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1. Introduction

The residue class ring of a zero dimensional polynomial ideal in K[x1, . . . , xn]
has the structure of an algebra with finitely many basis elements. In the present
work, an algorithm for enabling the computation of these basis elements from the
generating polynomials of a polynomial ideal, which was provided by Professor
Wolfgang Gröbner during his research seminar in the spring of 1964, will be stud-
ied more closely. The goal of studying this algorithm has is to find a termination
criterion for the algorithm (Sections 4 and 8), and to sufficiently systematize it
so that it is suitable for implementation on an electronic computer (Sections 4,
6, and 9). Certain inherent properties will also be presented, which suggest an
application to the calculation of the Hilbert function of an arbitrary polynomial
ideal (Sections 5 and 7).

My sincere thanks go to Professor Wolfgang Gröbner for guiding this work. I
also thank my colleagues at the computing center of the University of Innsbruck,
Dr. H. Knapp and G. Margreiter, for several valuable programming suggestions.

2. Abbreviations, Symbols, Concepts and
Theorems Used

Abbreviations

P-ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . polynomial ring
P-ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . polynomial ideal
LCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . least common multiple
PP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . power product
PPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . residue class of a power product

Symbols

a ∈M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a is an element of the set M
N ⊂M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set N is a subset of the set M
def
= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . equal by definition
x̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . residue class of x
a ≡ b (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . a is congruent to b modulo the ideal A

x→ u . . . . . . . . . . . . . . . . . .
the element x of a ring maps to the element u in the

residue class ring modulo an ideal

Algebraic symbols and concepts will be used in precisely the same sense defined
in Groöbner (1949). For this reason, we will not state the definitions of the
concepts group, ring, field, ideal, congruence modulo an ideal, dimension of a
P-ideal, and so forth. We state only additional definitions.

(2.1) Convention:The field K of coefficients of the P-ring K[x1, x2, . . . , xn] will
be assumed to be commutative.

(2.2) Definition of an Algebra: An algebra is a finite R-module (Van der
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Waerden, 1939, p. 46]) which is also a ring. However, we give this defini-
tion also explicitly, because later we will refer to individual parts of it: A
nonempty set G is called an algebra (or hypercomplex system) of rank m
over R if the following conditions hold:

(2.2.1) G is an additive abelian group.

(2.2.2) R is a ring with identity.

(2.2.3) There is a multiplication defined for elements α, β, γ, . . . in R with
elements u, v, w, . . . in G having the properties:

(2.2.3.1) The product of an element α in R with an element u in G
always belongs to G.

(2.2.3.2) α(u + v) = αu + αv.

(2.2.3.3) (α + β)u = αu + βu.

(2.2.3.4) (αβ)u = α(βu).

(2.2.3.5) Every element of G is uniquely representable as a linear com-
bination α1u1 + α2u2 + . . . + αmum by means of m fixed elements
u1, u2, . . . , um with αi ∈ R, ui ∈ G (i = 1, 2, . . . ,m).

(2.2.4) There is a multiplication defined among elements u, v, w, . . . in G
with the following properties:

(2.2.4.1) The product of two elements u and v in G lies again in G.

(2.2.4.2) (uv)w = u(vw).

(2.2.4.3)
(u + v)w = uw + vw,
u(v + w) = uv + uw.

(2.2.4.4) (αu)v = u(αv) = α(uv) for all α ∈ R.

(2.2.5) Definition: The set of m elements u1, u2, . . . , um in (2.2.3.5) is
called a basis for the algebra.

From (2.2.3.4) and (2.2.4.4), it follows that

(2.2.6) (αu)(βv) = (αβ)(uv), and

(2.2.7) (
m∑

j=1

αjuj)(
m∑

k=1

βkuk) =
m∑

j=1

m∑
k=1

(αjβk)(ujuk).

Therefore every product uv is computable provided that the products ujuk are
known, which, as elements of G, can be written as linear combinations of the
u1, u2, . . . , um.

(2.2.8) ujuk =
m∑

l=1

γl
jkul (j = 1, 2, . . . ,m; k = 1, 2, . . . ,m; γl

jk ∈ K).

(2.2.9) Definition: The m3 elements γi
jk of R appearing in (2.2.8) are called

structure constants of the algebra G.

(2.2.10) Definition: The set of all presentations of type (2.2.8) is called the
multiplication table of the algebra G.
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A generalization of algebras to algebras with infinitely many basis elements is
also possible. To do this, axiom (2.2.3.5) is modified to:

(2.2.3.5a) Every element is uniquely representable as a linear combination α1u1+
α2u2 + . . . + αmum of finitely many of the infinitely many basis elements
u1, u2, . . . , uk, . . ..

3. The Residue Class Ring of a Zero
Dimensional Ideal

The following theorem holds for the residue class ring K[x1, x2, . . . , xn]/A = O
modulo a zero dimensional P-ideal A ⊂ K[x1, x2, . . . , xn]:

(3.1) Theorem: The residue class ring O modulo a zero dimensional P-ideal
is an algebra over the ground field K, if we take the addition between
residue classes already defined in O as the additive group operation, the
multiplication† αu between elements α ∈ K and the residue class u ∈ O as
the multiplicative operation (2.2.3), and the multiplication between residue
classes already defined as the multiplicative operation (2.2.4).

Proof. We will show successively that axioms (2.2.1) through (2.2.4) are satisfied.
(2.2.1) is satisfied since O is an abelian group with respect to its addition as

a ring.
(2.2.2): As a field, K is a ring with unity.
(2.2.3.1) to (2.2.3.4) are in fact properties of the multiplication between ele-

ments of the ground field K and the residue classes.
To prove that (2.2.3.5) is satisfied, we need two lemmas:

(3.2) Lemma: Let u1, u2, . . . , um be elements of an algebra G with the property
that every u ∈ G can be represented as

u =
m∑

j=1

αjuj (αj ∈ K; j = 1, 2, . . . ,m).(3.2.1)

Then the following holds: If u1, u2, . . . , um are linearly independent over R,
then the representation (3.2.1) is unique, and conversely.

Proof of (3.2). We assume that the representation (3.2.1) is not unique, i.e.
there exists u such that on one hand

u =
m∑

j=1

αjuj,(3.2.2a)

†First a multiplication ᾱ · u is defined as multiplication between residue classes. But since
the set of the ᾱ is isomorphic to the ground field K, a multiplication α · u is also immediately
definable: α · u def= ᾱ · u
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and on the other hand

u =
m∑

j=1

βjuj (αj 6= βj for at least one j).(3.2.2b)

Then,

0 =
m∑

j=1

(αj − βj)uj (αj − βj 6= 0 for at least one j).(3.2.3)

However, (3.2.3) expresses the linear dependence of u1, u2, . . . , um.
Suppose now that u1, u2, . . . , um are linearly dependent, so for example

u1 =
m∑

j=2

γjuj,(3.2.4)

Then some u ∈ G having a representation (3.2.1) with α1 6= 0 also has the
representation

u =
m∑

j=1

αjuj = α1u1 +
m∑

j=2

αjuj =
m∑

j=2

(α1γj + αj)uj,(3.2.5)

which contradicts uniqueness.

(3.3) Lemma: If a P-ideal has dimension 0, then it contains polynomials pi(xi)
(i = 1, 2, . . . k) each of which depends only on a single variable xi.

Proof of (3.3). By Gröbner (1949), p. 98, the dimension of a P-ideal A is the
maximal number of independent variables relative to A. This implies that a zero
dimensional P-ideal has no independent variables relative to A, or every variable
is dependent relative to A. Hence, by the definition of dependence relative to a
P-ideal (Gröbner, 1949, p. 97), for every variable xi there exists a polynomial
pi(xi) in A that is dependent only on this variable (i = 1, 2, . . . , n).

It can now be proved that (2.2.3.5) holds for O by showing that there exist
finitely many residue classes u1, u2, . . . , up in O by which all others can be rep-
resented. From these p residue classes, m linearly independent ones can always
be chosen, by which all residue classes can be uniquely represented because of
(3.2).

First, we represent each residue class from O by a linear combination of the
residue classes of the PP in n variables xi1

1 xi2
2 · · ·xin

n . Since

pi(xi)
def
= xki

i + ci,1x
ki−1
i + . . . + ci,ki

∈ A(3.4a)

(i = 1, 2, . . . , n; ci,j ∈ K; j = 1, 2, . . . , ki),
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we have

xki
i ≡ −ci,1x

ki−1
i − . . .− ci,ki

= −
ki∑

l=1

ci,lx
ki−l
i (A),(3.4b)

and for the PP xi1
1 xi2

2 · · ·xin
n of degree σ ≥ τ (τ = k1 + k2 + . . . + kn)

xi1
1 xi2

2 · · ·xin
n = (xi1

1 xi2
2 · · ·x

ij−kj

j · · ·xin
n ) x

kj

j(3.4c)

= −
kj∑
l=1

cj,l x
kj−l
j · xi1

1 xi2
2 · · ·x

ij−kj

j · · ·xin
n

≡ −
kj∑
l=1

cj,l xi1
1 xi2

2 · · ·x
ij−l
j · · ·xin

n (A),

if ij ≥ kj, which for power products of degree σ ≥ τ must certainly be the case
for some j.

Now the PPs xi1
1 xi2

2 · · ·x
ij−l
j · · ·xin

n can themselves be further processed in the
manner of (3.4c) provided that they have degree σ ≥ τ , until (3.4c) is trans-
formed into

xi1
1 xi2

2 · · ·xin
n ≡

∑
cj1,j2,...,jnxj1

1 xj2
2 · · ·xjn

n (A)(3.4d)

where only PPs xi1
1 xi2

2 · · ·xin
n of degree < τ appear in the sum. A major task

of the algorithm described in Section 4 is to find m linearly independent PPs
xi1

1 xi2
2 · · ·xin

n modulo A effectively.
(2.2.4.1) through (2.2.4.4) are precisely the properties of multiplication be-

tween residue classes.

In the case of a positive dimensional P-ideal, all considerations in the proof of
(3.1) hold, with the exception of (3.3) and its consequences. Consequently:

(3.5) Theorem: The residue class ring modulo a P-ideal of dimension d > 0 is
an algebra with infinitely many basis elements.

The converse of (3.1) is also true, which we write in the following form:

(3.6) Theorem: If there are only finitely many linearly independent residue
classes in K[x1, x2, . . . , xn]/A = O, then A is zero dimensional.

Proof. Suppose there exist m linearly independent residue classes, and m + 1
residue classes are already linearly dependent. Certainly the PPs 1, xi, . . . , x

m
i

(i = 1, 2, . . . , n) are also linearly dependent modulo A, so there exists a relation

pi(xi)
def
=

m∑
j=0

ci,j xm−j
i ≡ 0 (A) (i = 1, 2, . . . , n).(3.6.1a)

However, this means

pi(xi) ∈ A,(3.6.1b)

and hence no variable is independent relative to O, i.e. A is zero dimensional.
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4. An Algorithm for Finding a Basis of the
Algebra in (3.1)

4.1. Preparatory Considerations

For the purposes of the algorithm, we first establish a unique ordering on the
power products xi1

1 xi2
2 · · ·xin

n in n variables x1, x2, . . . , xn, namely the lexico-
graphic order:

(4.1) Definition: A PP xi1
1 xi2

2 · · ·xin
n precedes a PP xk1

1 xk2
2 · · ·xkn

n (has lower
index than the PP xk1

1 xk2
2 · · ·xkn

n ) if:

1. xi1
1 xi2

2 · · ·xin
n has lower degree than xk1

1 xk2
2 · · ·xkn

n or

2. the two degrees are the identical, and the first non vanishing difference
ij − kj is positive.

Now let A ∈ K[x1, x2, . . . , xn] be a given zero dimensional P-ideal with a
generating basis

A = (f1, f2, . . . , fs), where(4.3)

fj
def
=

∑
a

(j)
i1i2···in xi1

1 xi2
2 · · ·xin

n (j = 1, 2, . . . , s; a
(j)
i1i2···in ∈ K).(4.4)

(The summation is taken over all index combinations (i1, i2, . . . , in) up to a

combination (k
(j)
1 , k

(j)
2 , . . . , k

(j)
n ), where x

k
(j)
1

1 x
k
(j)
2

2 · · ·xk
(j)
n

n has the highest index in
the order (4.1) among the PPs of fj with nonzero coefficients. Without loss of

generality, we may assume a
(j)

k
(j)
1 ,k

(j)
2 ,...,k

(j)
n

= 1 since K is a field.)

This implies ∑
a

(j)
i1i2···in xi1

1 xi2
2 · · ·xin

n ≡ 0 (A), (j = 1, 2, . . . , s)(4.4a)

or

x
k
(j)
1

1 x
k
(j)
2

2 · · ·xk
(j)
n

n ≡ −
∑

a
(j)
i1i2···in xi1

1 xi2
2 · · ·xin

n (A)(4.4b)

(j = 1, 2, . . . , s)

(where the summation is taken over all index combinations

(i1, i2, . . . , in) 6= (k
(j)
1 , k

(j)
2 , . . . , k

(j)
n ) ) and

x
k
(j)
1 +l1

1 x
k
(j)
2 +l2

2 · · ·xk
(j)
n +ln

n ≡ −
∑

a
(j)
i1i2···in xi1+l1

1 xi2+l2
2 · · ·xin+ln

n (A)(4.4c)

(j = 1, 2, . . . , s; li = 0, 1, 2, . . . ; for i = 1, 2, . . . , n).

