The Geometry of the Neighbor-Joining
Algorithm for Small Trees

Kord Eickmeyer! and Ruriko Yoshida?

! Institut fiir Informatik, Humboldt-Universitét zu Berlin, Berlin, Germany
2 University of Kentucky, Lexington, KY, USA

Abstract. In 2007, Eickmeyer et al. showed that the tree topologies
outputted by the Neighbor-Joining (NJ) algorithm and the balanced
minimum evolution (BME) method for phylogenetic reconstruction are
each determined by a polyhedral subdivision of the space of dissimilarity
maps R(g), where n is the number of taxa. In this paper, we will analyze
the behavior of the Neighbor-Joining algorithm on five and six taxa and
study the geometry and combinatorics of the polyhedral subdivision of
the space of dissimilarity maps for six taxa as well as hyperplane repre-
sentations of each polyhedral subdivision. We also study simulations for
one of the questions stated by Eickmeyer et al., that is, the robustness of
the NJ algorithm to small perturbations of tree metrics, with tree models
which are known to be hard to be reconstructed via the NJ algorithm.

1 Introduction

The Neighbor-Joining (NJ) algorithm was introduced by Saitou and Nei [14]
and is widely used to reconstruct a phylogenetic tree from an alignment of DNA
sequences because of its accuracy and computational speed. The NJ algorithm
is a distance-based method which takes all pairwise distances computed from
the data as its input, and outputs a tree topology which realizes these pairwise
distances, if there is such a topology (see Fig. 1). Note that the NJ algorithm is
consistent, i.e., it returns the additive tree if the input distance matrix is a tree
metric. If the input distance matrix is not a tree metric, then the NJ algorithm
returns a tree topology which induces a tree metric that is “close” to the input.
Since it is one of the most popular methods for reconstructing a tree among
biologists, it is important to study how the NJ algorithm works.

Fig.1. The NJ algorithm takes a matrix of pairwise distances (left) as input and
computes a binary tree (right). If there is a tree such that the distance matrix can be
obtained by taking the length of the unique path between two nodes, NJ outputs that
tree.

A number of attempts have been made to understand the good results ob-
tained with the NJ algorithm, especially given the problems with the inference
procedures used for estimating pairwise distances. For example, Bryant showed
that the @Q-criterion (defined in (Q) in Section 2.2) is in fact the unique selection
criterion which is linear, permutation invariant, and consistent, i.e., it correctly
finds the tree corresponding to a tree metric [2]. Gascuel and Steel gave a nice
review of how the NJ algorithm works [15].

One of the most important questions in studying the behavior of the NJ al-
gorithm is to analyze its performance with pairwise distances that are not tree
metrics, especially when all pairwise distances are estimated via the maximum
likelihood estimation (MLE). In 1999, Atteson showed that if the distance es-
timates are at most half the minimal edge length of the tree away from their
true value then the NJ algorithm will reconstruct the correct tree [1]. However,
Levy et al. noted that Atteson’s criterion frequently fails to be satisfied even
though the NJ algorithm returns the true tree topology [10]. Recent work of [11]
extended Atteson’s work. Mihaescu et al. showed that the NJ algorithm returns
the true tree topology when it works locally for the quartets in the tree [11]. This
result gives another criterion for when then NJ algorithm returns the correct tree
topology and Atteson’s theorem is a special case of Mihaescu et al.’s theorem.

For every input distance matrix, the NJ algorithm returns a certain tree
topology. It may happen that the minimum Q-criterion is taken by more than
one pair of taxa at some step. In practice, the NJ algorithm will then have to
choose one cherry in order to return a definite result, but for our analysis we
assume that in those cases the NJ algorithm will return a set containing all tree
topologies resulting from picking optimal cherries. There are only finitely many
tree topologies, and for every topology t we get a subset D; of the sample space
(input space) such that for all distance matrices in Dy one possible answer of the
NJ algorithm is . We aim at describing these sets D; and the relation between
them. One notices that the Q-criteria are all linear in the pairwise distances.
The NJ algorithm will pick cherries in a particular order and output a particular
tree ¢ if and only if the pairwise distances satisfy a system of linear inequalities,

whose solution set forms a polyhedral cone in R(). Eickmeyer et al. called such
a cone a Neighbor-Joining cone, or NJ cone. Thus the NJ algorithm will output
a particular tree ¢ if and only if the distance data lies in a union of NJ cones [3].

