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Abstract. Among all the modeling approaches dedicated to cellular bi-
ology, differential algebra is particularly related to the well-established
one based on nonlinear differential equations. In this paper, it is shown
that differential algebra makes one of the model reduction methods both
simple and algorithmic: the quasi-steady state approximation theory, in
the particular setting of generalized chemical reactions systems. This re-
cent breakthrough may suggest some evolution of modeling techniques
based on nonlinear differential equations, by incorporating the reduction
hypotheses in the models. Potential improvements of parameters fitting
methods are discussed too.
Key words: computer algebra, differential algebra, cellular biology, sys-
tem modeling.

1 Introduction

Among all the modeling approaches dedicated to cellular biology, differential
algebra is particularly related to the well-established one based on nonlinear
differential equations [1–3].

Differential equations apply to rather small models. There are many subap-
proaches, restricted to (sometimes piecewise) linear differential equations, quali-
tative simulations, . . . [4–6]. The approach based on nonlinear differential equa-
tions was, however, successfully applied for the analysis of many genetic regu-
latory circuits, including those that work during complex animal embryogenesis
[7]. One of the major successes of this approach is certainly the modeling of the
segment polarity network of the drosophila [8, 9].

This paper is mostly concerned with the model reduction problem for chem-
ical reactions systems based on the generalized mass action law [10]. Among all
the approximation techniques available for such systems [11, lumping, sensitiv-
ity analysis, . . . ], this paper is exclusively concerned with the quasi-steady state
approximation theory.

The model reduction problem for systems of differential equations broadly
consists in simplifying the given system, by means of some simplification hy-
potheses. It aims to get a tractable reduced system, while preserving some prop-
erties of interest (e.g. presence of oscillations, number of equilibria).

Modeling approaches based on nonlinear differential equations do not all di-
rectly rely on the formalism of chemical reactions systems. Quite often, more



sophisticated functions are used such as the Henri-Michaelis-Menten factors and
the Hill functions. It is worth noticing that these sophisticated functions can
quite often be deduced from generalized chemical reactions systems through
some model reduction. However, practitioners using these functions do not al-
ways explicitly formulate the simplifying assumptions which justify these ap-
proximations. Thereby, they do not formulate the domains of validity of their
models as precisely as they could.

Differential algebra makes the quasi-steady state approximation method both
simple and algorithmic in the particular setting of systems of generalized chem-
ical reaction systems [12]. This fact thus suggests to widen the use of these
systems for systems modeling, and to incorporate in the models the hypotheses
which lead to the more sophisticated formulas. One should thereby expect to
obtain models with more ascertained domains of validity and to estimate the
practical relevance of some of the simplification hypotheses.

In addition to the above issues, the differential algebra and the quasi-steady
state approximation theory also suggest improvements of the parameters fitting
problem, which is an important concern in systems modeling. It has been known
for a few years that differential elimination somehow transforms nonlinear least
squares into linear ones in the parameters estimation problem, by suggesting a
starting point for the Newton-like estimation methods [13, 14]. By incorporating
moreover, in these methods, the recent progress obtained in the quasi-steady
state approximation theory, one may also expect to reduce the stiffness of the
differential systems that they need to numerically integrate, thereby speeding
up the overall optimization processes.

2 Differential Elimination

The content of this section owes a lot to [15]. We refer to that paper for more
details.

The differential elimination theory is a subtheory of the differential algebra
[16, 17]. See also [18]. The differential elimination processes that are presented in
this paper take as input two parameters: a system of polynomial (thus nonlin-
ear) differential equations, ordinary or with partial derivatives1 and a ranking2.
They produce on the output an equivalent finite set of polynomial differential
systems, which are simpler, in the sense that they involve some differential equa-
tions which are consequences of the input system but were somehow hidden. The
output may consist of more than one differential system because the differential
elimination process may need to split cases. The set of the differential equations
which are consequences of the input system forms a so-called differential ideal

of some polynomial differential ring. Since this ideal is an infinite set, a nat-
ural question arises: how does the process select the finitely many differential
equations which appear in the output system? This is indeed the role of the
rankings.

1 This paper is only concerned with the ordinary case.
2 Emphasized words have a technical meaning, which will be defined in section 2.2.