If we consider the set of all polynomials f ∈ A, which are the polynomials of
the form

f =
s∑

j=1

dj(x1, x2, . . . , xn)fj =
∑

ai1i2···in xi1
1 xi2

2 · · ·xin
n ,(4.5)

dj(x1, x2, . . . , xn) ∈ K[x1, x2, . . . , xn] (j = 1, 2, . . . , s),
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then we obtain all possible relations between the PPRs in O:∑
ai1i2···in xi1

1 xi2
2 · · ·xin

n ≡ 0 (A).(4.6)

(4.6) is a linear equation between PPRs. From every such congruence (4.6), we
can now express, for example, the PP with the highest index among those PPs
with nonzero coefficients in terms of PPs having lower index. There remain (in
the case of a zero dimensional P-ideal, finitely many) PPs, which do not occur
in any relation (4.6) as PPs with highest index. Their residues classes form a
linearly independent basis of O.

In order to arrive, step-by-step,at an algorithm which determines such a ba-
sis, we make one more observation. We assume we have found specific PPRs
u1, u2, . . . , um coming from the relations (4.4b) already discussed, such that the
residue classes of all PPs xk1

1 xk2
2 · · ·xkn

n can be expressed as linear combinations
of them:

xk1
1 xk2

2 · · ·xkn
n =

m∑
i=1

α
(k1,k2,...,kn)
i ui (A); (α

(k1,k2,...,kn)
i ∈ K)(4.7)

(including the special case xk1
1 xk2

2 · · ·xkn
n ≡ ui (A) for a specific i).

Furthermore, assume that it can be shown for every PP xi1
1 xi2

2 · · ·xin
n , that by

decomposing xi1
1 xi2

2 · · ·xin
n into t factors

xi1
1 xi2

2 · · ·xin
n =(4.8)

xi1(1)

1 xi2(1)

2 · · ·xin(1)

n xi1(2)

1 xi2(2)

2 · · ·xin(2)

n · · ·xi1(t)

1 xi2(t)

2 · · ·xin(t)

n( t∑
l=1

i
(l)
j = ij for j = 1, 2, . . . , n; 1 ≤ t ≤

n∑
j=1

ij

)
,

substituting the representation (4.7) for the partial products in (4.8), multiplying
out and further reducing the results (4.8a) of the multiplication

xi1
1 xi2

2 · · ·xin
n ≡

∑
bk1k2···knxk1

1 xk2
2 · · ·xkn

n (A),(4.8a)

by applying the representation (4.7) for the xk1
1 xk2

2 · · ·xkn
n , we always come to

the same representation (4.7) of xi1
1 xi2

2 · · ·xin
n , independent of the division (4.8)

into partial products. Then we can be certain that the u1, u2, . . . , um are linearly
independent, and hence form a basis of O in the sense of (2.2.5).

Namely, if we can show the independence of the representation (4.7) of every
PP from the decomposition in (4.8), then the residue classes of the polynomials

xl1
1 xl2

2 · · ·xln
n fj = x

l1+k
(j)
1

1 x
l2+k

(j)
2

2 · · ·xln+k
(j)
n

n(4.9)

+
∑

a
(j)
i1i2···in xl1+i1

1 xl2+i2
2 · · ·xln+in

n ∈ A
(j = 1, 2, . . . , s; li = 0, 1, 2, . . . for i = 1, 2, . . . , n),
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which by (4.4c) possess a representation

xl1
1 xl2

2 · · ·xln
n fj ≡ 0 · u1 + 0 · u2 + . . . + 0 · um ≡ 0(4.9a)

(j = 1, 2, . . . , s; li = 0, 1, 2, . . . for i = 1, 2, . . . , n)

(≡ is the identity symbol here!),

possess only this representation, independent of the order in which we perform
the necessary multiplications and additions in the computation of the residue
classes of xi1

1 xi2
2 · · ·xin

n fj. If there were still a relation

m∑
i=1

ciui = 0 (ci 6= 0 for at least one i),(4.10)

which expressed the linear dependence of u1, u2, . . . , um, then a polynomial f ∈ A
would correspond to this relation, which would possess a representation (4.5)
that can also be written as:

f =
∑

b
(1)
l1i2···ln xl1

1 xl2
2 · · ·xln

n f1 +
∑

b
(2)
l1l2···ln xl1

1 xl2
2 · · ·xln

n f2(4.11)

+ . . . +
∑

b
(s)
l1l2···ln xl1

1 xl2
2 · · ·xln

n fs,

if

dj(x1, x2, . . . , xn)
def
=

∑
b
(j)
l1l2···ln xl1

1 xl2
2 · · ·xln

n(4.12)

(j = 1, 2, . . . , s; b
(j)
l1l2···ln ∈ K).

The polynomials xl1
1 xl2

2 · · ·xln
n fj (j = 1, 2, . . . , s) which appear here are pre-

cisely of the type (4.9), for which we know that their residue classes have only the

identically zero representation. Hence, f̄ ≡
m∑

i=1

ciui also has only the identically

zero representation relative to the residue classes u1, u2, . . . , um in O. So there
cannot be a relation (4.10).

Now the algorithm which follows proceeds just by taking the existing relations
(4.4b) and computing the representation of all the PPR in the manner described
by multiplying out the representation of partial products and comparing them
with each other. From two distinct representations of the very same PPR, one
of the PPRs occurring in both representations (e.g. the one with the highest
index) can then be eliminated. This means we can compute a representation of
this PPR using other PPRs (with lower index). Now we must continue checking
whether all the different ways to compute the PPR from the partial products
lead to the same result until it is the case that there is in fact one way for all the
PPRs. Then we know by the previous remarks that the remaining PPRs which
are not a linear combination of other PPRs form a linearly independent basis of
O. Of course we cannot perform this check of the representation for infinitely
many PPRs. So following the description of this algorithm, we must provide
criteria which allow to infer the uniqueness of representations of all PPRs from
the uniqueness of the representations of finitely many PPRs.
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4.2. Description of the Algorithm

First just a convention about terminology: the representation of the residue
class of a PP xi1

1 xi2
2 · · ·xin

n as a linear combination of other PPRs with lower
index, which cannot be represented as a linear combination of other PPRs in the
current step of the algorithm, is called a Σ-representation of the PPR (sometimes,
imprecisely, a Σ-representation of the PP under consideration).

We now describe the algorithm for the ideal A in (4.2) in a form from which
later we could easily derive a rough flowchart for calculation with an electronic
computer. However, we will not really do this, since another variant of the al-
gorithm will be used for programming. We now explain the algorithm in more
detail.

(A) We put the relations (4.4b) in a list which we call S. We consider the
residue class of 1. If, because of a relation in the list S, this already could
be replaced by a residue class of another constant, then A would possess
only one residue class, and therefore would have dimension -1. (The same
would be true if we encountered a relation 1 = 0 later in the computation.)
In general this will not be the case, and we go to (B).

(B) We take the next PP according to the ordering (4.1) and consider its residue
class.

(BA) This class may already have one or several Σ-representations because
of the relations in the list S. If so, then we write this representation
in the row next to the PP under consideration and go to (BB). If not,
then we go immediately to (BB).

(BB) We decompose the PP under consideration into two partial products
in all possible ways and compute from this, if possible, the type of
Σ-representation of the PP described in (4.7) ff. in terms of the Σ-
representation of the PPs known up to this point. The Σ-representa-
tions obtained in this way, as well as the decompositions of the PP into
two partial products, which do not lead to any Σ-representation, are
written in the row next to the PP under consideration.

(C) In the row next to the PP, we can now have:

(CA) No Σ-representation of the PP, rather only decompositions into par-
tial products. We make a mark that up to this point this PPR is not
yet representable by other PPRs with lower indices and go to (B).

(CB) A single Σ-representation or several copies of the same Σ-representa-
tion of the PP under consideration. We go immediately to (B).

(CC) Several Σ-representations of the PP under consideration among which
at least two are different. Using methods from linear algebra, we elim-
inate from these as many of the existing PPRs as possible, beginning
with those with the largest index. Thus we obtain Σ-representations of
PPs which did not possess such representations so far. We write all of
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these Σ-representations again into the list S. Then we begin again by
considering the residue class of 1 and resume at (BA) (we say we begin
a new round).

If we combine the preparatory considerations, the following holds about termi-
nation of the algorithm:

(4.1) The algorithm can be terminated if

1. for the round just run, every PP for which a Σ-representation is recor-
ded in the list S has occurred as the PP under consideration in (B),
and

2. it is certain that, from the decomposition into two partial products,
a PPR may not obtain different Σ-representations. (By the criteria
(4.14) and (4.19), this can be claimed already if no more different Σ-
representations appear for specific finite degrees.)

Since we are storing both the Σ-representation of the PPRs and the decompo-
sition into two partial products, it is easy to read off the multiplication table of
the basis elements from the rows of the algorithm. Because of the systematic flow
of the algorithm from one PP to the next by the order (4.1), it suffices to consider
all decompositions into two partial products. Different decompositions of one par-
tial product into further factors cannot change the resulting Σ-representations
any more, since the decomposition of the partial products into further factors
was just carried out in earlier steps of the algorithm, and it was guaranteed that
these partial products have at most a single Σ-representation.

The logical flow of the algorithm will now be illustrated with an example:

Example 1: Let the given zero dimensional P-ideal be

A = (x2
1 − 2x2 + x1, x1x3 − x3, x2

3 − 2x3 + x2) ⊂ K[x1, x2, x3].

First, we write down the individual rows of the algorithm and then describe each
step explicitly.

List S : x2
1 ≡ 2x2 − x1 (A)

x1x3 ≡ x3 (A)
x2

3 ≡ 2x3 − x2 (A)
(x2x3 −→) u6 = u3

(x1x2 −→) u4 = u2

(x2
2 −→) u5 = u2
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1
x1 −→ u1◦
x2 −→ u2◦
x3 −→ u3◦
x2

1 −→ 2u2 − u1 = u2
1

x1x2 −→ u1u2 = u4 ◦ = u2

x1x3 −→ u3 = u1u3

x2
2 −→ u2

2 = u5 ◦ = u2

x2x3 −→ u2u3 = u6 ◦ = u3

x2
3 −→ 2u3 − u2 = u2

3

x3
1 −→ 2u4 − 2u2 + u1

x2
1x2 −→ u1u4 = 2u5 − u4 = u2

x2
1x3 −→ u3 = 2u6 − u3

x1x
2
2 −→ u1u5 = u2u4 = u7 ◦ = u2

x1x2x3 −→ u3 = u3 = u3u4

x1x
2
3 −→ 2u3 − u4 = 2u3 − u2

x3
2 −→ u2

x2
2x3 −→ u3 = u3

x2x
2
3 −→ 2u3 − u2 = 2u3 − u2

x3
3 −→ 3u3 − 2u2

x4
1 −→ · · ·
...

1. First, using (A), we have written down the basis elements of A as residue
class relations and put them in the first three rows of the list S. The residue
class of 1 is not representable by these relations, so we go to (B).

2. Using (B), we consider the residue class of x1. x1 has neither a Σ-represen-
tation by (BA) nor a Σ-representation by (BB). So x1 falls under (CA). We
set x1 → u1◦, which should indicate that x1 still has no Σ-representation.
We go to (B).

3. The steps described in 2. must now be carried out for x2 and x3 according
to the instructions in the algorithm. We arrive again at (B).

4. The next PP is x2
1. Its residue class has a Σ-representation x2

1 → 2u2 − u1

by (BA), but not by (BB), nevertheless we record the decomposition x2
1 →

u1 · u1. Because of (CB), we go immediately back to (B).

5. For x1x2, only by (BB), we have only one decomposition u1 · u2. By (CA),
we indicate by x1x2 → u4◦ that x1x2 is a PP without any Σ-representation.

6. x1x3 is handled like x2
1, x2

2 and x2x3 like x1x2, and x2
3 like x2

1.

7. By (BB), x3
1 has a decomposition x3

1 = x2
1 · x1, x2

1 has a Σ-representation,
which we can take from the list S or the row x2

1. So x3
1 is computed as

follows:

x3
1 = x2

1x1 → (2u2 − u1)u1 = 2u1u2 − u2
1 = 2u4 − 2u2 + u1.
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We write this representation down and, by (CB), go immediately to (B).

8. x2
1x2 has a Σ-representation, which is calculated as in 7., but also possesses

an additional decomposition

x2
1x2 = x1(x1x2) = u1u4,

which does not lead to a Σ-representation.

9. Now x2
1x3 possesses two distinct Σ-representations, which can be computed

from
x2

1x3 = x1(x1x3) and x2
1x3 = (x2

1) · x3,

as in 7. So we are in case (CC). We eliminate u6 from both representations
(u6 = x2x3 has a higher index than u3 = x3!). We record the relation
u6 = u3 in the list S and begin the second round.