In [3], Eickmeyer et al. studied the optimality of the NJ algorithm compared
to the balanced minimum evolution (BME) method and focused on polyhedral
subdivisions of the space of dissimilarity maps for the BME method and the NJ
algorithm. Eickmeyer et al. also studied the geometry and combinatorics of the
NJ cones for n = 5 in addition to the BME cones for n < 8. Using geometry
of the NJ cones for n = 5, they showed that the polyhedral subdivision of the
space of dissimilarity maps with the NJ algorithm does not form a fan for n > 5
and that the union of the NJ cones for a particular tree topology is not convex.
This means that the NJ algorithm is not convex, i.e., there are distance matrices
D, D', such that NJ produces the same tree t; on both inputs D and D’, but it
produces a different tree t3 # t1 on the input (D+D")/2 (see [3] for an example).

In this paper, we focus on describing geometry and combinatorics of the NJ
cones for six taxa as well as some simulation study using the NJ cones for one
of the questions in [3], that is, what is the robustness of the NJ algorithm to
small perturbations of tree metrics for n = 5. This paper is organized as follows:
In Section 2 we will describe the NJ algorithm and define the NJ cones. Section
3 states the hyperplane representations of the NJ cones for n = 5. Section 4
describes in summary the geometry and combinatorics of the NJ cones for n = 6.
Section 5 shows some simulation studies on the robustness of the NJ algorithm
to small perturbations of tree metrics for n = 5 with the tree models from [13].
We end by discussing some open problems in Section 6.

2 The Neighbor-Joining algorithm

2.1 Input data

The NJ algorithm is a distance-based method which takes a distance matriz, a
symmetric matrix (d;;)o<i, j<n—1 with d;; = 0 representing pairwise distances of
a set of n taxa {0,1,...,n — 1}, as the input. Through this paper, we do not
assume anything on an input data except it is symmetric and d;; = 0. Because of
symmetry, the input can be seen as a vector of dimension m := (g) = %n(n —1).
We arrange the entries row-wise. We denote row/column-indices by pairs of
letters such as a, b, ¢, d, while denoting single indices into the “flattened” vector
by letters ¢,7,.... The two indexing methods are used simultaneously in the
hope that no confusion will arise. Thus, in the four taxa example we have dp ; =

d1,0 = do. In general, we get d; = d, , = dp,, With

a:max{k|;k(k—1)<i}: EJF\/EJ,b:i—;(a—na,

and for ¢ > d we get
dc,d - dc(c—l)/2+d'

2.2 The Q-Criterion

The NJ algorithm starts by computing the so called Q-criterion or the cherry
picking criterion, given by the formula

n—1

n—1
Gap = (0 —=2)dap — Y dak — Y dip- (Q)
k=0 k=0

This is a key of the NJ algorithm to choose which pair of taxa is a neighbor.

Theorem 1 (Saitou and Nei, 1987, Studier and Keppler, 1988 [14, 16]).
Let dgyp for all pair of taza {a,b} be the tree metric corresponding to the tree
T. Then the pair {z,y} which minimizes qqp for all pair of taxa {a,b} forms a
neighbor.

Arranging the Q-criteria for all pairs in a matrix yields again a symmetric
matrix, and ignoring the diagonal entries we can see it as a vector of dimension
m just like the input data. Moreover, the Q-criterion is obtained from the input
data by a linear transformation:

q=A"d,

and the entries of the matrix A are given by

n—4 ifi=j,
AW =AD =81 iti#j and {a,b} N {e,d} #0, (1)
0 else,

where a > b is the row/column-index equivalent to ¢ and likewise for ¢ > d and
4. When no confusion arises about the number of taxa, we abbreviate A™ to A.

