Details:
Title  Solving algebraic systems using matrix computations  Author(s)  Shankar Krishnan, Dinesh Manocha  Type  Article in Journal  Abstract  Finding zeros of algebraic sets is a fundamental problem in scientific and geometric computation. It arises in symbolic and numeric techniques used to manipulate sets of polynomial equations. In this paper, we outline algorithms and applications for solving zero and one dimensional algebraic sets using matrix computations. These algorithms make use of techniques from elimination theory and reduce the problem to finding singular sets of matrix polynomials. We make use of algorithms for eigendecomposition, singular value decomposition and Gaussian elimination to compute the singular sets. These algorithms have been implemented
and perform very well in practice. We describe their application to computing conformations of molecular chains, inverse kinematics of serial robots, solid modeling and manufacturing.  Length  18 
File 
 Language  English  Journal  SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Algebraic Manipulation)  Volume  30  Number  4  Pages  421  Year  1996  Translation 
No  Refereed 
No 