2.1 Example

The following example, borrowed from [19, Chapter VII, page 454], is a so-
called differential algebraic equations system, since it mixes differential and non
differential equations. There are three unknown time varying functions (three
dependent variables) x, y and z. The dot over a variable denotes its derivative
w.r.t. the independent variable, which is assumed to be the time, throughout
this paper:

ẋ = 0.7 y + sin(2.5 z) , ẏ = 1.4 x + cos(2.5 z) , 1 = x2 + y2 . (1)

Let us try to apply an explicit numerical integration scheme such as Euler’s
one over this system, for some initial conditions. For each dependent variable
(say) x, the scheme transforms the explicit differential equation ẋ = f(x, y, z) as
a recurrence formula xn+1 = xn +h f(xn, yn, zn), where h denotes some stepsize,
and computes the terms xn the ones after the others. However, the absence of
a differential equation of the following form seems to forbid the application of
Euler’s scheme:

ż = f(x, y, z). (2)

Indeed, this equation is not missing. It is a “hidden” consequence of the input
system: it can be automatically extracted from it by differential elimination. In
order to show how to proceed with the help of the diffalg package of MAPLE,
one first converts the system as a polynomial differential system. For this, one
denotes s the sine, c the cosine and one introduces a few more equations. The
following differential polynomial system is equivalent to the above one.

ẋ = 0.7 y + s , ẏ = 1.4 x + c , 1 = x2 + y2 ,

ṡ = 2.5 ż c , ċ = −2.5 ż s , 1 = s2 + c2 .
(3)

In order to compute equation (2) using diffalg, one stores the differential poly-
nomial system in the variable syst, converting floating point numbers as rational
numbers.

with (diffalg):

syst := [diff(x(t),t) - 7/10*y(t) - s(t),

diff(y(t),t) - 14/10*x(t) - c(t),

x(t)^2 + y(t)^2 - 1,

diff(s(t),t) - 25/10*diff(z(t),t)*c(t),

diff(c(t),t) + 25/10*diff(z(t),t)*s(t),

s(t)^2 + c(t)^2 - 1]:

Then the variable R is assigned the context of the computation: the only deriva-
tion is taken with respect to the time, the notation is the standard diff notation
of MAPLE and the ranking is provided. According to the ranking notation of
the diffalg package, this is the orderly ranking such that s > c > x > y > z.
The properties of that ranking ensure that, if there exists a differential equation
of the form (2) in the radical of the differential ideal generated by syst then the
differential elimination process will find it.



R := differential_ring (derivations = [t], notation = diff,

ranking = [[s, c, x, y, z]]):

Next the Rosenfeld-Gröbner function [20] is applied to syst and R. It returns a
list of MAPLE tables. Each table provides a regular differential chain defining
some differential ideal. The list should be understood as an intersection. Over
the example, the list only involves one entry so that the regular differential
chain does represent the radical differential ideal generated by the input system.
The desired equation stands on the second place of the chain (only the two first
equations are displayed). Enlarging the input system with this equation, it is now
easy to perform any numerical integration method and our problem is solved.

ideal := Rosenfeld_Groebner (syst, R):

rewrite_rules (ideal [1]);

[ d

dt
y (t) =

7

5
x (t) + c (t) ,

d

dt
z (t) =

1

25

3500− 12348 (y (t))
6

+ 13230 c (t)x (t) (y (t))
4
+ 25809 (y (t))

4

441 (y (t))
6
− 882 (y (t))

4
+ 541 (y (t))

2
− 100

+
1

25

−14700 x (t) (y (t))
2
c (t)− 16961 (y (t))

2
+ 3940 x (t) c (t)

441 (y (t))
6
− 882 (y (t))

4
+ 541 (y (t))

2
− 100

, · · ·
]

2.2 Differential Algebra

A differential ring (resp. field) is a ring (resp. field) R endowed with a derivation
(this paper is restricted to the case of a single derivation but the theory is more
general) i.e. a unitary mapping R → R such that (denoting ȧ the derivative
of a):

˙̂
(a + b) = ȧ + ḃ ,

˙̂
(a b) = ȧ b + a ḃ . (4)

Observe that, theoretically, the derivation is an abstract operation. For legibility,
one views it as the derivation w.r.t. the time t. Algorithmically, one is led to ma-
nipulate finite subsets of some differential polynomial ring R = K{U} where K
is the differential field of coefficients (in practice, K = Q, Q(t) or Q(k1, . . . , kr)
where the ki denote parameters that would be assumed to be algebraically in-
dependent) and U is a finite set of dependent variables3. The elements of R, the
differential polynomials are just polynomials in the usual sense, built over the
infinite set, denoted ΘU , of all the derivatives of the dependent variables.

3 In the differential algebra theory, the terminology differential indeterminates is pre-
ferred to dependent variables for derivations are abstract and differential indetermi-
nates are not even assumed to correspond to functions. In order not to mix different
expressions in this paper, the second expression, which seems to be more widely
known, was chosen.