After computing the Q-criterion q, the NJ algorithm proceeds by finding the
minimum entry of q, or, equivalently, the maximum entry of —q. The two nodes
forming the chosen pair (there may be several pairs with minimal Q-criterion)
are then joined (“cherry picking”), i.e., they are removed from the set of nodes
and a new node is created. Suppose out of our n taxa {0,...,n — 1}, the first
cherry to be picked is m — 1, so the taxa n — 2 and n — 1 are joined to form a
new node, which we view as the new node number n — 2. The reduced pairwise
distance matrix is one row and one column shorter than the original one, and by
our choice of which cherry we picked, only the entries in the rightmost column
and bottom row differ from the original ones. Explicitly,

v d; for 0 <i < ("}7)
l 3(di+ dignz) —dm—1) for ("}%) <i< ("))

and we see that the reduced distance matrix depends linearly on the original
one:

d’ = Rd,
with R = (r;;) € RUP=+DX™ where

1 for 0 <i=j
12 for (";?) <i
rij=41/2 for (";%) <i
—1/2 for ("}?) <i

0 else

—
3
|
[V
~

/\/\5/\
SRR
=
S S N
LS
|
~.
+
S
[
[\]

3

S
—

7j:m_1

The process of picking cherries is repeated until there are only three taxa left,
which are then joined to a single new node.

We note that since new distances d’ are always linear combinations of the
previous distances, all Q-criteria computed throughout the NJ algorithm are
linear combinations of the original pairwise distances. Thus, for every possible

tree topology ¢ outputted by the NJ algorithm (and every possible ordering o of

picked cherries that results in topology t), there is a polyhedral cone Cr , C R(:)
of dissimilarity maps. The NJ algorithm will output ¢ and pick cherries in the
order o iff the input lies in the cone Cr,. We call the cones Cr, Neighbor-
Joining cones, or NJ cones.

2.3 The shifting lemma

We first note that there is an n-dimensional linear subspace of R™ which does
not affect the outcome of the NJ algorithm (see [11]). For a node a we define its

shift vector s, by
1 ifae{bc
(Sa)b,c = { }
0 else

which represents a tree where the leaf a has distance 1 from all other leaves
and all other distances are zero. The Q-criterion of any such vector is —2 for
all pairs, so adding any linear combination of shift vectors to an input vector
does not change the relative values of the Q-criteria. Also, regardless of which
pair of nodes we join, the reduced distance matrix of a shift vector is again a
shift vector (of lower dimension), whose Q-criterion will also be constant. Thus,
for any input vector d, the behavior of the NJ algorithm on d will be the same
as on d + s if s is any linear combination of shift vectors. We call the subspace
generated by shift vectors S.

We note that the difference of any two shift vectors is in the kernel of A, and
the sum of all shift vectors is the constant vector with all entries equal to n. If
we fix a node a then the set

{s.—s5|b# a}

is linearly independent.

2.4 The first step in cherry picking

After computing the Q-criterion q, the NJ algorithm proceeds by finding the
minimum entry of it, or, equivalently, the maximum entry of —q. The set cq; C
R™ of all g-vectors for which ¢; is minimal is given by the normal cone at the
vertex —e; to the (negative) simplex

Ay =conv{—e; |0<i<m—1} CR™,

where eg,...,e,_1 are the unit vectors in R”. The normal cone is defined in
the usual way by

Na,, ,(—€):={xeR™|(—e;,x)
={xeR"|(—e;x

> (p,x) forpe A}
) > (—ej,x) for 0 < j <m-—1},

(2)

with (-,-) denoting the inner product in R™.

Substituting q = Ad into (2) gives

q€cg; & i=argmax(—e;, Ad)
& i =argmax(—ATle;, d) (3)

& i=argmax(—Aej,d) because A is symmetric.

Therefore the set cd; of all parameter vectors d for which the NJ algorithm will
select cherry 7 in the first step is the normal cone at —Ae; to the polytope

P, := conv{—Aeg,...,—Aem_1}. (4)

The shifting lemma implies that the affine dimension of the polytope P, is at
most m — n. Computations using polymake show that this upper bound gives
the true value.

If equality holds for one of the inner products in this formula, then there are
two cherries with the same Q-criterion.