10. We see immediately that in the second round of the algorithm, nothing
changes from the first round until the row for x2x3. For x2x3, we can replace
u6 by u3 and we cancel u6. Again nothing changes until the row x2

1x3, and we
get two identical Σ-representations for x2x3 from the substitution u6 = u3.
We let one stay and cancel the other.

11. x1x
2
2 has two decompositions into partial products, neither of which leads

to Σ-representations. By (CA), we set x1x
2
2 → u7◦.

12. x1x2x3 has three decompositions into partial products, two of which lead
to Σ-representations which, however, are identical. By (CB), we go again
immediately to (B).

13. x1x
2
3 is handled like x2

1x3. We obtain a new relation for the list S: u4 = u2,
begin with a new round, and take the corresponding steps as in 10., whereby
we obtain x1x2 → u2 and x3

1 → u1. However, by using all existing relations,
we arrive at two distinct Σ-representations for x2

1x2 from which we can
eliminate u5 = u2. We again store this relation in the list S.

14. If we now begin again with a new round, we obtain x2
2 → u2, and then

x2
1x2 → u2 as the only Σ-representation. The two decompositions of x1x

2
2

produce Σ-representations which, however, are identical. The decomposi-
tion of x1x2x3 in u3 · u4 produces u3 once again. 2u3 − u2 is the only Σ-
representation of x1x

2
3. The remaining PPs up to x3

3 have only a single
Σ-representation.

At this stage, the algorithm can be terminated: First of all, the PPs on the
left side of the congruences in the list S have all occurred in the last round,
and secondly, by applying the subsequent Theorem (4.14), no more relations can
appear from different decompositions of a PP into partial products.

The PPRs with Σ-representations

1, u1, u2, u3
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remain as basis elements. Their multiplication table can be read off from the
rows of the algorithm:

u1 u2 u3

u1 2u2 − u1 u2 u3

u2 u2 u3

u3 2u3 − u2

The multiplications
1 · 1 = 1
1 · u1 = u1

1 · u2 = u2

1 · u3 = u3

are trivial and, therefore, are not shown in the multiplication table.
In practical computation, the rows of the algorithm and the list S are combined

into a single diagram.

4.3. Termination Criteria for the Algorithm

(4.14) Theorem: Let u1, u2, . . . , um be finitely many PPRs from which all others
can be linearly combined. Let um have the highest index in the order (4.1)
and let it have degree k. (In view of observation (4.13), let further be
guaranteed that the PPs on the left side of the list S, whose degrees can
be at most a finite value p, in steps (BA) and (BB) of the algorithm, only
get a single Σ-representation. At degree p this is verified!) Then we have: If
we have checked that the PPs up to degree 2k + 1 produce only a single Σ-
representation, then we can be certain that the decompositions of additional
PPs always lead to only one Σ-representation.

Proof. At degree 2k + 1 it is checked that the following identities hold:

uj(uiuk) = (ujui)uk

(
j = 1, 2, . . . ,m− 1, k = 1, 2, . . . ,m,
i = 1, 2, . . . , l, l ≤ m

)
,(4.15)

(where u1, u2, . . . , ul are the residue classes of those variables xi1 , xi2 , . . . , xil with
the property that xij has no Σ-representation (j = 1, 2, . . . , l)). For the PPs
with degree > 2k + 1, every decomposition into two partial products produces
a Σ-representation since one of the two factors must have degree larger than
k and hence possesses a Σ-representation from which a Σ-representation of the
PP under consideration results. Two arbitrary decompositions of such a PP
xi1

1 xi2
2 · · ·xin

n into two factors can be converted into one another by finitely many
steps of the form:

xi1
1 xi2

2 · · ·xin
n = (x

i1−i′1
1 · · ·xip−i′p

p · · ·xin−i′n
n )[(xp)x

i′1
1 · · ·x

i′p−1
p · · ·xi′n

n ],(4.16)

= [x
i1−i′1
1 · · ·xip−i′p

p · · ·xin−i′n
n (xp)](x

i′1
1 · · ·x

i′p−1
p · · ·xi′n

n ).(4.17)
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Therefore, as soon as we know that (4.16) and (4.17) produce the same Σ-
representation under the hypotheses of Theorem 4.14, we also know that only
a single Σ-representation can be computed from the different decompositions of
xi1

1 xi2
2 · · ·xin

n into two factors. We have:

x
i1−i′1
1 · · ·xip−i′p

p · · ·xin−i′n
n −→

∑m
j=1 αjuj,(4.18a)

x
i′1
1 · · ·x

i′p−1
p · · ·xi′n

n −→
∑m

k=1 βkuk, and(4.18b)

xp −→
∑l

i=1 γiui(4.18c)

(αj, βk, γi ∈ K; j, k = 1, 2, . . . ,m; i = 1, 2, . . . , l).

Using (4.18a), (4.18b), and (4.18c), we compute (4.16) and (4.17) further:

(x
i1−i′1
1 · · ·xip−i′p

p · · ·xin−i′n
n )[(xp)x

i′1
1 · · ·x

i′p−1
p · · ·xi′n

n ] −→(4.16a) ( m∑
j=1

αjuj

)( l∑
i=1

γiui

m∑
k=1

βkuk

)
=

m∑
j=1

l∑
i=1

m∑
k=1

αjγiβkuj(uiuk),

[x
i1−i′1
1 · · ·xip−i′p

p · · ·xin−i′n
n (xp)](x

i′1
1 · · ·x

i′p−1
p · · ·xi′n

n ) −→(4.17a) ( m∑
j=1

αjuj

l∑
i=1

γiui

)( m∑
k=1

βkuk

)
=

m∑
j=1

l∑
i=1

m∑
k=1

αjγiβk(ujui)uk.

But by (4.15), the final expressions of (4.16a) and (4.17a) produce the same
Σ-representation under the hypotheses of the theorem.

Because of this theorem, we can terminate the algorithm at step 14 in Example
1, since u1, u2, u3 satisfy the hypotheses of Theorem 4.14, and hence all addi-
tional PPRs have only a single Σ-representation. Theorem 4.14 can sometimes
be sharpened:

(4.19) Theorem: If every PP of degree k + 1 already possesses a Σ-represen-
tation because each is a multiple of PPs having a Σ-representation (the
basis element with the highest index has again degree at most k, and it
will be assumed again that the relations present in the list S have all been
used), then we have: If we have checked that the PP up to degree 2k − 1
produce at most a single Σ-representation, then we can be certain that the
decompositions of additional PPs always lead to only one Σ-representation.

Proof. The proof of this theorem will be given in Section 6 in connection with
results from Section 5.

In Example 1, this theorem cannot be profitably used, since for degree k+1 =
2, every PP possesses a Σ-representation, not because they are multiples of PPs
having a Σ-representation, but rather because of the relations recorded in the
list S. If we take k + 1 = 3, then the hypothesis of Theorem (4.19) holds: Every
Σ-representation of a PP of degree 3 results from PP being a multiple of a PP
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of degree 2 having a Σ-representation. Since 2k− 1 = 3, this theorem is no more
advantageous than Theorem 4.14.

The following conjectures (4.20) and (4.21) on the termination of the algorithm
turn out to be wrong:

(4.20) Conjecture: Assume that all products uiuk (i = 1, 2, . . . , p; k = i, i +
1, . . . , p) of all residue classes ul◦ that appeared in (CA) are already treated
according to the instructions of the algorithm (l = 1, 2, . . . , p, p is the
highest index that occurred so far in the PPRs ul◦; in Example 1, p = 7).
Assume also that all PPs that occur on the left side of the list S are treated
in the algorithm. Then no more different Σ-representations can appear for
any PPR.

In other words, this is the question of whether it suffices to compute only the
multiplication table of the ul◦.
Counterexample. A = (x2

1 − 2x2, x2
2 − 2x2, x1x2 − x2) ⊂ K[x1, x2].

1
x1 −→ u1◦
x2 −→ u2◦
x2

1 −→ 2u2 = u2
1

x1x2 −→ u2 = u1u2

x2
2 −→ 2u2 = u2

2 ←− We could stop here by the
hypotheses in the conjecture,

x3
1 −→ 2u2

x2
1x2 −→ u2 = 4u2 ←− but two different Σ-representations

of a PPR appear here.

(4.21) Conjecture: If the associativities,

ui(ujuk) = (uiuj)uk,(4.21.1)

are proved (i, j, k = 1, 2, . . . , l, where u1, . . . , ul are again the residue classes
of those variables xi1 , . . . , xil with the property that xij has no Σ-represen-
tation (j = 1, 2, . . . , l)), which is the case for degree 3, and if the PPs on
the left side of the list S have already been processed by the instructions
of the algorithm, then no more different Σ-representations can appear in a
PPR.
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Counterexample. A = (x2
1x2 − x2

1, x1x
2
2 − x2) ⊂ K[x1, x2].

1
x1 −→ u1◦
x2 −→ u2◦
x2

1 −→ u3◦
x1x2 −→ u4◦
x2

2 −→ u5◦
x3

1 −→ u6◦ = u1u3

x2
1x2 −→ u3 = u2u3 = u1u4

x1x
2
2 −→ u1u5 = u2u4 = u2

x3
2 −→ u2u5 = u7◦ ←− We could stop here by the

hypotheses in Conjecture (4.21)
x4

1 −→ u2
3 = u1u6 = u8◦

x3
1x2 −→ u6 = u2u6 = u3u4

x2
1x

2
2 −→ u4 = u3 = u3u5 = u2

4 ←− but another new relation between
residue classes appears here.

By examining the proof of Theorem 4.14, we see further that the assumption
(4.21.1) would not suffice to prove the claim (4.21) in a similar manner. Only
the validity of the associativities (4.15) (which requires more than (4.21.1)) will
make the proof possible.

5. The Appearance of Different Σ-Representations
in One Step of the Algorithm

In this section, we would like to derive a rule which tells us in which row of the
algorithm the possibility exists that we will come to different Σ-representations
for the very same PPR. To do this, we will prove four lemmas with which we
can then bring the algorithm into a somewhat modified form in Section 6.

(5.1) Lemma: If we use the algorithm for ideals of the form

A = (f1) ∈ K[x1, x2, . . . , xn] (principal ideals),

where
f1

def
= xI1

1 xI2
2 · · ·xIn

n + . . .

(xI1
1 xI2

2 · · ·xIn
n has the highest index of all the PPs of f1), then the different

decompositions (4.8) of an arbitrary PP into partial products can never
lead to different Σ-representations.

Proof. First, it should be noted that we could apply the algorithm in its present
form purely formally to P-ideals for which we do not know the dimension.
However, then is it possible that more and more PPRs appear with no Σ-
representation. The hypotheses of Theorems 4.14 and 4.19 are then never satis-
fied, so we never know when we could terminate the algorithm. Hence, we can
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apply the algorithm to the ideal A = (f1) as well, which for n > 1 is certainly
not zero dimensional (Gröbner (1949), p. 123).

To prove Lemma 5.1, we establish first that for f ∈ A, where

f
def
= xK1

1 xK2
2 · · ·xKn

n + . . .(5.2)

(xK1
1 xK2

2 · · ·xKn
n has the highest index of all the PPs of f), it follows that

xK1
1 xK2

2 · · ·xKn
n is a multiple of xI1

1 xI2
2 · · ·xIn

n . PPs which are multiples of
xI1

1 xI2
2 · · ·xIn

n obtain Σ-representations by step (BB). PPs xL1
1 xL2

2 · · ·xLn
n which

are not multiples of xI1
1 xI2

2 · · ·xIn
n cannot have any Σ-representation, because if

xL1
1 xL2

2 · · ·xLn
n ≡

∑
ai1i2···inxi1

1 xi2
2 · · ·xin

n (A)(5.3)

(xL1
1 xL2

2 · · ·xLn
n has a larger index than every xi1

1 xi2
2 · · ·xin

n ), then

f
def
= xL1

1 xL2
2 · · ·xLn

n −
∑

ai1i2···inxi1
1 xi2

2 · · ·xin
n ∈ A,(5.4)

in contradiction to xL1
1 xL2

2 · · ·xLn
n not being a multiple of xI1

1 xI2
2 · · ·xIn

n . Now if
in the course of the algorithm, a PPR contained two different Σ-representations,
then from it, we could compute a Σ-representation for a PP xL1

1 xL2
2 · · ·xLn

n , where
xL1

1 xL2
2 · · ·xLn

n is not a multiple of xI1
1 xI2

2 · · ·xIn
n . because the residue classes of

the other PPs (the multiples of xI1
1 xI2

2 · · ·xIn
n ) do not occur in a Σ-representation,

but will themselves be represented as linear combinations of PPRs by steps (BA)
or (BB).

Because of later applications, we will now prove Lemma 5.1 also in a second
more complicated way: We look successively at PPs with smaller index than
xI1

1 xI2
2 · · ·xIn

n , then at xI1
1 xI2

2 · · ·xIn
n , and finally at PPs with larger index than

xI1
1 xI2

2 · · ·xIn
n , and show that all PPs of each group obtain at most a single Σ-

representation by the method of the algorithm.
We begin with first group, the PPs with smaller index than xI1

1 xI2
2 · · ·xIn

n . For
these, absolutely no Σ-representation can be derived, since they are not multiples
of xI1

1 xI2
2 · · ·xIn

n .
xI1

1 xI2
2 · · ·xIn

n has a single Σ-representation because of f1 ≡ 0 (A). Decompo-
sitions of xI1

1 xI2
2 · · ·xIn

n into partial products cannot lead to a Σ-representation
because, as PPs of the first group, the partial products possess no Σ-represen-
tation.