Definition 1. A differential ideal of a differential ring R is an ideal of R, stable

under the action of the derivation.

Let F be a finite subset of a differential ring R. The set of all the finite linear
combinations of various orders derivatives of elements of F , with elements of R
for coefficients, is a differential ideal. It is called the differential ideal generated
by F . An ideal A is said to be radical if a ∈ A whenever there exists some
nonnegative integer p such that ap ∈ A. The radical of an ideal A is the set of all
the ring elements a power of which belongs to A. The radical of a (differential)
ideal is a radical (differential) ideal.

Theorem 1. Let R be a differential polynomial ring and F be a finite subset

of R. A differential polynomial p of R lies in the radical of the differential ideal

generated by F if and only if it vanishes over every analytic solution of F .

Proof. [16, chap. II, §7, 11] or [21].

The Rosenfeld-Gröbner algorithm [20] solves the membership problem to rad-
ical differential ideals. To present it, one needs to define the concept of ranking.

Definition 2. If U is a finite set of dependent variables, a ranking over U is a

total ordering over the set ΘU of all the derivatives of the elements of U which

satisfies: a < ȧ and a < b⇒ ȧ < ḃ for all a, b ∈ ΘU .

Let U be a finite set of dependent variables. A ranking such that, for every
u, v ∈ U , the ith derivative of u is greater than the jth derivative of v whenever
i > j is said to be orderly. If U and V are two finite sets of dependent variables,
one denotes U ≫ V every ranking such that any derivative of any element of U
is greater than any derivative of any element of V . Such rankings are said to
eliminate U w.r.t. V .

Assume that some ranking is fixed. Then one may associate with any differ-
ential polynomial f ∈ K{U} \K the greatest (w.r.t. the given ranking) deriva-
tive v ∈ ΘU such that deg(f, v) > 0. This derivative is called the leading deriva-

tive or the leader of f .
Rankings permit to define leaders. Leaders permit to use differential polyno-

mial as rewrite (substitution) rules. Assume that f = ad vd + · · ·+ a1 v + a0 is a
differential polynomial with leader v (the coefficients ai are themselves differen-
tial polynomials). Then the equation f = 0 can be written (as the rewrite rules

function of diffalg presented in section 2.1 does, though it uses an equal sign
instead of an arrow):

vd −→ −
ad−1 vd−1 + · · ·+ a1 v + a0

ad

· (5)

It can be used afterwards as a rule to simplify any differential polynomial g such
that deg(g, v) ≥ d or deg(g, v(k)) > 0 where v(k) denotes any proper derivative
of v. There are precise algorithms for performing these sorts of substitution



by finite sets of rewrite rules: Ritt’s reduction algorithm or the normal form

algorithm [21, algorithm NF].
The Rosenfeld-Gröbner algorithm gathers as input a finite system F of dif-

ferential polynomials and a ranking. It returns a finite family (possibly empty)
C1, . . . , Cr of finite subsets of K{U}\K, called regular differential chains. Each
system Ci defines a differential ideal Ci (it is a characteristic set of Ci) in the
sense that, for any f ∈ K{U}, we have

f ∈ Ci iff NF(f, Ci) = 0 . (6)

The relationship with the radical A of the differential ideal generated by F is
the following:

A = C1 ∩ · · · ∩ Cr . (7)

When r = 0 we have A = K{U}. Combining both relations, one gets an algo-
rithm to decide membership in A. Indeed, given any f ∈ K{U} we have:

f ∈ A iff NF(f, Ci) = 0, 1 ≤ i ≤ r . (8)

The differential ideals Ci do not need to be prime. They are however necessarily
radical. The NF( · , Ci) function permits to compute canonical representatives of
the residue classes of the differential ring R/Ci.

3 Quasi-Steady State Approximation for Generalized

Chemical Reactions Systems

Differential elimination makes the quasi-steady state approximation (QSSA) the-
ory both simple and algorithmic in the special setting of generalized4 chemical
reactions systems as shown by [12].

3.1 QSSA in General: Fast and Slow Variables

In principle, QSSA applies to systems under the two time-scales standard form.
Consider the following system in two dependent variables x and y (for legibility,
but there may be more than two variables) and assume that ε is a small positive
number.