As the number of taxa increases, the resulting polytope gets more compli-
cated very quickly. By symmetry, the number of facets adjacent to a vertex
is the same for every vertex, but this number grows following a strange pat-
tern. See Table 1 for some calculated values. We also computed f-vectors for
P, via polymake. With n = 5, we have (1,10,45,90,75,22,1), with n = 6,
(1,15,105,435,1095, 1657, 1470, 735, 195, 25, 1), and with n > 7 we ran polymake
over several hours and it took more than 9GB RAM. Therefore, we could not
compute them.

no. of| no. of dimension facets through no. of
taxa |vertices vertex facets
4 3 2 2 3
5 10 5 12 22
6 15 9 18 25
7 21 14 500 717
8 28 20 780 1,057
9 36 27 30,114 39,196
10 45 35 77,924 98,829

Table 1. The polytopes P, for some small numbers of taxa n.

2.5 The cone cd;

Equation (3) allows us to write cd; as an intersection of half-spaces as follows:
cd; = {x| (—Ae;,x) > (—Ae;,x) for j # i}
= {x[(~Ale; —e;),x) = 0 for j # i}
= () {x | (~Ale; —e;),x) > 0}

J#i

()

We name the half-spaces, their interiors and the normal vectors defining them
as follows:

hgl) = —A(n) (ei — ej),
Hfj") = {x eER™| (hE;‘),X) > 0} ; (6)

A = {x eR™ | (b, x) > 0} :
where again we omit the superscript (n) if the number of taxa is clear.

If there are more than four taxa, then this representation is not redundant:
For any pair ¢ and j of cherries, we can find a parameter vector d lying on the
border of H;; (i.e., (h;;,d) = 0) but in the interior Hiy. of the other half-spaces
for k # 1, j. One such d is given by

2 ifk=idiork=j,
dy :=
4 else.

Thus we have found an H-representation of the polyhedron cd; consisting of
only m — 1 inequalities. Note that Table 1 implies that a V-representation of the
same cone would be much more complicated, as the number of vectors spanning
it is equal to the number of facets incident at the vertex —Ae;.

Example 1. The normal vectors to the 22 facets of Ps, and thus the rays of the
normal cones to Ps, form two classes (see Fig. 2). The first class contains a total
of 12 vectors (as there are 12 assignments of nodes 0 to 4 to the labels a to
e which yield nonisomorphic labelings), and every normal cone contains six of
them. The second class contains 10 vectors, and again every normal cone has six
of them as rays. For each class there are two diagrams in Fig. 2, and we obtain

L

b b a a
@ e e BT TN

N b ¢ d p,cd

e e--
Fig. 2. Diagrams describing the facet-normals of Ps.
a normal vector to one of the facets of Ps by assigning nodes from {0,...,4}

to the labels a, ..., e. The left diagram tells which vertices of P5 belong to the
facet defined by that normal vector: Two nodes in the diagram are connected by
an edge iff the vertex belonging to that pair of nodes is in the facet. The edges
in the right diagram are labeled with the distance between the corresponding
pair of nodes in the normal vector. This calls for an example: Setting a =0, ...,
e =4, Fig. 2(a) gives a distance vector

(d01a dOQ; R d24; d34)T = (717]-a 1; 717 713 1; 17 717]-a 71)T7

which is a common ray of the cones cdy, cdya, cdas, cdss and cdyy. Thus of the
22 facets of P5, 12 have five vertices and 10 have six vertices.

3 The NJ cones for five taxa

In the case of five taxa there is just one unlabeled tree topology (cf. Fig. 3) and
there are 15 distinct labeled trees: We have five choices for the leaf which is not
part of a cherry and then three choices how to group the remaining four leaves
into two pairs. For each of these labeled topologies, there are two ways in which
they might be reconstructed by the NJ algorithm: There are two pairs, any one
of which might be chosen in the first step of the NJ algorithm.

2

0 @ 4 (b)

Fig. 3. (a) A tree with five taxa (b) The same tree with all edges adjacent to leaves
reduced to length zero. The remaining two edges have lengths o and (.

For distinct leaf labels a, b and ¢ € {0,1,2,3,4} we define Cyp . to be the
set of all input vectors for which the cherry a-b is picked in the first step and ¢
remains as single node not part of a cherry after the second step. For example,
the tree in Fig. 3(a) is the result for all vectors in C1g2UC43 2. Since for each tree
topology ((a,b),c,(d,e)) (this tree topology is written in the Newick format) for
distinct taxa a,b,c,d,e € {0,1,2,3,4}, the NJ algorithm returns the same tree
topology with any vector in the union of two cones Cgp . U Cye ., there are 30
such cones in total, and we call the set of these cones C.