Inside the third group, which consists of the PPs with larger index than
xI1

1 xI2
2 · · ·xIn

n , there are two different types of PPs which we will denote by types
3A and 3B.

The group 3A comprises the PPs xi1
1 xi2

2 · · ·xin
n which are not multiples of

xI1
1 xI2

2 · · ·xIn
n . The first such is the one immediately following xI1

1 xI2
2 · · ·xIn

n . This
one has as partial products only PPs of the first group and has therefore no Σ-
representation. We make the induction hypothesis: Up to the PP xk1

1 xk2
2 · · ·xkn

n ,
no PP of group 3A has a Σ-representation. Then xk1

1 xk2
2 · · ·xkn

n itself cannot have
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a Σ-representation as well. Indeed in a decomposition of xk1
1 xk2

2 · · ·xkn
n into partial

products, no factor is a multiple of xI1
1 xI2

2 · · ·xIn
n . The partial products are there-

fore PPs of the first group or of group 3A with smaller index than xk1
1 xk2

2 · · ·xkn
n .

In both cases, they have no Σ-representation, so xk1
1 xk2

2 · · ·xkn
n has none also.

The group 3B comprises the PPs xi1
1 xi2

2 · · ·xin
n which are multiples of

xI1
1 xI2

2 · · ·xIn
n . Again we use induction. For xI1

1 xI2
2 · · ·xIn

n itself, it has been shown
already that it has only one Σ-representation. The induction hypothesis is: Ev-
ery PP of group 3B up to, but not including, xk1

1 xk2
2 · · ·xkn

n has only one Σ-
representation. Now assume xk1

1 xk2
2 · · ·xkn

n has at least two decompositions which
lead to a Σ-representation (otherwise there is nothing to show). These decompo-
sitions are such that at least one of the two factors is a multiple of xI1

1 xI2
2 · · ·xIn

n :

xk1
1 xk2

2 · · ·xkn
n = xj1

1 xj2
2 · · ·xjn

n · x
k1−j1
1 xk2−j2

2 · · ·xkn−jn
n = U,(5.5)

xk1
1 xk2

2 · · ·xkn
n = x

j′1
1 x

j′2
2 · · ·x

j′n
n · xk1−j′1

1 x
k2−j′2
2 · · ·xkn−j′n

n = V.(5.6)

W. l. o. g. let xk1−j1
1 xk2−j2

2 · · ·xkn−jn
n and x

k1−j′1
1 x

k2−j′2
2 · · ·xkn−j′n

n be the multiples
of xI1

1 xI2
2 · · ·xIn

n . The two representations can now be written down as follows:

U = (xj1
1 xj2

2 · · ·xjn
n )[(xk1−j1−I1

1 xk2−j2−I2
2(5.5a)

· · ·xkn−jn−In
n )(xI1

1 xI2
2 · · ·xIn

n )]

≡ (xj1
1 xj2

2 · · ·xjn
n )

[
(xk1−j1−I1

1 xk2−j2−I2
2

· · ·xkn−jn−In
n )

( p∑
j=1

αjuj

)]
≡

p∑
j=1

αj(x
j1
1 xj2

2 · · ·xjn
n )[(xk1−j1−I1

1 xk2−j2−I2
2(5.5b)

· · ·xkn−jn−In
n )(uj)] (A),

if
p∑

j=1

αjuj is the Σ-representation of xI1
1 xI2

2 · · ·xIn
n , and

V ≡
p∑

j=1

αj(x
j′1
1 x

j′2
2 · · ·xj′n

n )[(x
k1−j′1−I1
1 x

k2−j′2−I2
2(5.6b)

· · ·xkn−j′n−In
n )(uj)] (A).

The PPRs

xj1
1 xj2

2 · · ·x
jn
n · xk1−j1−I1

1 xk2−j2−I2
2 · · ·xkn−jn−In

n uj(5.7)

= x
j′1
1 x

j′2
2 · · ·x

j′n
n · xk1−j′1−I1

1 x
k2−j′2−I2
2 · · ·xkn−j′n−In

n uj

= xk1−I1
1 xk2−I2

2 · · ·xkn−In
n uj



B. Buchberger: Ph.D. Thesis 21

already appear in the algorithm before the residue class xk1
1 xk2

2 · · ·xkn
n and have

therefore only one Σ-representation because of the remarks thus far and the
induction hypothesis. Hence, xk1

1 xk2
2 · · ·xkn

n possesses only one as well.

(5.8) Lemma: If we apply the algorithm to an ideal of the form

A = (f1, f2) ⊂ K[x1, x2, . . . , xn]

(f1
def
= xI1

1 xI2
2 · · ·xIn

n + . . . , f2
def
= xK1

1 xK2
2 · · ·xKn

n + . . . ; xI1
1 xI2

2 · · ·xIn
n

(xK1
1 xK2

2 · · ·xKn
n ) is the PP with the highest index among the PPs appearing

in f1 (f2)), then we have:

1. The residue class of xG1
1 xG2

2 · · ·xGn
n (Gj = max (Ij, Kj); j = 1, 2, . . . , n),

i.e. the LCM of xI1
1 xI2

2 · · ·xIn
n and xK1

1 xK2
2 · · ·xKn

n , is the first PPR, for
which different Σ-representations can appear in the algorithm.

2. If no distinct Σ-representations appear at xG1
1 xG2

2 · · ·xGn
n , then the al-

gorithm produces no more Σ-representations for any PPR.

Proof. By the steps of the algorithm, a PP which precedes xG1
1 xG2

2 · · ·xGn
n cannot

have two different Σ-representations. A PP xi1
1 xi2

2 · · ·xin
n can only have a Σ-

representation if it is a multiple of xI1
1 xI2

2 · · ·xIn
n or xK1

1 xK2
2 · · ·xKn

n . It cannot
be a multiple of xI1

1 xI2
2 · · ·xIn

n and xK1
1 xK2

2 · · ·xKn
n simultaneously if it precedes

xG1
1 xG2

2 · · ·xGn
n , since otherwise it would contain xG1

1 xG2
2 · · ·xGn

n also. By the same
considerations as in the proof of Lemma 5.1, group 3B, it is clear that this PP
can only have a single Σ-representation.

The situation is different for xG1
1 xG2

2 · · ·xGn
n . Namely,

xG1
1 xG2

2 · · ·xGn
n = xG1−I1

1 xG2−I2
2 · · ·xGn−In

n · xI1
1 xI2

2 · · ·xIn
n(5.9)

≡ xG1−I1
1 xG2−I2

2 · · ·xGn−In
n

( p∑
j=1

αjuj

)
(A),

and

xG1
1 xG2

2 · · ·xGn
n = xG1−K1

1 xG2−K2
2 · · ·xGn−Kn

n · xK1
1 xK2

2 · · ·xKn
n(5.10)

≡ xG1−K1
1 xG2−K2

2 · · ·xGn−Kn
n

( p∑
j=1

βjuj

)
(A),

where
p∑

j=1

αjuj and
p∑

j=1

βjuj are the Σ-representations of xI1
1 xI2

2 · · ·xIn
n and

xK1
1 xK2

2 · · ·xKn
n , respectively. However, nothing here allows us to conclude that

(5.9) and (5.10) are equal if we expand them further.
We now prove the second part of Lemma 5.8 by induction. Suppose that

for xG1
1 xG2

2 · · ·xGn
n , only one Σ-representation appears. Then certainly for the

PP immediately following xG1
1 xG2

2 · · ·xGn
n , only one Σ-representation appears as
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well, since this cannot be divisible by both xI1
1 xI2

2 · · ·xIn
n and xK1

1 xK2
2 · · ·xKn

n . (If
it were divisible by both, it would be divisible by the LCM xG1

1 xG2
2 · · ·xGn

n also.
But this could only happen if it has larger degree than xG1

1 xG2
2 · · ·xGn

n has or
is identical with it. If it were to have larger degree, then xG1

1 xG2
2 · · ·xGn

n would
be of the form xl

n, but the next PP would then be xl+1
1 , which certainly is not

divisible by xl
n.)

The induction hypothesis reads: every PP following xG1
1 xG2

2 · · ·xGn
n up to, but

not including, PP xk1
1 xk2

2 · · ·xkn
n has only one Σ-representation. Now xk1

1 xk2
2 · · ·xkn

n

itself can obtain Σ-representations from its decompositions if

1. xI1
1 xI2

2 · · ·xIn
n divides a partial product, or

2. xK1
1 xK2

2 · · ·xKn
n divides a partial product.

The Σ-representations from a decomposition of the first type are equal to each
other, similarly for those from decompositions of the second type, by exactly the
same reasoning as in the proof of (5.1), group 3B. If decompositions appear of
types 1. and 2., then a decomposition also appears where a partial product is di-
visible by xG1

1 xG2
2 · · ·xGn

n . This decomposition belongs now to group 1. and group
2. The Σ-representation computed from this is identical to the Σ-representations
resulting from 1. and 2., so they are also equal to each other.

(5.11) Lemma: If the PPs xI1
1 xI2

2 · · ·xIn
n and xK1

1 xK2
2 · · ·xKn

n appearing in Lemma
5.8 have the property that Gj = Ij +Kj (j = 1, 2, . . . , n) (that therefore the
LCM xG1

1 xG2
2 · · ·xGn

n of xI1
1 xI2

2 · · ·xIn
n and xK1

1 xK2
2 · · ·xKn

n is equal to the prod-
uct of the two), then certainly xG1

1 xG2
2 · · ·xGn

n has only one Σ-representation.

Proof. xG1
1 xG2

2 · · ·xGn
n can have decompositions where

1. xI1
1 xI2

2 · · ·xIn
n divides a partial product, or

2. xK1
1 xK2

2 · · ·xKn
n divides a partial product.

By reason of the corresponding remarks as in the proof of Lemma 5.1, group 3B,
the Σ-representations that arise from decompositions of the first type are equal
to each other. The same is true for the Σ-representations of the second type.
The decomposition

xG1
1 xG2

2 · · ·xGn
n = xI1

1 xI2
2 · · ·xIn

n · x
K1
1 xK2

2 · · ·xKn
n(5.12)

is simultaneously one of type 1. and 2. From this, it follows again that all the
Σ-representations are equal to each other.

(5.13) Lemma: Let
A = (f1, f2, . . . , fs)(5.13.1)

be the P-ideal, where x
I
(l)
1

1 x
I
(l)
2

2 · · ·xI
(l)
n

n is the PP of fl with the largest index
(l = 1, 2, . . . , s). Now if the PP

x
G

(k,l)
1

1 x
G

(k,l)
2

2 · · ·xG
(k,l)
n

n G
(k,l)
j = max(I

(k)
j , I

(l)
j )(5.13.2)

(j = 1, 2, . . . , n; k, l = 1, 2, . . . s)
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(the LCM of x
I
(k)
1

1 x
I
(k)
2

2 · · ·xI
(k)
n

n and x
I
(l)
1

1 x
I
(l)
2

2 · · ·xI
(l)
n

n ) obtains only one Σ-
representation by the steps of the algorithm, then every PPR has only one
Σ-representation.

Proof. Lemma 5.13 is certainly true for the residue class of 1. We state the
induction hypothesis: Lemma 5.13 holds up to, but not including, xk1

1 xk2
2 · · ·xkn

n .

Now xk1
1 xk2

2 · · ·xkn
n can be divisible by all possible x

I
(l)
1

1 x
I
(l)
2

2 · · ·xI
(l)
n

n . But with

x
I
(l1)
1

1 x
I
(l1)
2

2 · · ·xI
(l1)
n

n and x
I
(l2)
1

1 x
I
(l2)
2

2 · · ·xI
(l2)
n

n , it is also divisible by the LCM of both.
By the remarks in the proof of Lemma 5.1, group 3B, the Σ-representations which

arise from decompositions where one partial product is divisible by x
I
(l1)
1

1 · · ·xI
(l1)
n

n

are equal to each other, and similarly the Σ-representations from decompositions

where a partial product is divisible by x
I
(l2)
1

1 · · ·xI
(l2)
n

n are equal to each other.
Both Σ-representations are equal to the Σ-representation from a decomposition

where a partial product is divisible by x
G

(l1,l2)
1

1 x
G

(l1,l2)
2

2 · · ·xG
(l1,l2)
n

n . Therefore, they
are also equal to each other. In the same way, the equality of all possible Σ-
representations of xk1

1 xk2
2 · · ·xkn

n can also be shown.

6. Applying Lemmas (5.1), (5.8), (5.11) and
(5.13) to Simplify the Algorithm

We start again with the idealA of the form (5.13.1) with the additional definition

(5.13.2). Among all of the x
G

(k,l)
1

1 x
G

(k,l)
2

2 · · ·xG
(k,l)
n

n , let x
G

(p,q)
1

1 x
G

(p,q)
2

2 · · ·xG
(p,q)
n

n be the
one with the lowest index (1 ≤ p ≤ s, 1 ≤ q ≤ s).