ẋ = f(x, y) , ε ẏ = g(x, y) . (9)

On a random point (x, y) ∈ R2, the speed of y is high and thus, under some
general conditions, rapidly approaches an area where g(x, y) ≃ 0. The variable x
is said to be slow while the variable y is said to be fast. The QSSA amounts to
approximate such a system by the following one:

ẋ = f(x, y) , 0 = g(x, y) (10)

4 Chemical reactions systems are said to be generalized when their elementary reac-
tions are not required to be balanced. See [10].



which mixes differential and algebraic equations. Note that this approximation
is only valid under some conditions (e.g. stability of the differential system in
the neighborhood of g(x, y) = 0) given in the Tikhonov theorem [22] and after
the transient step is elapsed.

Performing a QSSA over a differential system presents two advantages: it
reduces the number of ODE and it tends to transform stiff systems into nonstiff
ones, much easier to solve numerically.

However, the QSSA is not proven algorithmic in general. The issue relies in
the fact that the fast and slow variables, if they exist, may only be obtained
through a change of coordinates and there does not seem to exist any algorithm
which decides, given a differential system, if such a change of coordinates does
exist.

3.2 QSSA for Chemical Reactions Systems: Fast and Slow Reactions

For differential systems arising from generalized chemical reactions systems,
there exists a standard way to perform the QSSA, provided that the set of
chemical reactions is divided in two parts: the fast ones and the slow ones.

As far as we know, the first clear relationship between this method and
the Tikhonov theorem was established in [23]. Afterwards, close variants of the
same method were rediscovered more or less independently [24, 25]. Though all
these papers present methods, none of them is fully presented in an algorithmic
manner. This may at least partly be due to the fact that some steps of the
methods require the inversion of a matrix over a residue class ring, a non obvious
task which may imply splitting cases.

Indeed, it turns out that the whole method is equivalent to a differential
elimination process, as shown for the first time in [12]. For a general presentation
of the method, one refers to [12]. In this paper, one only presents the method over
a famous example: the Henri-Michaelis-Menten reduction of the basic enzymatic
reaction system:

E + S
k1

−−−−→
←−−−−

k2

C
k3−−−−→ E + P . (11)

The initial system of ODE writes: Ẋ = N V i.e.




Ė

Ċ

Ṡ

Ṗ


 =




−1 1 1
1 −1 −1
−1 1 0

0 0 1


 ·




k1 E S
k2 C
k3 C


 (12)

where X is the vector of the chemical species, N is the system stoichiometry
matrix and V is the vector of the reaction rates. The stoichiometry matrix is
built as follows: it involves one row per species and one column per reaction.
The entry at row r, column c is the number of molecules of species r produced
by the reaction c (i.e. the number of times species r occurs on the reaction right



handside minus the number of times it occurs on the reaction left handside). The
rate of a reaction is the product of the left handside species (with multiplicities)
times the reaction rate (the parameter over the arrow). Expanding the formula,
one gets:

Ė = −k1 E S + (k2 + k3)C ,

Ṡ = −k1 E S + k2 C ,

Ċ = k1 E S − (k2 + k3)C ,

Ṗ = k3 C .

(13)

Among all the assumptions leading to the Henri-Michaelis-Menten formula:

Ṡ = −
Vmax S

K + S
, (14)

the only one concerning the QSSA is that k1, k2 ≫ k3 i.e. that the two leftmost
reactions of the chemical system (11) are fast while the rightmost one is slow.
The other assumptions will be given later.

In order to perform the QSSA over the above system, one builds a DAE
system from system (13) by replacing the contribution of the fast reactions by
a new dependent variable, F1, and by inserting an algebraic equation, defining
the “slow variety”, stating that the fast reactions are at quasi-equilibrium.

Ė = −F1 + k3 C ,

Ṡ = −F1 ,

Ċ = F1 − k3 C ,

Ṗ = k3 C ,
0 = k1 E S − k2 C .

(15)

In general there may be many different new dependent variables Fi and many dif-
ferent algebraic equations. Observe that, over the example, the two fast reactions
are considered as one reversible reaction and associated to only one dependent
variable: F1. The general process is described in section 3.3. Differential elim-
ination is performed below using diffalg. The parameters are put in the base
field F of the equations to avoid discussions over their values (they are then
considered as algebraically independent). The inequation C(t) 6= 0 is inserted to
avoid considering this degenerate case. The output is pretty printed.

with(diffalg):

DAE_syst := [

diff(E(t),t) - (-F1(t) + k3*C(t)),

diff(S(t),t) + F1(t),

diff(C(t),t) - (F1(t) - k3*C(t)),

diff(P(t),t) - k3*C(t),

k1*E(t)*S(t) - k2*C(t) ]:

F := field_extension (transcendental_elements=[k1,k2,k3]):

R := differential_ring (ranking=[[F1], [C,E,P,S]], notation=diff,

derivations=[t], field_of_constants=F):

ideal := Rosenfeld_Groebner (DAE_syst, [C(t)], R);

ideal := [characterizable]

rules := rewrite_rules(ideal [1]);