3.1 Permuting leaf labels

Because there is only one unlabeled tree topology, we can map any labeled
topology to any other labeled topology by only changing the labels of the leafs.
Such a change of labels also permutes the entries of the distance matrix. In this
way, we get an action of the symmetric group S5 on the input space R'?, and
the permutation o € S5 maps the cone Cyp . linearly to the cone Cy(q)o(1),0(c)-
Therefore any property of the cone Cyp . which is preserved by unitary linear
transformations must be the same for all cones in C, and it suffices to determine
it for just one cone.
The action of S5 on R'® decomposes into irreducible representations by

RaR*e R®
OR* P ,
=S =W

where the first summand is the subspace of all constant vectors and the second
one is the kernel of A®). The sum of these two subspaces is exactly the space
S generated by the shift vectors. The third summand, which we call W, is the
orthogonal complement of S and it is spanned by vectors wgp cq in W with

1 if xy = ab or xy = cd
(Wab,ed)ay = —1 if 2y = ac or zy = bd
0 else
where a, b, ¢ and d are pairwise distinct taxa in {0,1,2,3,4} and (wap,cd)zy is
the z—yth coordinate of the vector wgpcq. One linearly independent subset of
this is
W1 = Wo1,34, W2 i= Wi2,40, W3 1= W23,01, W4 = W34,12, W5 1= W40,23-

Note that the 5-cycle (01234) of leaf labels cyclically permutes these basis vec-
tors, whereas the transposition (01) acts via the matrix

2 1 1 1 1
o1
T—=-lo-1-1 1-1
210-1 1-1-1
0-1-1-1 1

Because a five-cycle and a transposition generate S5, in principle this gives us
complete information about the operation.

3.2 The cone Cy32

Since we can apply a permutation o € S, without loss of generality, we suppose
that the first cherry to be picked is cherry 9, which is the cherry with leaves 3
and 4. This is true for all input vectors d which satisfy

(hgﬂ‘,d) ZOfOYi:O,...,S,

where the vector
h(n) = —A(n) (ei — ej)

ij
is perpendicular to the hyperplane of input vector for which cherries i and j
have the same Q-criterion, pointing into the direction of vectors for which the
Q-criterion of cherry i is lower.

We let rq, ro and r3 be the first three rows of —A® RG) If (r1,d) is maximal
then the second cherry to be picked is 0-1, leaving 2 as the non-cherry node, and
similarly ro and rs lead to non-cherry nodes 1 and 0. This allows us to define the
set of all input vectors d for which the first picked cherry is 3-4 and the second
one is 0-1:

C(34,2 = {d‘(h9,’i7d) > 0 for i = 07 <. 'a87 and (rl —I'Q,d) > Oa (rl —I‘37d) > O}
(7)

We have defined this set by 11 bounding hyperplanes. However, in fact, the
resulting cone has only nine facets. A computation using polymake [6] reveals
that the two hyperplanes hg ; and hg o are no longer faces of the cone, while the
other nine hyperplanes in (7) give exactly the facets of the cone. That means
that, while we can find arbitrarily close input vectors d and d’ such that with
an input d the NJ algorithm will first pick cherry 3-4 and with an input d’ the
NJ algorithm will first pick cherry 1-2 (or 0-2), we cannot do this in such a way
that d will result in the labeled tree topology of Fig. 3, where 2 is the lonely
leaf.

Also note that C, the set of NJ cones which the NJ algorithm returns the
same tree topology with any vector in the union of two cones Cgup.c U Cye.c, is
not convex which is shown in [3]. For details of geometry and combinatorics of
the NJ cones for n =5, see [3].