If we proceed according to the instructions of the algorithm, the first PP that

can obtain two different Σ-representations is x
G

(p,q)
1

1 x
G

(p,q)
2

2 · · ·xG
(p,q)
n

n . For this rea-
son, we will skip all the steps of the algorithm up to that point and immediately

compute two Σ-representations of x
G

(p,q)
1

1 x
G

(p,q)
2

2 · · ·xG
(p,q)
n

n in two essentially differ-
ent ways: We decompose this power product once so that one partial product is

a multiple of x
I
(p)
1

1 x
I
(p)
2

2 · · ·xI
(p)
n

n , and once so that one partial product is a multiple

of x
I
(q)
1

1 x
I
(q)
2

2 · · ·xI
(q)
n

n . If we obtain two different Σ-representations in this manner,
then we eliminate the PPR with the highest index and obtain from this the
Σ-representation of a PPR that has possessed none so far. This representation
corresponds to a polynomial fs+1 ∈ A, which we put into the basis of A. If how-
ever we did not obtain different Σ-representations, then we jump to the LCM
with the next highest index, from which we compute again Σ-representations of
two essentially different types.

Every time we have found a new Σ-representations in this manner, we add
the corresponding polynomial to the basis (this corresponds in the old algorithm
to storing a Σ-representation in the list S) and jump to the LCM with the
next highest index (this corresponds in the old algorithm to beginning a new
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round; but now we know precisely for each new round where the first time two
different Σ-representations for a PPR can appear, and we proceed there with
the computation right away).

If for an LCM x
G

(k,l)
1

1 x
G

(k,l)
2

2 · · ·xG
(k,l)
n

n , it follows that G
(k,l)
j = I

(k)
j (or G

(k,l)
j = I

(l)
j )

for j = 1, 2, . . . , n (i.e. if the LCM is equal to one of the two PPs), then we
compute the two Σ-representations, perhaps add a new resulting polynomial to
the basis, but can delete fk (resp. fl) from the basis because the relation which
exists between residue classes because of fk ≡ 0 (A) (fl ≡ 0 (A)), now exists
in any case because of fl ≡ 0 (A) (fk ≡ 0 (A)).

As soon as the hypothesis of Lemma 5.13 is satisfied for the current basis
A = (f ′

1, f
′
2, . . . , f

′
s′) of the ideal, we can terminate the algorithm. Those PPRs

which neither have a Σ-representation because of f ′
j ≡ 0 (A), (j = 1, 2, . . . , s′)

nor because of xl1
1 xl2

2 · · ·xln
n f ′

j ≡ 0 (A), (li = 0, 1, 2, . . . ; i = 1, 2, . . . , n), are
basis elements of the polynomial ring modulo the ideal A, whose multiplication
table must now be computed using all available Σ-representations.

The calculation of two different Σ-representations of an LCM is the main work
in practical computation. To do this, many Σ-representations of PPs of lower
index must be prepared. Of course, one will record the Σ-representations of these
auxiliary PPs as in the earlier algorithm, so that we need only compute them
once. In this manner many elements of the multiplication table are computed as
a by-product.

For programming, the algorithm was used in the form just discussed. A “re-
cording” of the Σ-representations of the auxiliary PPs was not immediately
possible because of the small memory of the machine used, and would also
immediately overwhelm the capacity of larger computers on somewhat larger
examples. Thus, we must tolerate a longer computation time for the benefit of
huge memory savings.

For calculating with electronic computer, we will need one more consideration:

It does not matter in which order we take the LCMs x
G

(k,l)
1

1 x
G

(k,l)
2

2 · · ·xG
(k,l)
n

n in order
to compute two essentially different types of Σ-representations for them. Namely,
if one LCM has only one Σ-representation when the basis of the ideal in this stage
of the algorithm is precisely A = (f ′

1, f
′
2, . . . , f

′
s′), then this LCM cannot obtain

two different Σ-representations in later stages where all the relations f ′
j ≡ 0 (A)

(j = 1, 2, . . . , s′), and perhaps even more, hold.
Therefore, if we were to take the LCMs in an order other than the one described

previously, which we want to call the normal order, and if we were to thereby
obtain a basis representation A = (f ′′

1 , f ′′
2 , . . . , f ′′

s′′), then we could apply the
algorithm again, this time using the normal order of the LCMs. However, all of
these LCMs were already computed during the computation of the two essentially
different types in the other order, and yielded only a single Σ-representation.
Hence, they cannot now obtain two different ones, where certainly no fewer
relations exist than before. Thus the basis A = (f ′′

1 , f ′′
2 , . . . , f ′′

s′′) must already be
what we would have obtained by computing relative to the normal order.
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In what follows, we compute Example 1 again, this time with the algorithm
in the new form.

Example 1:

A = (x2
1 − 2x2 + x1, x1x3 − x3, x2

3 − 2x3 + x2)

We transform the basis polynomials into the corresponding relations (1), (2), (3)
in O:

(1) x2
1 ≡ 2x2 − x1 (A) (4) x2x3 ≡ x3 (A)

(2) x1x3 ≡ x3 (A) (5) x1x2 ≡ x2 (A)
(3) x2

3 ≡ 2x3 − x2 (A) (6) x2
2 ≡ x2 (A)

Furthermore, we make a list of the x
G

(k,l)
1

1 x
G

(k,l)
2

2 · · ·xG
(k,l)
n

n in order to determine

their order, where we give (k, l) and its associated PP x
G

(k,l)
1

1 x
G

(k,l)
2

2 · · ·xG
(k,l)
n

n . In
the initial stage, these are (2,1), (3,1), (3,2):

(2, 1) x2
1x3 (3, 1) x2

1x
2
3 (4, 1) x2

1x2x3 (5, 1) x2
1x2 (6, 1) x2

1x
2
2

(3, 2) x1x
2
3 (4, 2) x1x2x3 (5, 2) x1x2x3 (6, 2) x1x

2
2x3

(4, 3) x2x
2
3 (5, 3) x1x2x

2
3 (6, 3) x2

2x
2
3

(5, 4) x1x2x3 (6, 4) x2
2x3

(6, 5) x1x
2
2

We immediately strike through the x
G

(k,l)
1

1 x
G

(k,l)
2

2 · · ·xG
(k,l)
n

n for which, by (5.11), we
need not calculate any Σ-representation. Finally, we prepare another diagram in
order to record the auxiliary relations. To begin, we can already enter (1), (2),
and (3) here.
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1
x1

x2

x3

x2
1 ≡ 2x2 − x1 (A)

x1x2 ≡ x2 (A)
x1x3 ≡ x3 (A)
x2

2 ≡ x2 (A)
x2x3 ≡ x3 (A)
x2

3 ≡ 2x3 − x2 (A)
x3

1

x2
1x2 ≡ x2 (A)

x2
1x3 ≡ x3 (A)

x1x
2
2

x1x2x3

x1x
2
3 ≡ 2x3 − x2 (A)

x3
2

x2
2x3

x2x
2
3

x3
3

Now we compute, in two ways, representations for x2
1x3, the LCM with the lowest

index.

x2
1x3 ≡ (x2

1)x3 ≡ (2x2 − x1)x3 ≡ 2x2x3 − x1x3 − x3 (A),(6.1a)

x2
1x3 ≡ x1(x1x3) ≡ x1x3 ≡ x3 (A).(6.1b)

(The reduction of a representation of a PP as a linear combination of other
PPs (mod A!) to a Σ-representation can be carried out with minimal effort if
we also strike through representable PPs of the representation and add their
representations to the end of the expression.)

From (6.1a) and (6.1b), we get x2x3 ≡ x3 (A). We write this as (4) under (3)
(we take x2x3 − x3 into the basis). Similarly, we complete the list of auxiliary
relations. By doing this, we obtain new LCMs as well, namely (4,1), (4,2), and
(4,3), which we write down at the end of (3,2). Also, we record in the list of
secondary relations the representation x2

1x3 ≡ x3 (A) calculated in (6.1). To
indicate that (2,1) was already used, we equip it with a check mark.

Now we go to the calculation of Σ-representations for the next LCM, namely
(4,2). It yields no relations, so we immediately take (3,2):

x1x
2
3 ≡ (x1x3)x3 ≡ x3 · x3 ≡ x2

3 + 2x3 − x2 (A),(6.2a)

x1x
2
3 ≡ x1(x

2
3) ≡ x1(2x3 − x2) ≡ 2x1x3 − x2x2 + 2x3 (A).(6.2b)

This yields (5). As earlier, the list of auxiliary relations and LCMs will also be
completed.
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Now we consider (5.1):

x2
1x2 ≡ (x2

1)x2 ≡ (2x2 − x1)x2 ≡ 2x2
2 − x1x2 − x2 (A),(6.3a)

x2
1x2 ≡ (x1x2)x1 ≡ x2x1 ≡ x2 (A).(6.3b)

This yields (6). Again we make the necessary entries in the auxiliary list.
We continue in this manner. The later LCMs have only a single Σ-represen-

tation, as can be easily checked.
The savings in work which comes from the simplification of the algorithm is

not evident from this example, but is considerable for more complicated ideals.
Also we combine the different lists into a single diagram.

The proof of Theorem 4.19 can now be easily furnished. Suppose that while
computing with the algorithm in the earlier form, the condition arises described

in the hypotheses of Theorem 4.19; Let f ′
1, f

′
2, . . . , f

′
s′ be in the list S (f ′

j
def
=

x
I
(j)
1

1 x
I
(j)
2

2 · · ·xI
(j)
n

n + . . . (j = 1, 2, . . . , s′), x
I
(j)
1

1 x
I
(j)
2

2 · · ·xI
(j)
n

n is the PP of f ′
j with the

highest index.) By assumption, those PPs x
I
(j)
1

1 x
I
(j)
2

2 · · ·xI
(j)
n

n with degree ≥ k + 1

are themselves multiples of some other x
I
(p)
1

1 x
I
(p)
2

2 · · ·xI
(p)
n

n , so

x
G

(p,j)
1

1 x
G

(p,j)
2

2 · · ·xG
(p,j)
n

n = x
I
(j)
1

1 x
I
(j)
2

2 · · ·xI
(j)
n

n (1 ≤ p ≤ s′, p 6= j).

For these PPs, we must compute two essentially different types of Σ-repre-
sentations, then we can release them from the basis. (This was just assumed
to have happened in Theorem 4.19.) Hence, it still remains to calculate the

LCM x
G

(j1,j2)
1

1 x
G

(j1,j2)
2

2 · · ·xG
(j1,j2)
n

n for all the pairs of PPs x
I
(j1)
1

1 x
I
(j1)
2

2 · · ·xI
(j1)
n

n and

x
I
(j2)
1

1 x
I
(j3)
2

2 · · ·xI
(j2)
n

n , with degree ≤ k. But these x
G

(j1,j2)
1

1 x
G

(j1,j2)
2

2 · · ·xG
(j1,j2)
n

n appears
at degree 2k − 1 at the latest (with the help of Lemma 5.11!).

In the new form, the algorithm can be used for every arbitrary ideal, even
when we do not know its dimension beforehand. It can be decided in every
stage whether we must continue to compute or whether all of the important
relations have already been found. By applying the algorithm to an arbitrary
ideal A = (f1, f2, . . . , fs), we obtain a basis representation of the ideal:

A = (f ′
1, f

′
2, . . . , f

′
s′) with(6.4)

f ′
j

def
= x

I
(j)
1

1 x
I
(j)
2

2 · · ·xI
(j)
n

n + . . .(6.5)

(where x
I
(j)
1

1 x
I
(j)
2

2 · · ·xI
(j)
n

n is the PP of f ′
j with the highest index), which has the

property that the highest indexed PP of an arbitrary polynomial f ∈ A is a

multiple of at least one of the PPs x
I
(j)
1

1 x
I
(j)
2

2 · · ·xI
(j)
n

n . (If there were a polynomial
f ∈ A not having this property, then a PPR ul◦ which was found to be a basis
element by the algorithm would have a Σ-representation.)

It should also be noted that relative to the order (4.1) of the PPs, only one
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basis of the ideal can be found having this property. Indeed, if there were two
distinct such bases

A = (f ′
1, f

′
2, . . . , f

′
s′) and(6.4)

A = (f ′′
1 , f ′′

2 , . . . , f ′′
s′′)(6.5)

(where x
I
(j)
1

1 x
I
(j)
2

2 · · ·xI
(j)
n

n (x
K

(l)
1

1 x
K

(l)
2

2 · · ·xK
(l)
n

n ) is the PP of f ′
j (f ′′

l ), j = 1, 2, . . . , s′

(l = 1, 2, . . . , s′′) with the highest index), then either one PP would have a
Σ-representation relative to the one basis representation of the ideal but none

relative to the other (if one PP occurs among the x
I
(j)
1

1 x
I
(j)
2

2 · · ·xI
(j)
n

n that does not

occur among the x
K

(l)
1

1 x
K

(l)
2

2 · · ·xK
(l)
n

n , or vice versa), or the Σ-representation of at
least one PP would be different relative to the two basis representations. Both
stand in contradiction to the result, which the application of the algorithm has
to an ideal.