[
F1 =

k3 k1 E S (k1 S + k2)

k2 (k1 S + k1 E + k2)
, Ė =

k2
1 E2 k3 S

k2 (k1 S + k1 E + k2)
, Ṗ =

k3 k1 E S

k2
,

Ṡ = −
k3 k1 E S (k1 S + k2)

k2 (k1 S + k1 E + k2)
, C =

k1 E S

k2

]

Of course, one does not recognize formula (14) in this regular differential chain:
the reduction is incomplete since the extra assumptions made in the Henri-
Michaelis-Menten reduction have not yet been taken into account. These as-
sumptions are: S(0) ≫ E(0), P ≃ 0 and C(0) = 0. One refers to [12] for a
complete reduction.

3.3 Construction of the DAE to Consider for the QSSA

First split the stoichiometry matrix N into two matrices N f and Ns putting the
columns which correspond to fast reactions in Nf and the ones which correspond
to slow reactions in Ns. Split accordingly the rows of the vector V into two
vectors Vf and Vs. One gets a formula Ẋ = Ns Vs + Nf Vf . Over system (12), one
gets: 



Ė

Ċ

Ṡ

Ṗ


 =




1
−1

0
1


 ·

(
k3 C

)
+




−1 1
1 −1
−1 1

0 0


 ·

(
k1 E S
k2 C

)
. (16)

Determine a maximal linearly independent set of columns of Nf (i.e. a basis of
that matrix) and remove the other ones, giving a new matrix N f . Update the
vector of reaction rates Vf , giving a new vector V f such that Nf Vf = N f V f .
Over the example, removing the second column, one gets a new formula Ẋ =
Ns Vs + N f V f giving system (13):




Ė

Ċ

Ṡ

Ṗ


 =




1
−1

0
1


 ·

(
k3 C

)
+




−1
1
−1

0


 ·

(
k1 E S − k2 C

)
. (17)

Replace the vector V f by a vector F of new dependent variables Fi. The slow
variety is defined by letting the entries of V f all equal to zero. The DAE to be
considered for quasi-steady state approximation is

Ẋ = Ns Vs + N f F , V f = 0 . (18)

Over the example, one gets a formula giving system (15):



Ė

Ċ

Ṡ

Ṗ


 =




1
−1

0
1


 ·

(
k3 C

)
+




−1
1
−1

0


 ·

(
F1

)
,

(
k1 E S − k2 C

)
= 0 . (19)



3.4 Limits and Generalizations of the Method

In some cases, the Fi variables cannot be all eliminated. In that case, the method
does not apply. In [12], this is checked by testing whether NF(Ẋi, C) only de-
pends on the Xj (with order 0), for each dependent variable Xi and each regular
differential chain C produced by differential elimination. A simple example is
given by the generalized chemical reactions system, assuming k1, k2 are both
fast:

A
k1−−−−→ B , A

k2−−−−→ C . (20)

If one applies the method sketched above, one gets the following differential-
algebraic system:

Ȧ = −F1 − F2 , Ḃ = F1 , Ċ = F2 , 0 = k1 A , 0 = k2 A (21)

which simplifies to the regular differential chain:

F1 = −Ċ , F2 = Ċ , Ḃ = −Ċ , A = 0 . (22)

The normal form of Ḃ is −Ċ and Ċ is equal to its own normal form: the method
failed.

According to the Tikhonov theorem, there are some extra conditions to check
for the approximation to be valid [23, conditions C3 and C4]. In particular, the
slow variety defined by the algebraic equations must be attractive.

In some cases, there exists a better slow variety than the one provided by
the method. To compute a reduced system w.r.t. this different variety, one just
needs to change the set of algebraic equations of the differential-algebraic system
and to run the differential elimination process. Such a situation is illustrated by
the next example borrowed from [26] where k2 ≫ k1:

A
k1−−−−→ B

k2−−−−→ ∅ . (23)

If one applies the method, one gets the following differential-algebraic system:

Ȧ = −k1 A , Ḃ = k1 A− F1 , 0 = k2 B (24)

which simplifies to the following regular differential chain:

F1 = k1 A , Ȧ = −k1 A , B = 0 . (25)

However, the slow variety k1 A−k2 B = 0 is better than B = 0. A better reduced
system is thus obtained by performing differential elimination over the following
differential-algebraic system:

Ȧ = −k1 A , Ḃ = k1 A− F1 , 0 = k1 A− k2 B (26)

which simplifies to the following regular differential chain:

F1 = (k1 + k2)B , Ḃ = −k1 B , A = k2

k1
B . (27)



4 Application to System Modeling in Cellular Biology

This section aims at establishing some relationship between the quasi-steady
state approximation method sketched in section 3 and system modeling in cel-
lular biology. For this purpose, an application of this technique to the analysis
of a genetic regulatory circuit made of a single gene, regulated by a polymer of
its own protein [27, 28] is described.