4 The six taxa case

Note that since each of the NJ cones includes constraints for five taxa, the
union of the NJ cones which gives the same tree topology is not convex. To
analyze the behavior of NJ on distance matrices for six taxa, we use the action
of the symmetric group as much as possible. However, in this case we get three
different classes of cones which cannot be mapped onto each other by this action.
We assume the cherry which is picked in the first step to consist of the nodes 4
and 5. Picking this cherry replaces these two nodes by a newly created node 45,
and we have to distinguish two different cases in the second step (see Fig. 4):

— If the cherry in the second step does not contain the new node 45, we may

assume the cherry to be 01. For the third step, we again get two possibilities:

e The two nodes 45 and 01 get joined in the third step. We call the cone
of input vectors for which this happens Cf.

e The node 45 is joined to one of the nodes 2 and 3, without loss of

generality, to 3. We call the resulting cone Cfy.
— If the cherry in the second step contains the new node 45, we may assume

the other node of this cherry to be 3, creating a new node 45 — 3. In the
third step, all that matters is which of the three nodes 0, 1 and 2 is joined
to the node 45 — 3, and we may, without loss of generality, assume this to
be node 2. This gives the third type of cone, Cyy.

The resulting tree topology for the cone Ct is shown in Fig. 5(a), while both
C1r and Cyyp give the topology shown in 5(b). We now determine which elements
of Sg leave these cones fixed (stabilizer) and how many copies of each cone give
the same labeled tree topology:

Cy | Cn Cm
stabilizer ((01), (23), (45))| ((01), (45)) | ((01), (45))
size of stabilizer 8 4 4
number of cones 90 180 180
cones giving same labeled topology 6 2 2
solid angle (approx.) 2.888-1073 [1.848-1073|2.266 - 1073

<
.<:/ '<4> Cr

o << \5*%
<< e

Fig. 4. The three ways of picking cherries in the six taxa case.

23

B
a ¢
01 45
() (b)

or
N
w

o1

Fig. 5. The two possible topologies for trees with six leaves, with edges connecting to
leaves shrunk to zero.

Thus, the input space R'® is divided into 450 cones, 90 of type I and 180 each
of types II and III. There are 15 different ways of assigning labels to the tree
topology in Fig. 5(a), and for each of these there are six copies of C1 whose union
describes the set of input vectors resulting in that topology. For the topology in
Fig. 5(b) we get 90 ways of assigning labels to the leaves, each corresponding to
a union of two copies of Cy; and two copies of Cry.

The above table also gives the solid angles of the three cones. In the five
taxa case, any two cones can be mapped onto one another by the action of the
symmetric group, which is unitary. Therefore all thirty cones have the same
solid angle, which must be 1/30. However, in the six taxa case, we get different
solid angles, and we see that about three thirds of the solid angle at the origin
are taken by the cones of types II and II1. Thus, on a random vector chosen
according to any probability law which is symmetric around the origin (e.g.,
standard normal distribution), NJ will output the tree topology of Fig. 5(b)
with probability about 3/4.

On the other hand, any labeled topology of the type in Fig. 5(a) belongs
to six cones of type I, giving a total solid angle of ~ 1.73 - 1072, whereas any
labeled topology of the type in Fig. 5(b) belongs to two cones each of type IT and
111, giving a total solid angle of only ~ 0.82 - 1072, which is half as much. This
suggests that reconstructing trees of the latter topology is less robust against
noisy input data.

5 Simulation results

In this section we will analyze how the tree metric for a tree and pairwise dis-
tances estimated via the maximum likelihood estimation lie in the polyhedral
subdivision of the sample space. In particular, we analyze subtrees of the two
parameter family of trees described by [13]. These are trees for which the NJ
algorithm has difficulty in resolving the correct topology. In order to understand
which cones the data lies in, we simulated 10,000 data sets on each of the two
tree shapes, 71 and T, (Fig. 6) at the edge length ratio, a/b = 0.03/0.42 for se-
quences of length 500BP under the Jukes-Cantor model [9]. We also repeated the
runs with the Kimura 2-parameter model [7]. They are the cases (on eight taxa)
in [13] that the NJ algorithm had most difficulties in their simulation study (also
the same as in [10]). Each set of 5 sequences are generated via evolver from
PAML package [17] under the given model. evolver generates a set of sequences
given the model and tree topology using the birth-and-death process. For each
set of 5 sequences, we compute first pairwise distances via the heuristic MLE
method using a software fastDNAm1 [12]. To compute cones, we used MAPLE and
polymake.