If among the x
I
(j)
1

1 x
I
(j)
2

2 · · ·xI
(j)
n

n (j = 1, 2, . . . , s′) PPs of the form xIi
i (i =

1, 2, . . . , n) occur, then certainly every PP starting from degree
n∑

i=1

Ii has a

Σ-representation, this by reason of the same considerations as in the proof of
Theorem 3.1. Thus there are only finitely many linearly independent PPRs in
O. Therefore by Theorem 3.6, A is zero dimensional. However, if among the

x
I
(j)
1

1 x
I
(j)
2

2 · · ·xI
(j)
n

n , PPs of the form xIi
i do not occur for all i (e.g. no x

I
(j)
1

1 x
I
(j)
2

2 · · ·xI
(j)
n

n

has the form xIk
k ), then no PP of the form xp

k (p = 0, 1, 2, . . .) has a Σ-represen-
tation, so O has infinitely many linearly independent elements, and is an algebra
with infinitely many basis elements in the sense of (3.5). Therefore, A has higher
dimension.

If in the course of the algorithm, f ≡ 1 must be taken into the basis, then A
is the whole P-ring, so A has dimension -1. Thus with the help of the algorithm,
we can also make certain statements about the dimension of an arbitrary ideal.

If we apply the algorithm in its second form to the ideal A = (f1(x), f2(x),
. . . , fs(x)) ⊂ K[x], it produces for us the greatest common divisor of the basis
polynomials fj(x) (j = 1, 2, . . . , s), thus replacing the Euclidean algorithm. An
example of this:

Example 2: A = (x3− 7x2 + 11x− 5, x5− 28x3 + 16x2− 3x− 10, x4− 2x3−
19x2 + 15x + 25).

(1) x3 ≡ 7x2 − 11x + 5 (A)
(2) x5 ≡ 28x3 − 16x2 + 3x + 10 (A)
(3) x4 ≡ 2x3 + 19x2 − 15x− 25 (A)
(4) x2 ≡ 7x− 10 (A)
(5) x ≡ 5 (A)

We compute first two Σ-representations of x4. One is already there: (3). It only
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needs to be simplified by applying (1):

x4 ≡ 2x3+ 19x2 − 15x − 25 + 14x2 − 22x + 10 + 33x2−37x−15 (A).

We compute the other from (1):

x4 ≡ 7x3 − 11x2 + 5x + 49x2 − 77x + 35 +38x2− 72x+35 (A).

This yields a new relation (4): x2 ≡ 7x − 10 (A). (3) can be deleted from the
basis. We consider x3:

From (1): x3 ≡ 7x2 − 11x + 5 + 49x − 70 + 38x− 65 (A).
From (4): x3 ≡ 7x2 − 10x + 49x − 70 + 39x (A).

This yields (5): x ≡ 5 (A). (1) can be deleted from the basis. We consider x2:
From (4): x2 ≡ 25 (A).
From (5): x2 ≡ 5x ≡ 25 (A).

This yields no new relation, so (4) can be deleted from the basis. Also the
computation of x5 from (2) and from (5) produces identical Σ-representations,
so (2) can be deleted from the basis. (5) remains as the only basis polynomial
left and is the greatest common divisor of the original three basis polynomials
(Gröbner (1949), p. 39).

7. The Calculation of the Hilbert Function of an Ideal
from a Basis of the Form (6.4)

In this section, the symbols and definitions from Gröbner (1949), p. 154ff, will be
used. If we have found a basis for an ideal A of the form (6.4) using the method
of the algorithm, then two lemmas hold for this basis.

(7.1) Lemma: The number of linearly independent polynomials in A of degree
≤ t is equal to the number of PPs of degree ≤ t which are multiples of at

least one x
I
(l)
1

1 x
I
(l)
2

2 · · ·xI
(l)
n

n , if A = (f ′
1, f

′
2, . . . , f

′
s′) is a basis (6.4) of A, and

f ′
L

def
= x

I
(l)
1

1 x
I
(l)
2

2 · · ·xI
(l)
n

n + . . ., l = 1, 2, . . . , s′ (x
I
(l)
1

1 x
I
(l)
2

2 · · ·xI
(l)
n

n is the PP of fl

with the highest index).

(7.2) Lemma: The number of PPs mentioned in Lemma 7.1 is

N(t; (f ′
1, f

′
2, . . . , f

′
s′)) = H(t− t1; n− 1) + H(t− t2; n− 1)

+ . . . + H(t− ts′ ; n− 1)

−H(t− t1,2; n− 1)−H(t− t1,3; n− 1)

− . . .−H(t− ts′−1,s′ ; n− 1)

+ . . .
...

+ (−1)s′−1 H(t− t1,2,...,s′ ; n− 1),
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where tl is the degree of f ′
l , ti1,i2,...,ik is the degree of x

G
i1,i2,...,ik
1

1 x
G

i1,i2,...,ik
2

2

· · · xG
i1,i2,...,ik
n

n , and Gi1,i2,...,ik
i = max(I

(i1)
i , I

(i2)
i , . . . , I

(ik)
i ), for i = 1, 2, . . . , n

and 1 ≤ i1 < i2 < · · · < ik ≤ s′, 2 ≤ s′.

From these two lemmas, the following formula for the calculation of the Hilbert
function of A follows immediately:

H(t; (f ′
1, f

′
2, . . . , f

′
s′)) = H(t; n− 1)−N(t; (f ′

1, f
′
2, . . . , f

′
s′)).(7.3)

For t < 0, H(t; n) is defined here by H(t; n) = 0.

Proof of (7.1). First of all, we know that there must be at least as many lin-
early independent polynomials f ∈ A of degree ≤ t as PPs of degree ≤ t that

are multiples of at least one x
I
(l)
1

1 x
I
(l)
2

2 · · ·xI
(l)
n

n (l = 1, 2, . . . , s′) because the Σ-
representations of the residue classes of these PPs are the residue classes of
polynomials

fi1,i2,...,in
def
= xi1

1 xi2
2 · · ·xin

n + . . . ∈ A,(7.4)

where every fi1,i2,...,in has the PP xi1
1 xi2

2 · · ·xin
n as the PP with the highest index.

But these PPs are linearly independent, so there can only be a relation∑
ai1,i2,...,infi1,i2,...,in ≡ 0 (ai1,i2,...,in ∈ K),(7.5)

if ai1,i2,...,in = 0.
Now if a polynomial f ∗ ∈ A with degree ≤ t were still to exist, which is not

a linear combination of the fi1,i2,...,in , then we could form a polynomial

g = f ∗ −
∑

ai1,i2,...,infi1,i2,...,in ≡ 0 (ai1,i2,...,in ∈ K),(7.6)

and thereby choose the coefficients ai1,i2,...,in so that g contains none of the PPs
xi1

1 xi2
2 · · ·xin

n . Among the remaining PPs in g with nonzero coefficients, we seek
now the one with the highest index, and call it xl1

1 xl2
2 · · ·xln

n . Its residue class was
found to be a basis element by the algorithm. But (7.6) becomes

g ≡ 0 (A)(7.7)

in O, whereby xl1
1 xl2

2 · · ·xln
n obtains a Σ-representation, contradicting its property

as a basis element.

Proof of (7.2). We furnish the proof of (7.2) by induction on s′. For the case
s′ = 1, the formula becomes N(t; (f1)) = H(t − t1; n − 1) in accordance with

the fact that we must multiply x
I
(1)
1

1 x
I
(1)
2

2 · · ·xI
(1)
n

n by all PPs of degree t − t1 in

order to obtain the PPs of degree t which are multiples of x
I
(1)
1

1 x
I
(1)
2

2 · · ·xI
(1)
n

n . Now
suppose the formula holds for s′ basis polynomials. The number of PPs which
are multiples of at least one of the PPs

x
I
(l)
1

1 x
I
(l)
2

2 · · ·xI
(l)
n

n (l = 1, 2, . . . , s′ + 1)(7.8)
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can be compiled in the following manner: We take all PPs which are multiples of
the first s′ PPs of (7.8) (their total can be computed by the induction hypothesis)

and add to that all PPs which are multiples of x
I
(s′+1)
1

1 x
I
(s′+1)
2

2 · · ·xI
(s′+1)
n

n , whose total
has also already been computed. However, in this way, we have counted some

PPs twice, namely those which are multiples of an x
G

(j,s′+1)
1

1 x
G

(j,s′+1)
2

2 · · ·xG
(j,s′+1)
n

n

(j = 1, 2, . . . , s′, G
(j,s′+1)
i = max (I

(j)
i , I

(s′+1)
i ) for i = 1, 2, . . . , n), and were

therefore already counted with the first group. This number can already be
computed by the induction hypothesis. Hence, we must subtract these PPs from
the earlier number. This yields:

N(t; (f1, f2, . . . , fs′+1)) = H(t− t1; n− 1) + . . . + H(t− ts′ ; n− 1)

−H(t− t1,2; n− 1)− . . .−H(t− ts′−1,s′ ; n− 1)

+ . . . + (−1)s′−1H(t− t1,2,...,s′ ; n− 1)

+ H(t− ts′+1; n− 1)−
[
H(t− t1,s′+1; n− 1) + . . .

+ H(t− ts′,s′+1; n− 1)−H(t− t1,2,s′+1; n− 1)

− . . .−H(t− ts′−1,s′,s′+1; n− 1)

+ . . . + (−1)s′−1H(t− t1,2,...,s′,s′+1; n− 1)
]

= H(t− t1; n− 1) + H(t− t2; n− 1)

+ . . . + H(t− ts′+1; n− 1)

−H(t− t1,2; n− 1) + H(t− t1,3; n− 1)

+ . . . + H(t− ts′,s′+1; n− 1)

+ . . .
...

+ (−1)s′ H(t− t1,2,...,s′+1; n− 1).

Here, we used the fact that the LCM of

x
G

(i1,s′+1)
1

1 · · ·xG
(i1,s′+1)
n

n , x
G

(i2,s′+1)
1

1 · · ·xG
(i2,s′+1)
n

n , . . . , x
G

(ik,s′+1)
1

1 · · ·xG
(ik,s′+1)
n

n

is equal to the LCM of

x
I
(i1)
1

1 · · ·xI
(i1)
n

n , x
I
(i2)
1

1 · · ·xI
(i2)
n

n , . . . , x
I
(ik)
1

1 · · ·xI
(ik)
n

n , x
I
(s1+1)
1

1 · · ·xI
(s1+1)
n

n ,

where 1 ≤ i1 < i2 < · · · < ik ≤ s′; 1 ≤ k ≤ s′.
With this, we can compute the Hilbert function of an arbitrary ideal, after its

basis is first brought into the required form (6.4) with the help of the algorithm.

8. Determination of a Bound for the Termination of
the Algorithm from the Basis Polynomials of the Ideal

By the considerations in Section 6, we can now attempt to calculate a bound
from the basis polynomials f1, f2, . . . , fs of a P-ideal A = (f1, f2, . . . , fs) for how
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high a degree we must compute at the most, so that all steps of the algorithm
are carried out (i.e. the hypothesis of Lemma 5.13 is satisfied).

Here a bound will be found for the case

A = (f1, f2, . . . , fs) ⊂ K[x1, x2],(8.1)

fj = x
I
(j)
1

1 x
I
(j)
2

2 + . . .

(j = 1, 2, . . . , s; x
I
(j)
1

1 x
I
(j)
2

2 is the PP of fj which has the highest index). We will
also need the following quantities:

I
(l,k)
j = max(I

(l)
j , I

(k)
j ); j = 1, 2; l = 1, 2, . . . , s− 1; k = l + 1, . . . , s.(8.2a)

K(l,k) = I
(l,k)
1 + I

(l,k)
2 .(8.2b)

K = max(K(l,k)); l = 1, 2, . . . , s− 1; k = l + 1, . . . , s.(8.2c)

I1 = min(I
(l)
1 ) = I

(l1)
1 ; l = 1, 2, . . . , s; 1 ≤ l1 ≤ s.(8.2d)

I2 = min(I
(l)
2 ) = I

(l2)
2 ; l = 1, 2, . . . , s; 1 ≤ l2 ≤ s.(8.2e)

I = I1 + I2.(8.2f)

First of all, it is true that there are at most I PP of degree K without a
Σ-representation, namely xK

1 , xK−1
1 x2, . . . , xK−I2+1

1 xI2−1
2 and xI1−1

1 xK−I1+1
2 ,

xI1−2
1 xK−I1+2

2 , . . . , xK
2 . xK−I2

1 xI2
2 up to x

I
(l2)
1

1 x
K−I

(l2)
1

2 are multiples of x
I
(l2)
1

1 x
I
(l2)
2

2 ,

and x
I
(l2)
1 −1

1 x
K−I

(l2)
1 +1

2 up to xI1
1 xK−I1

2 are multiples of x
I
(l1)
1

1 x
I
(l1)
2

2 . For this it need
only be shown that

K − I
(l2)
1 + 1 ≥ I

(l1)
2 , or(8.3a)

K + 1 ≥ I
(l2)
1 + I

(l1)
2 .(8.3b)

This is true because

K = max(K(l,k)) = max[max(I
(l)
1 , I

(k)
1 ) + max(I

(l)
2 , I

(k)
2 )](8.3c)

≥ max(I
(l2)
1 , I

(l1)
1 ) + max(I

(l2)
2 , I

(l1)
2 ) = I

(l2)
1 + I

(l1)
2 .