Pn

α

θ

ρf
ρb

δM

P

δP

M

G H

+

P

+

Pn

P

+

P

+

β

P
n−1

P2

Fig. 1. A single gene regulated by a polymer of its own protein.

One considers the genetic circuit depicted in Figure 1. The single gene is
regulated by an order n polymer of its own protein. The integer number n is a
parameter of the system. This study was motivated by the activity of a working
group aiming at modeling the circadian clock of the green alga ostreococcus tauri.
The addressed question was: does there exist biologically meaningful parameters
values which make this circuit oscillate? More technically: does there exist bio-
logically meaningful parameters values which make a Poincaré-Andronov-Hopf
bifurcation occur? One refers to [27] for a more detailed motivation of the ad-
dressed question and to [29] for a related work.

There are many different ways to derive a system of ordinary differential
equations from the considered circuit but one of the simplest schemes consists
in first translating it as a system of generalized chemical reactions (observe that
transcription and translation are not balanced reactions). The variables G and H
represent the state of the gene. The mRNA concentration and the concentration
of the protein translated from the mRNA are represented by M and P . The n
types of polymers of P are denoted by P = P1, P2, . . . , Pn. Greek letters and



k−

i , k+
i (1 ≤ i ≤ n− 1) represent parameters:

G + Pn

α
−−−−→
←−−−−

θ

H , G
ρf

−−−−→ G + M , H
ρb

−−−−→ H + M ,

M
β

−−−−→M + P , M
δM−−−−→ ∅ , P

δP−−−−→ ∅ ,

Pi + P
k
+

i

−−−−→
←−−−−

k
−

i

Pi+1 (1 ≤ i ≤ n− 1).

(28)

This generalized chemical reactions system can now be canonically translated as
a system of parametric ordinary differential equations, denoting Ai = (k−

i Pi+1−
k+

i Pi P ). Variables G, H, M, P = P1, . . . , Pn are dependent variables. They all
represent species concentrations except G and H , which should rather be viewed
as “random variables”.

Ġ = θ H − α GPn ,

Ḣ = −θ H + α GPn ,

Ṁ = ρf G + ρb H − δM M ,

Ṗ = β M − δP P + 2 A1 + A2 + · · ·+ An−1 ,

Ṗi = −Ai−1 + Ai (2 ≤ i ≤ n− 1) ,

Ṗn = −An−1 + θ H − α GPn .

(29)

This system of n + 3 differential equations depending on 2 n + 5 parameters is
actually much too large for any further symbolic analysis. It needs to be reduced.

In order to apply a quasi-steady state approximation, it is assumed that
the n−1 chemical reactions describing the polymerization of the protein are fast
compared to the other ones.

Then, according to the technique sketched in section 3, one gets an approx-
imation of system (29) by replacing each expression Ai by a new dependent
variable Fi (1 ≤ i ≤ n−1) and by augmenting this system by the n−1 following
algebraic equations:

0 = k+
i P Pi − k−

i Pi+1, (1 ≤ i ≤ n− 1). (30)

It is now sufficient to eliminate the Fi from the so obtained differential-algebraic
system. Unfortunately, this cannot be performed by a standard differential elim-
ination algorithm since the number of equations depends on the parameter n.
However, such an algorithm can be applied for many different values of n and
the general formula can be inferred.

Ġ = θ H − α Kn−1 Pn G,

Ḣ = −θ H + α Kn−1 Pn G,

Ṁ = ρb H + ρf G− δM M,

Ṗ =
n θ H − n α Kn−1 Pn G− δP P + β M

n−1∑

i=0

(i + 1)2 Ki P i

(31)



where Ki =
k+
1 · · ·k

+
i

k−

1 · · ·k
−

i

with the convention K0 = 1.

The redundant equation describing the evolution of H can be removed and H
can be replaced by γ0 − G in the three remaining equations, where γ0 is some
new parameter denoting the total quantity of gene. Some further exact reduction
of the parameters set can moreover be performed and one is led to the three
parametric ODE model [28, system (3)].