Fig. 6. T1 and T» tree models which are subtrees of the tree models in [13].

To study how far each set of pairwise distances estimated via the maximum
likelihood estimation (which is a vector y in R®) lies from the cone, where the ad-
ditive tree metric lies, in the sample space, we calculated the f5-distance between
the cone and a vector y.

Suppose we have a cone C' defined by hyperplanes ny,...,n,, ie.,

C={x|(n;,x)>0fori=1,...,7}

and we want to find the closest point in C' from some given point v. Because C'
is convex, for f3-norm there is only one such point, which we call u. If v € C
then u = v and we are done. If not, there is at least one n; with (n;,v) < 0,
and u must satisfy (n;,u) = 0.

Now the problem reduces to a lower dimensional problem of the same kind:
We project v orthogonally into the hyperplane H defined by (n;,x) = 0 and call
the new vector v. Also, C' N H is a facet of C, and in particular a cone, so we
proceed by finding the closest point in this cone from v.

Distances of correctly classified vectors from closest misclassified vector

1200 \ \ \ \
T1JC
1000 T2 JC ------ |
T1 Kimura ---------
800 .T2 K1T11ura -
2 noiseless input
2
et 600 _
°
-
d
400 —
200 —
0 S| Tl)
0.15 0.2 0.25 0.3
distance
Distances of misclassified input vectors from closest correctly classified vector
1600 \ \ \ \ \ \ \
T1JC
1400 T2 JC ——---- .
1200 T1 Kimura --------- |
T2 Kimura ----
g 1000 —
w0
g
- 800 —
S
7 600 |
400 —
200 —
0 \:"‘7-1-‘—»——-:.,4..—, . |

0.2 0.25 0.3 0.35 0.4

distance

Fig. 7. Distances of correctly (top) and incorrectly (bottom) classified input vectors
to the closest incorrectly/correctly classified vector.

We say an input vector (distance matrix) is correctly classified if the vector is
in one of the cones where the vector representation of the tree metric (noiseless
input) is. We say an input vector is incorrectly classified if the vector is in the
complement of the cones where the vector representation of the tree metric is.
For input vectors (distance matrices) which are correctly classified by the NJ
algorithm, we compute the minimum distance to any cone giving a different tree
topology. This distance gives a measure of robustness or confidence in the result,
with bigger distances meaning greater reliability. The results are plotted in the
left half of Fig. 7 and in Fig. 8. Note that the distance of the noiseless input,
i.e., the tree metric from the tree we used for generating the data samples, gives
an indication of what order of magnitude to expect with these values.

JC Kimura2

T1 T2 T1 T2
of cases| 3,581 6,441 3,795 4,467
Mean 0.0221 0.0421 0.0415 0.0629

Variance [2.996-107%9.032-107%[1.034-1072 2.471- 1073

Fig. 8. Mean and variance of the distances of correctly classified vectors from the
nearest misclassified vector.

JC Kimura2
T1 T | T1 T2
of cases| 6,419 3,559 |6,205 5,533
Mean 0.0594 0.0331 [0.0951 0.0761
Variance [0.0203 7.39-1074]0.0411 3.481 -1072

Fig. 9. Mean and variance of the distances of misclassified vectors to the nearest cor-
rectly classified vector.

For input vectors to which the NJ algorithm returns with a tree topology
different from the correct tree topology, we compute the distances to the two
cones for which the correct answer is given and take the minimum of the two.
The bigger this distance is, the further we are off. The results are shown in the
right half of Fig. 7 and in Fig. 9.

From our results in Fig. 8 and Fig. 9, one notices that the NJ algorithm
returns the correct tree more often with 75 than with 7. These results are
consistent with the results in [15,11]. Note that any possible quartet in 7} has
a smaller (or equal) length of its internal edge than in T5 (see Fig. 6). Gascuel
and Steel defined this measure as neighborliness [15]. Mihaescu et al. showed
that the NJ algorithm returns the correct tree if it works correctly locally for
the quartets in the tree [11]. The neighborliness of a quartet is one of the most
important factors to reconstruct the quartet correctly, i.e., the shorter it is the
more difficult the NJ algorithm returns the correct quartet. Also Fig. 7 shows
that most of the input vectors lie around the boundary of cones, including the
noiseless input vector (the tree metric). This shows that the tree models 77 and
T, are difficult for the NJ algorithms to reconstruct the correct trees. All source
code for these simulations described in this paper will be available at authors’
websites.