By the same considerations, there exist at most I PP of degree t > K without
a Σ-representation. If a PP of degree t has two different Σ-representations from

which the Σ-representation of a yet non-representable PP x
I
(s+1)
1

1 x
I
(s+1)
2

2 can be

obtained, then again x
I
(s+1)
1

1 x
I
(s+1)
2

2 has at most degree K. Now if I
(s+1)
1 ≥ I1 and

I
(s+1)
2 ≥ I2, then

K ≥ I
(s+1,k)
1 + I

(s+1,k)
2 ,(8.4)

k = 1, 2, . . . , s; I
(s+1,k)
j = max(I

(s+1)
j , I

(k)
j ), j = 1, 2.

This means therefore that the new LCMs all have degree ≤ K. We prove this as
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follows: Since x
I
(s+1)
1

1 x
I
(s+1)
2

2 does not yet possess a Σ-representation, it must be

true that I
(s+1)
2 < I

(l1)
2 and I

(s+1)
1 < I

(l2)
1 . Then also

I
(s+1,k)
1 + I

(s+1,k)
2 ≤ I

(s+1,l2)
1 + I

(s+1,l1)
2 = I

(l2)
1 + I

(l1)
2 ≤ K,(8.5)

(k = 1, 2, . . . , s),

if we take into account that up to degree K every polynomial of the basis,

whose PP with the highest index is a multiple of another x
I
(l)
1

1 x
I
(l)
2

2 , was already
eliminated, and therefore

I
(k)
1 ≥ I1; I

(k)
2 < I

(l1)
2 ; I

(k)
2 ≥ I2; I

(k)
1 < I

(l2)
1(8.6)

(k = 1, 2, . . . , s; k 6= l1, k 6= l2)

I
(k)
2 = I

(l1)
2 for k = l1, I

(k)
1 = I

(l2)
1 for k = l2.

Thus if x
I
(s+1)
1

1 x
I
(s+1)
2

2 and one of the x
I
(l)
1

1 x
I
(l)
2

2 have LCM with degree > K, then

it must be that either I
(s+1)
1 < I1 or I

(s+1)
2 < I2. If we now redefine I1 and I2 as

I1 = min(I
(l)
1 ), l = 1, 2, . . . , s + 1, and(8.7a)

I2 = min(I
(l)
2 ), l = 1, 2, . . . , s + 1,(8.7b)

then we can say that either I1 or I2 it must have been decreased. But this also
means that for degree t ≥ K there are now fewer PPRs without Σ-representation

as earlier. The new LCMs of x
I
(s+1)
1

1 x
I
(s+1)
2

2 and x
I
(l)
1

1 x
I
(l)
2

2 (l = 1, 2, . . . , s) must have
all appeared by degree 2K. For degree 2K, we can apply the same reasoning:
Either, through a newly appearing relation, I1 or I2 will decrease, or every new
LCM has already appeared before degree 2K. In the first case, the new LCMs
appear before degree K + 2K = 3K. We can continue in this manner. However,
I = I1 + I2 can only decrease I times and thereby increase the bound.

Thus if I = 1, all of the LCMs ever computed appear before degree K(1) = 2K;
if I = 2, then before degree K(2) = K + K(1) = 3K; if I = 3, then before degree
K(3) = K(1) +K(2) = 5K. In this way, we continue recursively: If I = l, then the
LCMs appear before degree K(l) = K(l−2) + K(l−1).

In order to obtain an explicit formula, we must make the estimate somewhat
coarser, and say:

For I = 1, the LCMs appear before K(1) = 2K.
For I = 2, the LCMs appear before K(2) = 2K(1) = 22K.

...
For I = l, the LCMs appear before

K(l) = 2lK,(8.8)

as an easy induction shows.
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Of course in most cases the algorithm will have already terminated by much
smaller degrees. Thus (8.8) has only theoretical value and states that for an
arbitrary P-ideal ⊂ K[x1, x2], the algorithm can certainly be terminated for
specific predetermined degrees.

9. Programming the Algorithm

In order to adapt the algorithm for electronic computers, we must first consider
how polynomials can be computed in such devices. Then we will provide a rough
flowchart for the algorithm as well as for the most important subroutine (the
computation of a Σ-representation for a PPR), which is formulated as much
as possible without regard to the special properties of a specific computer. In
addition to this, we describe the two programs which we wrote for the ZUSE Z
23 V, in that we first provide the peculiarities of these two programs and then
describe how the data must be input and in what form the results appear. In
the flow charts a new symbol will be used: a← b. This will mean: the new value
for a results from the previous value for b, with the frequent use a ← a + 1,
which means in words: the new value for a results from the previous value for a
by addition of 1.

9.1. Computing with Polynomials on a Computer

Here we deal with first representing PPs and then with combining PPs to form
polynomials. In order to represent PPs, two different ways were pursued. The one
orders each PP by the index arising from the order (4.1), and computes with this
index. In this way, we only need a single cell to represent a PP, and we can, within
certain limits, compute with arbitrarily many variables in arbitrarily high degree.
But for the individual operations with PPs (such as multiplication, forming
LCMs, etc.), we need time-consuming subroutines. The other way represents the
exponents of a PP xi1

1 xi2
2 · · ·xin

n as a single number. How this is done can be
shown most quickly with an example. Suppose n = 3 and i1 = 2, i2 = 1, i3 = 4,
then the corresponding number would read 20104. In this way, exponents ≤ 99
can be handled, we reserve again only one cell for a PP, and the subroutines for
the operations with PPs are substantially simplified (especially for multiplication
of PPs: this happens now simply by adding the two corresponding numbers). Of
course, we can compute with just a limited number of variables (in our case with
5), because in one cell, only numbers with a limited number of digits can be
represented.

For the first way, a basic formula will be given here, namely the one which,
given the number n of variables and the exponents i1, i2, . . . , in, computes the
index N(i1, i2, . . . , in) coming from the PPs xi1

1 xi2
2 · · ·xin

n in the order (4.1). It
reads:

N(i1, i2, . . . , in) =
t−1∑
τ=0

H(τ ; n− 1) + H(t; n− 1)(9.1)
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−
n−1∑
j=1

( t+1−
j−1∑
l=1

il∑
τ=t+2−

j∑
l=1

il

H(τ − 1; n− 1− j)
)
,

where t =
n∑

j=1

ij

with the definition

l∑
τ=k

mτ = 0 for l < k.(9.1a)

The partial expression
t−1∑
τ=0

H(τ ; n− 1)(9.1b)

from (9.1) gives the number of PPs of degree < t in n variables, so the rest yields
the index of the PP within the considered degree t. We prove by induction on t
and n.

First the formula is true for t = 0 and all n. For this case, the formula evaluates
to

N(0, 0, . . . , 0) = H(0; n− 1)−
n−1∑
j=1

0+1−0∑
τ=0+2−0

H(τ − 1; n− 1− j)(9.2)

= H(0; n− 1) = 1,

agreeing with fact that there is only one PP of degree 0 for all n and this has
index 1.

Formula (9.1) is also true for n = 1 and all t. In this case, we have

N(i1) =
t∑

τ=0

H(τ ; 0)− 0 =
t∑

τ=0

1 = t + 1,(9.3)

agreeing with the fact that for n = 1 only one PP appears for each degree, and
hence this PP obtains the index t + 1.

Now we suppose (9.1) holds for n and all τ as well as for n+1 and all degrees
τ up to degree t. We show that the formula holds also for n + 1 variables and

degree t + 1. Let i1, i2, . . . , in+1 be given with
n+1∑
j=1

ij = t + 1. The PPs of degree

t + 1 consist of those with i1 6= 0, which are simply the PPs of degree t in n + 1
variables multiplied by x1, and those with i1 = 0, whose order is determined by
the order of the PPs of degree t + 1 in the n variables x2, x3, . . . , xn. In both
cases, the formula applies by the induction hypothesis.
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For the case i1 = 0, we have

N(0, i2, . . . , in+1) = N1 + N2 + N3,(9.4)

where

N1 =
t∑

τ=0

H(τ ; n)
is the number of PPs of degree τ ≤ t
in n + 1 variables,

N2 = H(t, n)
is the number of PPs of degree t + 1 in the
n + 1 variables x1, x2, . . . , xn+1 with i1 6= 0,

and

N3 = H(t + 1; n− 1) −
n−1∑
j=1

( (t+1)+1−
j∑

l=2
il∑

τ=(t+1)+2−
j+1∑
l=2

il

H(τ − 1; n− 1− j)
)

is the number of the PP within the PPs of degree t + 1

in the n + 1 variables x1, x2, . . . , xn+1 with i1 = 0

(computed with (9.1)).

By the index substitution k − 1 = j and the subsequent replacement of k by j
again, N3 becomes

N3 = H(t + 1; n− 1)−
n∑

j=2

( (t+1)+1−
j−1∑
l=1

il∑
τ=(t+1)+2−

j∑
l=1

il

H(τ − 1; n− j)
)
.

Hence,

N(0, i2, . . . , in+1) =
t+1∑
τ=0

H(τ ; n)−
n∑

j=1

( (t+1)+1−
j−1∑
l=1

il∑
τ=(t+1)+2−

j∑
l=1

il

H(τ − 1; n− j)
)
,

because i1 = 0 implies
k∑

l=2

il =
k∑

l=1

il, and

(t+1)+1−
0∑

l=1
il∑

τ=(t+1)+2−
1∑

l=1
il

H(τ − 1; n− 1) = 0,
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because of (9.1a).
In the case i1 6= 0, we have

N(i1, i2, . . . , in+1) = M1 + M2,(9.5)

where

M1 =
t∑

τ=0

H(τ ; n)
is the number of PPs of degree
τ ≤ t in n + 1 variables,

(9.5a)

and the index of the PP xi1
1 xi2

2 · · ·xin
n within degree t + 1 is computed (with

i′1 = i1 − 1, i′j = ij (j = 2, 3, . . . , n + 1)) as follows:

M2 = N(i′1, i
′
2, . . . , i

′
n+1)−

t−1∑
τ=0

H(τ ; n) =(9.5b)

= H(t; n)−
n∑

j=2

( t+1−
j−1∑
l=1

i′l∑
τ=t+2−

j∑
l=1

i′l

H(τ − 1; n− j)
)

−
t+1−0∑

τ=t+2−i′1

H(τ − 1; n− 1) =

= H(t + 1; n) − H(t + 1; n− 1)

−
n∑

j=1

( (t+1)+1−
j−1∑
l=1

il∑
τ=(t+1)+2−

j∑
l=1

il

H(τ − 1; n− j)
)

+ H((t + 1) + 1− 1; n− 1).

Therefore, combining (9.5a) and (9.5b) yields the correctness of (9.1) for the case
i1 6= 0 as well.

The transformation of the indices back into i1, i2, . . . , in for given n is done al-
gorithmically according to the following flowchart (here −t will also be computed
as i0):
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�
 �	

�
 �	

j

@@��

�� @@

1

Enter

p = −N(i1, i2, . . . , in), k = n− 1, l = 0, a = 0

b← a

a← 0

A← p + H(a; n− 1− l)

A < 0 ?

yes no il ← b− a

l ← l + 1

k ← k − 1p← A

a← a + 1

k ≥ 0 ?

no yesin = a

Return

(9.6)

This flowchart holds for n = 1. Suppose that it holds for n variables and consider
p = −N(i1, i2, . . . , in+1). In the case of n variables, i1, i2, . . . , in will be computed
starting from©1 , after the computation of i0 by the flowchart has set the variables
to the following values: p is the negative of the index of xi1

1 xi2
2 · · ·xin

n among the
PPs of degree t, l = 1, k = n−2, b = t, a = 0. In the case of n+1 variables, t and
i1 are computed correctly, as a step-by-step precise execution according to the
flowchart instructions will confirm. After that, the variables used at the mark©1
have the following values: p is the negative of the index of xi2

2 xi3
3 · · ·x

in+1

n+1 among
the PPs in the n variables x2, x3, . . . , xn+1 of degree t − i1, l = 2, k = n − 2,
b = degree of the PP xi2

2 xi3
3 · · ·x

in+1

n+1 , a = 0. By the induction hypothesis, the
flowchart computes precisely i2, i3, . . . , in+1, if we start with these values at ©1 .
l = 2 just has the effect that the exponents still to compute obtain the indices
2, 3, . . . , n + 1, and the second argument (n + 1)− 1− l of H(a; (n + 1)− 1− l)
takes on the correct values in the case of the n variables x2, x3, . . . , xn+1. But
this is precisely the effect required here.