This three parametric ODE reduced system is simple enough to be tackled by
the Hopf criterion (a variant of the Routh-Hurwitz one) and it was proven in [27,
28] that a Poincaré-Andronov-Hopf bifurcation occurs for biologically meaningful
values of the parameters if and only if n > 8. One refers to those papers for a
biological interpretation of this result.

Let us conclude this section by a few comments on the involved quasi-steady
state approximation methods. When [27] was written, its authors did not know
the particular way to perform the quasi-steady state approximation over an ODE
system derived from a generalized chemical reactions system. Thus they applied
a “handmade” technique inspired from the singular perturbation theory yielding
a three ODE model and “solved” it. Integral curves obtained by numerical inte-
gration showed differences between the initial and the reduced system but this
was expected. Later, the same authors understood the particular technique for
generalized chemical reactions system and showed how it is related to differen-
tial elimination [12]. This technique, applied over the very same system in [28],
produced (after a suitable change of coordinates) a slightly different reduced sys-
tem: one gets the old [27] reduced system by clearing the denominator of the last
ODE of system (31). By some reduction argument, the proof of the old paper
could be applied to the new model. This somehow confirmed that the handmade
reduction technique was good. However, comparisons of integral curves obtained
by numerical integration showed that the new model is more accurate, in the
sense that it has a wider domain of validity, than the old one.

5 Parameters Estimation

The problem which is addressed in this section can be stated as follows: given
a parametric ordinary differential system and files of measures for some of the
dependent variables, estimate the values of the unknown parameters. In this
context, differential elimination somehow transforms a nonlinear least squares
problem into a linear one by guessing a starting point for a Newton-like method.

The approach described in this section was published in [30, 13]. It was imple-
mented in a software based on the BLAD libraries [31, 14]. It is strongly related
to the study of the identifiability of parametric differential systems, for which a
huge literature is available [32–36].

To be honest, the method is not very convenient for system modeling in
cellular biology for it requires pretty precise model equations as well as pretty
accurate measures. In cellular biology, one usually does not know the model
equations though the situation might be better for in vitro systems or synthetic



genes. But accurate measures are definitely not available in 2008. However, we
chose to present the method anyway in this paper for two reasons: first, the use
of differential elimination always improves the classical numerical one ; second,
the quasi-steady state approximation technique presented in section 3 suggests
another, new, improvement.

The content of this section owes a lot to [15] and one refers to this paper for
more detailed explanations.

The problem is stated by an academic example. Consider the following sys-
tem of parametric ordinary differential equations. There are two dependent vari-
ables x1, x2 and four parameters k12, k21, ke, Ve. It could be derived from a
chemical reactions system since it involves two linear exchanges and a Henri-
Michaelis-Menten degradation term.

ẋ1 = −k12 x1 + k21 x2 −
Ve x1

ke + x1
, ẋ2 = k12 x1 − k21 x2 . (32)

Assume that x1 is observed i.e. that a file of measures is available for this de-
pendent variable but that x2 is not. For the sake of simplicity, assume moreover
that x2(0) = 0 and ke = 7 are known. Issue: estimate the values of the three
unknown parameters k12, k21, Ve.

There exists a purely numerical method to solve this problem. It is based
on a nonlinear least squares method i.e. a Newton method. The idea is simple:
pick random values for the three unknown parameters. Integrate numerically
the differential system w.r.t. these values and compare the curve obtained by
simulation with the file of measures. The error is defined as the sum, for all
abscissas, of the squares of the ordinates differences between the two curves. The
Newton method (a Levenberg-Marquardt scheme was applied in [14]) updates
the values of the three unknown parameters if the error is considered as too large.
It stops either if the error is small enough of if a stationary point is reached.
However, as every Newton method, nonlinear least squares are very sensitive to
the choice of the starting point (the initial random values) and are very likely
to end up in a local minimum, with wrong parameters values.

By means of differential elimination, it is sometimes possible to compute
a first estimate of the unknown parameters. This estimate is usually not very
precise but can be used as a starting point for the Newton method.

The idea consists in eliminating the non observed variables in order to get
a relation which only involves the observed variable x1, its derivatives up to
any order and the parameters. Let us proceed with the help of diffalg. The
Rosenfeld-Gröbner algorithm5 is applied over the model equations. The ranking
x2 ≫ x1 eliminates x2 w.r.t. x1. The right-hand side of the first model equation
is a rational fraction. It is decomposed as a numerator and a denominator. The
numerator is stored in the list of the equations (first parameter to Rosenfeld-

Gröbner). The denominator is stored in the list of the inequations. To avoid

5 There are more efficient algorithms than Rosenfeld-Gröbner for performing this elim-
ination since the input system already is a characteristic set w.r.t. some orderly
ranking: one could apply a change of ranking algorithm [33, 37] which would avoid
splitting cases.