6 Open problems

Question 1. Can we use the NJ cones for analyzing how the NJ algorithm works
if each pairwise distance is assumed to be of the form Dy + ¢ where Dy is the un-
known true tree metric, and € is a collection of independent normally distributed
random variables? We think this would be very interesting and relevant.

Question 2. With any n, is there an efficient method for computing (or approxi-
mating) the distance between a given pairwise distance vector and the boundary

of the NJ optimality region which contains it? This problem is equivalent to pro-
jecting a point inside a polytopal complex P onto the boundary of P. Note that
the size of the complex grows very fast with n. How fast does the number of
the complex grow? This would allow assigning a confidence score to the tree
topology computed by the NJ algorithm.

References

1. Atteson, K.: The performance of neighbor-joining methods of phylogenetic recon-
struction. Algorithmica, 25 (1999) 251-278.

2. Bryant, D.: On the uniqueness of the selection criterion in neighbor-joining. J. Clas-
sif. 22 (2005) 3-15.

3. Eickmeyer, K., Huggins, P., Pachter, L. and Yoshida, R.: On the optimality of the
neighbor-joining algorithm. To appear in Algorithms in Molecular Biology.

4. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood ap-
proach. Journal of Molecular Evolution 17 (1981) 368-376.

5. Galtier, N., Gascuel, O., and Jean-Marie, A.: Markov models in molecular evolution.
In Statistical Methods in Molecular Evolution edited by Nielsen, R., (2005) 3—24.

6. Gawrilow, E. and Joswig, M.: polymake: a framework for analyzing convex poly-
topes. in Polytopes — Combinatorics and Computation, edited by G Kalai and GM
Ziegler (2000) 43-74.

7. Kimura, M.: A simple method for estimating evolutionary rates of base substitution
through comparative studies of nucleotide sequences. Journal of Molecular Evolution
16 (1980) 111-120.

8. Neyman, J.: Molecular studies of evolution: a source of novel statistical problems.
In Statistical decision theory and related topics edited by Gupta, S., Yackel, J., New
York Academic Press, (1971) 1-27.

9. Jukes, H.T. and Cantor, C.: Evolution of protein molecules. In Mammalian Protein
Metabolism edited by HN Munro, New York Academic Press, (1969) 21-32.

10. Levy, D., Yoshida, R. and Pachter, L.: Neighbor-joining with phylogenetic diversity
estimates. Molecular Biology and Evolution 23 (2006) 491-498.

11. Mihaescu, R., Levy, D., and Pachter, L.: Why Neighbor-Joining Works. (2006)
arXiv:cs.DS/0602041.

12. Olsen, G.J., Matsuda, H., Hagstrom, R., and Overbeek, R.: fastDNAml: A tool
for construction of phylogenetic trees of DNA sequences using maximum likelihood.
Comput. Appl. Biosci. 10 (1994) 41-48.

13. Ota, S. and Li, WH.: NJML: A Hybrid algorithm for the neighbor-joining and
maximum likelihood methods. Molecular Biology and Evolution 17 9 (2000) 1401
1409.

14. Saitou, N. and Nei, M.: The neighbor joining method: a new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution 4 (1987) 406-425.
15. Gascuel, O. and Steel, M.: Neighbor-joining revealed. Molecular Biology and Evo-

lution 23 (2006) 1997-2000.

16. Studier, J.A. and Keppler, K.J.: A note on the neighbor-joining method of Saitou
and Nei. Molecular Biology and Evolution 5 (1988) 729-731.

17. Yang, Z: PAML: A program package for phylogenetic analysis by maximum likeli-
hood. CABIOS 15 (1997) 555-556.

18. Yang, Z.: Complexity of the simplest phylogenetic estimation problem. Proceedings
of the Royal Society B: Biological Sciences 267 (2000) 109-116.

19. Ziegler, G.: Lectures on Polytopes. Springer-Verlag 1995.