Polynomial residue classes

f
def
= xI1

1 xI2
2 · · ·xIn

n +
∑

ai1i2···inxi1
1 xi2

2 · · ·xin
n ≡ 0 (A)

(where xI1
1 xI2

2 · · ·xIn
n is the PP of f with the highest index; ai1i2···in ∈ K), are

represented in the machine in the form

xI1
1 xI2

2 · · ·xIn
n ≡ −

∑
ai1i2···inxi1

1 xi2
2 · · ·xin

n (A),

so that the number of PPs xi1
1 xi2

2 · · ·xin
n with nonzero coefficients is stored in the

first of several successive cells, xI1
1 xI2

2 · · ·xIn
n (as index or number) in the next one,
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the first nonzero coefficient in the next, the associated PP (as index or number)
in the following one, and so forth, up to the last nonzero coefficient and its asso-
ciated PP. A specific order of the PPs xi1

1 xi2
2 · · ·xin

n within the polynomial is not
considered important, but for every operation with polynomial residue classes,
the resulting residue class has stored again only PPs with nonzero coefficients,
and so is “compactly expressed”. K was taken to be the field of rational numbers.
Numerators and denominators of a coefficient were stored in two separate cells
so that every coefficient actually uses two cells. Some subroutines must manage
the arithmetic operations between rational numbers that are represented in this
way. The individual polynomials were ordered in rows of variable length. Indi-
cators must be built in, which report excesses of this length (as well as excesses
of every other limit that must be adhered to during computation, for example:
the highest number of polynomials to be processed, the highest allowed range of
numbers, the maximal number of stored basis elements, etc.), in order to avoid
false results which arise from computing further. (These indicators are not shown
in the flowcharts so that clarity is not impaired.)

9.2. Flowchart of the Algorithm

Let the ideal
A = (f1, f2, . . . , fs) ⊂ K[x1, x2, . . . , xn],

fj = x
I
(j)
1

1 x
I
(j)
2

2 · · ·xI
(j)
n

n +
∑

a
(j)
i1i2···inxi1

1 xi2
2 · · ·xin

n = PPj +

τj∑
i=1

a
(j)
i PP

(j)
i ,

be given (x
I
(j)
1

1 x
I
(j)
2

2 · · ·xI
(j)
n

n = PPj is the PP of fj with the highest index; a
(j)
i1i2···in ∈

K; PP
(j)
i are the xi1

1 xi2
2 · · ·xin

n which have coefficients a
(j)
i1i2···in 6= 0 written in any

order).
A rough flowchart for the algorithm in the form described in Section 6 is then

as follows (auxiliary relations are not stored, the LCMs are used in the following
order: the LCM of PPk and PPl precedes the LCM of PPp and PPq if k < p or
k = p and l < q!):

�
 �	

�
 �	�
 �	
@@��

Start

yes no

s = 1 ?

Enter the polynomials f1, f2, . . . , fs

and store them rowwise.

Print the heading and the

polynomials f1, f2, . . . , fs.

1 2
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�
 �	 �
 �	
�
 �	 �
 �	�
 �	

�
 �	
�
 �	

�
 �	

�
 �	

�
 �	

�
 �	

�
 �	�
 �	�
 �	 �
 �	�
 �	�
 �	

T
T�

�

L
L�

�

L
L�

�

L
L�

�

T
TT�

��

AA��

L
L�

�

L
L

L
L�

�
�
�

yes no

dim

1 2 k = 2

l = 1

Form D
(k)
(k,l) so that PP(k,l) = D

(k)
(k,l)PPk.

Form D
(l)
(k,l) so that PP(k,l) = D

(l)
(k,l)PPk.

Multiply fk by D
(k)
(k,l) and store it in auxiliary row 1.

Multiply fl by D
(l)
(k,l) and store it in auxiliary row 2.

Subtract auxiliary row 1 from auxiliary row 2 and store the result in auxiliary row 1.

Reduce auxiliary row 1 to a Σ-representation.

noyes

PP1 = 1 ?

Write:

(−1)-dim

Stop

Form PP(k,l)
def
= LCM of PPk and PPl.

Form M(k,l)
def
= product of PPk and PPl.

M(k,l) = PP(k,l)?

PP(k,l) = PPk?

yes no

yes no

yes no

red

rel(-1)-dim

PP(k,l) = PPl?

Divide auxiliary row 1 by −a and put the PP with the

highest index in the second cell of auxiliary row 1.

yes no

Is this PP equal to 1 ?

Find the PP with the highest index in

auxiliary row 1 (whose coefficient we call a).

W1 = 1

W1 > 0 ?

yes no

W1 = ?? W2 = ??

-1 1 2 -1 1 2

5 6 7 3 8 9

W2 = 2 W2 = −1

W1 = −1, W2 = −1

W2 = 1

(−1)-dim

W1 = −1

Do all the coefficients of

the Σ-representation vanish?

exchange

exchange

exchange
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�
 �	 �
 �	 �
 �	 �
 �	 �
 �	

�
 �	 �
 �	 �
 �	 �
 �	
�
 �	�
 �	

�
 �	�
 �	

�
 �	

�
 �	

@@��

@@��

@@��

D
D
D�

�
�

@@��

A
A
A�

�
�

C
C
C�

�
�

@@��

@@��

@@��

3 4

4

5 6 7 8 9

Store auxiliary

row l in row s + 1.

s← s + 1

Store auxiliary

row l in row k.

l = 1

Store rows l + 1, . . . , s

in rows l, . . . , s− 1.

Store auxiliary

row l in row s.

s← s− 1

k ≤ s ?

yes no

rel

l < k ?

yes no

rel

k ← k − 1

k ← k + 1

k ≤ s ?

yes no

rel

rel

i← i + 1

i ≤ n ?

yes no

Write: ”Zero dimensional”.

Reduce rows 1, 2, . . . , s to

Σ-representations and

print them.

Print: ”Basis Elements”.

p = 1, t = 0, w = 0, z = 0

Is the PP with index p a

multiple of a PPj (j = 1, 2, ..., s) ?

yes no

p← p + 1

Bz = PP with index p

Print Bz .

w = 1

z ← z + 1

Does the PP with index p

have degree higher than t?

no yes

Print: ”Multiplication Table”.

l = 1

Form Bl,k = BlBk

Compute the Σ-representation of Bl,k.

Store it in auxiliary row l.

Print l, print k, print the Σ-representation of Bl,k.

k ← k + 1

k ≤ z ?

yes no

l ≤ z ?

yesnoStop

Among the PPj (j = 1, 2, ..., s),

is there a PP of the form xk
i ?

yes no

i = 1dim

Stop

Write: ”Higher Dimensional”.

Reduce rows 1, 2, . . . , s to

Σ-representations and

print them.

l← l + 1

k = l

l = 1

l← l + 1

Store row s + 1

in row k.

l = 1

s← s− 1

Store rows

l + 1, ..., s + 1

in rows l, . . . , s.

w = 0 ?

no yes

t← t + 1

w = 0
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9.3. Flowchart for the Reduction of a Representation of a PPR by Other
PPRs of Lower Index to a Σ-Representation

In the auxiliary row 1, let the relation PP0 ≡
τ∑

i=1

aiPP
(0)
i (A) (PP0 and PP

(0)
i

are power products, ai 6= 0, ai ∈ K (i = 1, 2, . . . , τ)) be stored in the following

form: τ, PP0, a1, PP
(0)
1 , . . . , aτ , PP

(0)
τ . Similarly in the rows 1, 2, . . . , s, the basis

relations PPj ≡
τj∑

i=1

a
(j)
i PP

(j)
i (A) (PPj and PP

(j)
i are power products, PPj has

a higher index than PP
(j)
i (i = 1, 2, . . . , τj), a

(j)
i 6= 0, a

(j)
i ∈ K (i = 1, 2, . . . , τj))

are stored. Then the transformation of
τ∑

i=1

aiPP
(0)
i to a Σ-representation is done

by the following process:�
 �	

�
 �	
@@��

A
A
A�

�
�

\
\ @@�

�
��

@@��

@@��

B
B�

�

\
\�

�

@@��

\
\�

�

p = 1

p← p + 1

Enter

τ = 0 ?

yes no

Return

Is PP (0)
p a multiple of PPq ?

yes no

no yes

ap ← aτ , PP (0)
p ← PP (0)

τ , τ ← τ − 1

q ← q + 1

τq = 0 ?

yes no

ak ← ak + ap · a(q)
l

ak = 0 ?

yes no

ak ← aτ , PP
(0)
k ← PP (0)

τ

τ ← τ − 1

p ≤ τ ?

yes no

τ ← τ + 1, aτ ← ap · a(q)
l , PP (0)

τ ← D · PP
(q)
l

Construct D so that PP (0)
p = D · PPq . Multiply

row q by D and ap and store it in auxiliary row 2.

ap ← aτ , PP (0)
p ← PP (0)

τ , τ ← τ − 1, a← τ , l = 1

l← l + 1

l ≤ τq ?

no yes

q = 1

q ≤ s ?

k ≤ a ?

no yes

yes no

D · PP
(q)
l = PPk

k = 1

k ← k + 1

a = 0 ?

no yes
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9.4. Description of the First Program

(See Appendix 1a for the program listing)
The first program for the ZUSE Z 23 V is, for the most part, written in

the Formelübersetzer, an algorithmic programming language which corresponds
approximately to ALGOL. However, the parts which are repeated often (rational
arithmetic and operations with PPs) are programmed in the Freiburger code,
which is similar to the internal language of the machine. The representation of
PPs in this program is done by assigning natural numbers to the individual PPs
using the formula (9.1) and algorithm (9.6). The use of the Formelübersetzer and
this representation of the PPs proved to be too time-consuming, given the speed
of the machine used. Thus the program is practically worthless. Nevertheless, it
is presented here because it treats the general case of n variables, and a program
for faster machines, whose internal language is not accessible, should probably
be written in a similar way. This program differs from the flowchart given above
in two essential ways:

1. For every new run of the part rel , the representations of the PPj (j =
1, 2, . . . , s) will be reduced each time to a Σ-representation.

2. In the part red , the auxiliary rows 1 and 2 will be reduced separately to
Σ-representations and only then are subtracted from each other.

The second change, for the computing time, is a disadvantage. The first change
can result in an advantage for complicated examples. In order to describe the
usage of the program, it will be shown how the data tape and the output page
look for the ideal:

A = (x2
3 −

1

2
x2

1 −
1

2
x2

2, x1x3 − 2x3 + x1x2, x2
1 − x2)(9.9)

(see Appendix 2)

9.5. Description of the Second Program

(See Appendix 1b for the program listing)
The second program was written entirely in the Freiburger code with the

help of a subroutine that enables symbolic addressing (which, unlike the use
of Formelübersetzer, has no negative influence on the computing time). Special
care was taken to avoid waiting times on the slow magnetic drum. (In this
way the computing time can be reduced by up to sixteen times in general.)
In addition, the PPs were represented in the second form, namely as integers.
With these three, as well as a couple of smaller improvements, we were able to
reduce the computing time by a factor of 20-25 (and at the same time the usable
memory was increased) so that computation with an electronic computer is quite
profitable. Again we give the data tape and ouput page for the ideal (9.9) (see
Appendix 3). The representation of the PPs as integers is slightly changed here,
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so that as the first part, the degree of the given PP is shown: Thus 2020000 is
the PP x2

1.
In both of these programs, the possibility exists, by adjusting a control key

at the console to the value 17, of allowing the polynomials which are newly
adjoined to the basis to be printed out with an indication of the two power
products PPk and PPl from which the PP(k,l) that produces the two different
Σ-representations was formed. For the case of the ideal (9.9), this yields the
following picture: Appendix 4.

In the second program, it is very easy to incorporate changes, in order to
observe theoretical conjectures and considerations about the behavior of the al-
gorithm in practical computation. Furthermore, it is possible to organize the
memory differently, this means to store either many short or fewer long poly-
nomials. For the ideal (9.9) the program needs 2 minutes, 46 seconds to find
the basis (6.4) and another 59 seconds to compute the multiplication table. An
additional 3 minutes 13 seconds are needed to output the results.

To conclude, we give another example of an ideal in K[x1, x2, x3, x4, x5] which
will be found to be higher dimensional (see Appendix 5).

10. Conclusion

After showing in Section 3 that the residue class ring of a zero dimensional
P-ideal has the structure of a hypercomplex system, in Section 4, step-by-step
we introduced an algorithm, about which one can prove that it does, indeed,
construct a basis for the algebra. (4.14) and (4.19) were derived as termination
criteria for the algorithm in this form. Using four lemmas from Section 5, which
make assertions about the occurrence of new relations between residue classes
during the execution of the algorithm, the algorithm can be simplified in Section
6 and put into a somewhat different form (so that it specializes in the case
of a single variable x to the Euclidean algorithm for determining the greatest
common divisor of several polynomials). Results from Section 5 were applied
in Section 7 for calculating the Hilbert function of an arbitrary P-ideal, and
in Section 8 for determining a bound for the termination of the algorithm for
the basis polynomials f1, f2, . . . , fs of an arbitrary P-ideal ⊂ K[x1, x2]. Finally
in Section 9, preparations for programming the algorithm were done, the most
important flowcharts were provided, and finally examples were computed with
the programs which we wrote for the ZUSE Z 23.
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