splitting cases on parameters values, one views them as algebraically independent
elements of the base field of the differential polynomials.

eq1 := diff (x1(t),t) + k12*x1(t) - k21*x2(t) + Ve*x1(t)/(ke + x1(t));

eq2 := diff (x2(t),t) - k12*x1(t) + k21*x2(t);

K := field_extension (transcendental_elements = [k21, k12, ke, Ve]):

R := differential_ring

(derivations = [t], notation = diff,

field_of_constants = K, ranking = [x2, x1]):

ideal := Rosenfeld_Groebner ([numer (eq1), eq2], [denom (eq1)], R);

ideal := [characterizable]

The characteristic set ideal involves two polynomials. The one which does not
involve x2 is the second one, which is displayed below, slightly pretty printed. The
expressions enclosed between square brackets are called “parameters blocks”.

ẍ1 (x1 + ke)
2 + [k12 + k21] ẋ1 (x1 + ke)

2 + [Ve] ẋ1 ke + [k21 Ve] x1 (x1 + ke) = 0 .

This equation tells us that the systems parameters are in principle uniquely
defined. Indeed, assume that the function x1 is known. Then so are its derivatives
ẋ1 and ẍ1. These three functions can therefore be evaluated for three different
values of the time t. The known parameter ke can be replaced by its value.
One thereby gets an exactly determined system of three linear equations whose
unknowns are the parameters blocks. This system admits a unique solution. The
values of the parameters blocks being fixed, it is obvious (in this example!) that
the values of k12, k21 and Ve also are uniquely defined. QED.

In practice, the function x1 is known from a file of measures and one can try
to numerically estimate the values of its first and its second derivative. If the
measures are free of noise, the first derivative can be quite accurately estimated
but this is usually not the case for the second derivative. To overcome these
difficulties due to numerical approximations, one builds an overdetermined linear
system that one solves by means of linear least squares.

The values of the blocks of parameters being known, one still has to recover
the values of the parameters by solving the above algebraic system. In this
example, it is very easy. The obtained values can then be used as a starting
point for the Newton method. Observe that one cannot guarantee that this
starting point does actually lead to the global minimum.

There are however two more important difficulties to overcome.
There may exist algebraic relations between the parameters blocks. There is

no such relation in the example. But assume, for the sake of the explanation,
that the computed differential polynomial involves the three following blocks of
parameters so that the third block is the product of the two first ones:

[Ve] , [k21] , [Ve k21] . (33)

There is no doubt that the numerical values produced during the resolution of
the linear overdetermined system would not satisfy this relation. This would



imply that the final algebraic system to solve in order to get the values of the
parameters would be inconsistent.

The differential systems that the Newton method needs to numerically inte-
grate at runtime may become stiff, forcing the numerical integrators to choose
very small step sizes, thus slowing down the whole optimisation process. Indeed,
in these nonlinear fitting methods, the parameters are the variables. The sets of
large and small parameters have to change during the process and stiffness is
often caused by the presence of different time scales in the differential systems.

A promising idea would consist, in the context of systems evolving from
generalized chemical reactions systems, in applying the quasi-steady state ap-
proximation technique described in section 3. The differential system to be in-
tegrated could be replaced by a reduced one. The error computation of the
Newton method could then be performed over the reduced system, speeding up
the overall process.

6 Conclusion

As a conclusion, let us respond to a quotation of Eric Ponder (a director of
Long Island Biology Association), borrowed from [38, Postscript]: “work on the
mathematics [for biology] seems to me to have developed along two equally
unprofitable lines”.

The use of computer algebra methods for performing differential elimination
seems very promising for enhancing (at least) software for system modeling in
cellular biology. The recent progresses in the quasi-steady state approximation
theory suggest to widen the use of generalized chemical reactions systems and
make the simplification hypotheses more explicit which would otherwise justify
the use of Henri-Michaelis-Menten or Hill terms. Already available standalone
C libraries for differential elimination [31] should still simplify this evolution.

In turn, the search of applications in the field of system modeling in cellular
biology also led to improvements in differential algebra. It is this work which
pushed the authors to study the quasi-steady state approximation theory in the
context of generalized chemical reactions systems and which has also suggested
a new improvement of the nonlinear least squares methods.

Last, these works are far from over. For instance, an important theoretical
challenge consists in designing an algorithmic method for determining good slow
varieties of generalized chemical reactions systems. The authors are involved in
another, more concrete challenge: to develop a modeling software based on these
ideas and to use it to design and analyze synthetic gene networks.
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