Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems (An Algorith-

mical Criterion for the Solvability of Algebraic Systems of Equations). Aequationes mathematicae 4/3, 1970, pp.

374-383. (English translation in: [Buchberger, Winkler 1998], pp. 535 -545.) Published version of the PhD Thesis of

B. Buchberger, University of Innsbruck, Austria, 1965.

[Buchberger 1998]

B. Buchberger. Introduction to Gröbner Bases. In: [Buchberger, Winkler 1998], pp.3-31.

[Buchberger, Winkler, 1998]

B. Buchberger, F. Winkler (eds.). Gröbner Bases and Applications, Proceedings of the International Conference "33

Years of Gröbner Bases", 1998, RISC, Austria, London Mathematical Society Lecture Note Series, Vol. 251, Cam-

bridge University Press, 1998.

[Becker, Weispfenning 1993]

T. Becker, V. Weispfenning. Gröbner Bases: A Computational Approach to Commutative Algebra, Springer, New

York, 1993.

On Mathematical Knowledge Management

B. Buchberger, G. Gonnet, M. Hazewinkel (eds.)

Mathematical Knowledge Management.

Special Issue of Annals of Mathematics and Artificial Intelligence, Vol. 38, No. 1-3, May 2003, Kluwer Academic

Publisher, 232 pages.

78 Buchberger-Talk-CADGME-2009-07-12-12h45.nb

A.Asperti, B. Buchberger, J.H.Davenport (eds.)

Mathematical Knowledge Management.

Proceedings of the Second International Conference on Mathematical Knowledge Management (MKM 2003), Berti-

noro, Italy, Feb.16-18, 2003, Lecture Notes in Computer Science, Vol. 2594, Springer, Berlin-Heidelberg-NewYork,

2003, 223 pages.

A.Asperti, G.Bancerek, A.Trybulec (eds.).

Proceedings of the Third International Conference on Mathematical Knowledge Management, MKM 2004,

Bialowieza, Poland, September 19-21, 2004, Lecture Notes in Computer Science, Vol. 3119, Springer, Berlin-Heidel-

berg-NewYork, 2004

On Theorema

[Buchberger et al. 2000]

B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, W. Windsteiger. The Theorema Project:

A Progress Report. In: M. Kerber and M. Kohlhase (eds.), Symbolic Computation and Automated Reasoning

(Proceedings of CALCULEMUS 2000, Symposium on the Integration of Symbolic Computation and Mechanized

Reasoning, August 6-7, 2000, St. Andrews, Scotland), A.K. Peters, Natick, Massachusetts, ISBN 1-56881-145-4, pp.

98-113.

On Theory Exploration and Algorithm Synthesis

[Buchberger 2000]

B. Buchberger. Theory Exploration with Theorema.

Analele Universitatii Din Timisoara, Ser. Matematica-Informatica, Vol. XXXVIII, Fasc.2, 2000, (Proceedings of

SYNASC 2000, 2nd International Workshop on Symbolic and Numeric Algorithms in Scientific Computing, Oct. 4-6,

2000, Timisoara, Rumania, T. Jebelean, V. Negru, A. Popovici eds.), ISSN 1124-970X, pp. 9-32.

[Buchberger 2003]

B. Buchberger. Algorithm Invention and Verification by Lazy Thinking.

In: D. Petcu, V. Negru, D. Zaharie, T. Jebelean (eds), Proceedings of SYNASC 2003 (Symbolic and Numeric Algo-

rithms for Scientific Computing, Timisoara, Romania, October 1–4, 2003), Mirton Publishing, ISBN 973–661–104–3,

pp. 2–26.

[Buchberger, Craciun 2003]

B. Buchberger, A. Craciun. Algorithm Synthesis by Lazy Thinking: Examples and Implementation in Theorema. in:

Fairouz Kamareddine (ed.), Proc. of the Mathematical Knowledge Management Workshop, Edinburgh, Nov. 25,

2003, Electronic Notes on Theoretical Computer Science, volume dedicated to the MKM 03 Symposium, Elsevier,

ISBN 044451290X, to appear.

[Buchberger 2005]

B. Buchberger.

Towards the Automated Synthesis of a Gröbner Bases Algorithm.

RACSAM (Review of the Royal Spanish Academy of Science), Vol. 98/1, 2005, pp. 65-75.

[Craciun 2008]

A. Craciun.

The Implementation of Buchberger's Lazy Thinking Method for Automated Algorithm Synthesis in Theorema.

PhD Thesis, Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria, April 2008.

Buchberger-Talk-CADGME-2009-07-12-12h45.nb 79

